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Abstract—In this paper, a low-complexity recursive joint
channel estimation and signal detection method is proposed
for massive multiple-input multiple-output (MIMO) systems to
improve both estimation and detection performance. Specifically,
by approximating the autocorrelation matrix of the input data
signal as a diagonal matrix, the complexity of the recursive least
squares (RLS) channel estimation algorithm can be reduced.
Then, based on RLS channel estimation, the complexity of signal
detection can also be reduced by a two-stage Sherman formula.
After that, the results of signal detection are then fed back
to channel estimation and a weighting matrix is applyed for
further performance improvement, which leads to the proposed
weighted diagonalized recursive channel estimation and detection
(WDRCED). Simulation results demonstrate that WDRCED
improves the performance of both estimation and detection with
reduced computational complexity.

Index Terms—Joint channel estimation and signal detection,
weighted diagonalized RLS, iterative method, massive MIMO.

I. INTRODUCTION

Due to the increasing demands for system capacity, spec-
trum, and energy efficiency, massive multiple-input multiple-
output (MIMO) technology is pivotal in B5G and 6G com-
munication systems [1]–[4]. Typically, the performance of
massive MIMO systems chiefly depends on the accuracy of
channel state information (CSI). In time division duplexing
(TDD) systems, accurate channel estimation enhances uplink
detection and enables precise precoding for the downlink.
Among the existing methods, semi-blind estimation is much
more preferred by taking advantages of both the pilot symbols
and the unknown data symbols [6]–[13] .

In particular, a two-level maximum likelihood (ML) method
is proposed for joint channel estimation and detection in
[6], which iteratively minimizes the cost function but also
incurs high complexity unfortunately. In [9], the channel
matrix is treated as a hidden variable, where an expectation-
maximization (EM) algorithm is used to alternate between
channel estimation and signal detection. Along this direction,
authors in [10], [11] explored two EM-based estimation meth-
ods utilizing linear detection techniques by adding different
assumptions on the data symbols. Similar alternating method
have also been given in [12], [13]. However, these methods
commence to work when all signals including pilots and data
are received. Different from them, the recursive least squares
(RLS) filter is proposed in [14]–[16], which dynamically

Corresponding author: Zheng Wang (email: wznuaa@gmail.com)

updates the channel estimates promptly with the incoming
data.

In this paper, based on RLS channel estimation, a low-
complexity weighted diagonalized recursive channel estima-
tion and detection (WDRCED) method is proposed for im-
proving both estimation and detection performance. Specif-
ically, WDRCED consists of three aspects. First of all, it
diagonalizes the autocorrelation matrix of the input signal
to simplify the traditional RLS channel estimation. Secondly,
based on RLS channel estimation, the complexity of signal
detection is significantly reduced by circumventing the matrix
multiplexing and inversion in an efficient way. Finally, the
detection outcomes are integrated back into the channel esti-
mation for extra performance gains, thus establishing a loop
between channel estimation and signal detection.

II. TRADITIONAL FRAMEWORK FOR JOINT CHANNEL
ESTIMATION AND DATA DETECTION

Consider a TDD protocol scenario, the base station is
equipped with Nr antennas, and receives transmissions from
Nt single-antenna users. Each user sends T = Np + Nd

symbols during the uplink transmission, with Np known pilot
symbols followed by Nd data symbols. This transmission
occurs in a block-fading scenario, where the channel remains
constant over the block. As shown in Fig. 1, after receiving
T symbol vectors, the traditional joint channel estimation and
detection method begins to work by exchanging information
iteratively.

Fig. 1. Traditional joint channel estimation and signal detection.

Specifically, given the MIMO channel matrix H ∈ CNr×Nt ,
the received signals can be expressed by

Y = HX+N, (1)

where Y = [Yp Yd] ∈ CNr×T , X = [Xp Xd] ∈ CNt×T

and N = [Np Nd] ∈ CNr×T are the received signal matrix,
transmit signal matrix and zero-mean additive noise matrix



respectively. Meanwhile, the subscripts p and d represent the
pilot and the data transmission phase respectively.

In the traditional joint channel estimation and signal detec-
tion, an initial estimated channel is normally obtained based
on the pilot signals via least squares (LS) or minimum mean
square error (MMSE) estimation, i.e.,

HLS = YpX
H
p (XpX

H
p )−1, (2)

HMMSE = Yp(X
H
p RHXp + σ2

nNrI)
−1XH

p RH , (3)

where RH = E[HHH] is channel correlation matrix and σ2
n

is the noise variance. Then the estimated channel Ĥ is used to
detect signals X̂d ∈ CNt×Nd . Let y(t), x(t) and n(t) denote
the t-th column vectors of Y, X and N (t correspond to the
index of time instance). Then we have

y(t) = Hx(t) + n(t), t = 1, 2, ..., T, (4)

where the optimal ML detection computes

x̂(t) = arg min
x(t)∈ONt

∥y(t)− Ĥx(t)∥2, t = Np + 1, ..., T. (5)

In general, the classic linear detectors like zero forcing (ZF)
and MMSE are normally applied for detection. Specifically,
the linear detector firstly performs the following detections

x̃ZF = (ĤHĤ)−1ĤHy(t), (6)

x̃MMSE = (ĤHĤ+ σ2
nI)

−1ĤHy(t), (7)

then the detection output is obtained by quantizing x̂ZF =
⌈x̃ZF⌋Q ∈ ONt or x̂MMSE = ⌈x̃MMSE⌋Q ∈ ONt .

After signal detection, the detected signal matrix X̂d =
[x̂(Np + 1) . . . x̂(T )] is fed back to channel estimator, which
uses Xp and X̂d to update the channel estimates through LS in
(2) or MMSE in (3). Then, the refined channel estimates are
used to enhance signal detection performance by providing
a better channel estimates for (5), thus forming a feedback
loop between channel estimation and detection. However, this
conventional approach requires complete sets of received data,
i.e., t = 1, ..., T for each iteration. To this end, RLS based joint
channel estimation and signal detection is proposed [15].

III. ALGORITHM DESCRIPTION

As shown in Fig. 2, different from the traditional joint
channel estimation and signal detection, RLS joint method
updates the channel estimation at every time instance.

Specifically, consider (2) as a cumulative form at each time
instance, i.e.,

HLS(t) =

[
t∑

l=1

y(l)x̂H(l)

][
t∑

l=1

x̂(l)x̂H(l)

]−1

, (8)

and RLS estimation serves as a recursive version of LS by

Ĥ(t) = Ĥ(t− 1) + e(t)k(t). (9)

Here e(t) = y(t)−Ĥ(t−1)x̂(t) ∈ CNr×1 represents the prior
error vector at time t, the Kalman gain vector k(t) ∈ C1×Nt

is expressed as

k(t) =
x̂H(t)P(t− 1)

1 + x̂H(t)P(t− 1)x̂(t)
, (10)

with information matrix

P(t) = P(t− 1)−P(t− 1)x̂(t)k(t). (11)

After obtaining Ĥ(t), the current data x̂(t) is detected using
ZF in (6) or MMSE in (7). Then the detected data is sent back
to refine channel estimates by (9). Clearly, we can see from
Fig. 2, this updated channel is then used to detect data in the
next instance, creating a recursive process for joint channel
estimation and detection. To better utilize the information
from joint channel estimation and detection, we propose a
joint weighted diagonalized recursive channel estimation and
detection (WDRCED) method.

A. Complexity Reduction in Channel Estimation by Diagonal-
izing the Information Matrix

In the RLS channel estimation algorithm, updating the
information matrix P involves matrix-vector and vector-vector
multiplications, which contribute to its computational com-
plexity. The matrix P, on the other hand, represents the
approximation of the inverse of XcurX

H
cur where Xcur ∈ CNt×t

represents the matrix of signals sent from time index 1 to the
current time index t (tmax = T ).

As time index t increases, matrix P exhibits a dominantly
diagonal characteristic when t ≫ Nt [17]. This situation arises
because the signals transmitted from different antennas are
becoming weakly correlated or approximately orthogonal to
each other, so that the diagonal entries of XcurX

H
cur are getting

larger compared to the off-diagonal entries. Motivated by this,
we update only the diagonal elements of the matrix P, i.e.,

P̄(t) = diag
(
P̄(t− 1)− P̄(t− 1)x̂(t)k(t)

)
(12)

where diag (·) represents retaining only the diagonal elements
of a matrix. Clearly, we emphasize that such an approximation
is getting more accurate as t increases.

By using this diagonal approximation method, the com-
plexity reduction in (10) and (11) can be readily achieved.
Here, the computational complexity is evaluated in terms of
the required number of complex multiplications. Firstly, the
computation of k(t) in (10) mainly involves vector-matrix
multiplication. According to P̄(t) in (12), this vector-matrix
multiplication is simplified, where the multiplication complx-
ity of (10) is reduced from N2

t +2Nt to 3Nt. Secondly, when
computing matrix P, the matrix-vector multiplication between
P(t− 1) ∈ CNt×Nt and x̂(t) ∈ CNt×1 in (11) only needs to
take the diagonal elements into account. Moreover, the vetcor-
vector multiplication between P(t − 1)x̂(t) ∈ CNt×1 and
k(t) ∈ C1×Nt in (11) only needs to consider the the diagonal
elements of the resulting matrix due to diagonalization, so
that the multiplication complxity of (11) is reduced from 2N2

t

to 2Nt. To summarize, the total multiplication complexity
of RLS estimation is reduced from 2NrNt + 3N2

t + 2Nt to
2NrNt + 5Nt.

B. Complexity Reduction in Signal Detection by Two-stage
Sherman Formula

According to (10) and (11), the update of RLS channel
estimation requires the known transmit data signal x̂(t). To



Fig. 2. System diagram of massive MIMO RLS joint channel estimation and signal detection.

obtain x̂(t), using ZF linear detection as an example, we can
observe that the computation and inversion of the Gram matrix
ĤH(t)Ĥ(t) in (6) are rather computationally expensive. To
this end, we now show that leveraging the iterative form
of RLS channel estimation in (9) can effectively reduce the
complexity required for computing (6).

Specifically, by (9), the Gram matrix ĤH(t)Ĥ(t) in (6) at
time instance t can be formulated as

ĤH(t)Ĥ(t) = (Ĥ(t− 1) + ∆Ĥ(t))H(Ĥ(t− 1) + ∆Ĥ(t))

= ĤH(t− 1)Ĥ(t− 1) + ∆ĤH(t)Ĥ(t− 1)

+ ĤH(t− 1)∆Ĥ(t) + ∆ĤH(t)∆Ĥ(t), (13)

where ∆Ĥ(t) = e(t)k(t) is the update part of the new esti-
mated channel. Given ĤH(t)Ĥ(t) in (13), to bypass the matrix
inversion of it, a two-stage detection method is proposed based
on the information from the previous time instance.

At the first stage, considering the first three terms of the
Gram matrix update calculation in (13), we have

ĤH(t− 1)Ĥ(t− 1) + ∆ĤH(t)Ĥ(t− 1) + ĤH(t− 1)∆Ĥ(t)

= ĤH(t− 1)Ĥ(t− 1) + kH(t)(eH(t)Ĥ(t− 1))

+ (ĤH(t− 1)e(t))k(t). (14)

Then, for notational simplicity, the following definitions are
made:

G
∆
= ĤH(t− 1)Ĥ(t− 1) ∈ CNt×Nt ,

u
∆
= kH(t) ∈ CNt ,B = I ∈ C2×2

v
∆
= ĤH(t− 1)e(t) ∈ CNt ,

U
∆
= [u,v] ∈ CNt×2,V

∆
= [v,u]H ∈ C2×Nt ,

and we then introduce Sherman-Woodbury formula to compute
the first stage filter matrix Ffirst ∈ CNt×Nt , i.e.

Ffirst = (G+UBV)−1

= G−1 −G−1U(B−1 +VG−1U)−1VG−1.
(15)

Next, at the second stage, we add the last term
∆ĤH(t)∆Ĥ(t), i.e.,

∆ĤH(t)∆Ĥ(t) = (e(t)k(t))He(t)k(t) = kH(t)∥e(t)∥2k(t)
(16)

to the results of the first stage. Then, by letting
d = kH(t)∥e(t)∥ ∈ CNt and introducing Sherman-

Morrison-Woodbury formula, the target matrix inversion
(ĤH(t)Ĥ(t))−1 can be computed by the following formation:

(ĤH(t)Ĥ(t))−1 = Fsecond

= (F−1
first + ddH)−1

= Ffirst −
Ffirstdd

HFfirst

1 + dHFfirstd
.

(17)

More importantly, according to (17), calculation of the matrix
inversion (ĤH(t+1)Ĥ(t+1))−1 can be calculated directedly
based on the results of (ĤH(t)Ĥ(t))−1 without the traditional
matrix multiplication and inversion. By doing this, the matrix
multiplication and inversion are only required at the first time
instance. To be precise, the calculation flow chart is shown
in Fig. 3, where ‘Mul’ and ‘Inv’ represent multiplication and
inversion respectively.

Fig. 3. Comparison of linear detection and two-stage detection.

Specifically, at each time instance, the traditional compu-
tational complexity of directly calculating (ĤH(t)Ĥ(t))−1

is NrN
2
t + 0.5N3

t . Note that at the first stage, the matrix
inversion involved has a dimension of only 2, where the
multiplication complexity is NrNt + 8N2

t + 4Nt + 4. At the
second stage, all computations only involve matrix-vector or
vector-vector multiplications and the multiplication complexity
is 2N2

t + 3Nt + Nr. In RLS joint method, to detect the
current data x(t), both linear detector and the proposed two-
stage detector also require the computation of ĤH(t)y(t) and
multiplexing between (ĤH(t)Ĥ(t))−1 and ĤH(t − 1)y(t),
where the multiplication complexity is NrNt+N2

t . Therefore,
the total complexity reduction is achieved from the direct
detection NrN

2
t + 0.5N3

t +NrNt +N2
t to the proposed one

2NrNt + 11N2
t + 7Nt +Nr + 4.

C. Performance Improvement in Both Channel Estimation and
Signal Detection by Weighted RLS

According to (10), the update of RLS channel estimation
also involves updating the Kalman vector k(t), which is
crucial for incorporating new detection results into the current
channel estimates. Therefore, we consider modifying k(t) by
applying a weight matrix W to obtain further performance
improvement.



TABLE I
THE COMPUTATIONAL COMPLEXITIES OF WDRCED AND OTHER ALGORITHMS PER UPDATE

Channel Estimation Multiplication Summation

RLS 2NrNt + 3N2
t + 2Nt 2NrNt + 3N2

t −Nt

estimation in WDRCED 2NrNt + 5Nt 2NrNt + 3Nt

Signal Detection Multiplication Summation

Linear method NrN2
t + 0.5N3

t +NrNt +N2
t NrN2

t + 0.5N3
t +NrNt − 2Nt

detection in WDRCED 2NrNt + 11N2
t + 7Nt +Nr + 4 2NrNt + 11N2

t − 2Nt + 1

Specifically, the weight matrix W is a diagonal matrix,
where its i-th diagonal element wii reflects the reliability of
transmit antenna i. This reliability refers to the confidence
level in the data transmitted from antenna i, which is assessed
based on how accurately the signal from this antenna is
detected at the receiver. Moreover, such a reliability can be
measured based on the distance between the signal x̃ processed
in (6) or (7) and its nearest constellation point x̂ . This distance
quantifies the deviation of the received signal from its expected
constellation point. For instance, the distance for detected
signals at transmit antenna i is given as:

r2i = |Jlinear(i, :)y(t)− xnearest|2. (18)

Here, Jlinear is the equalization matrix for linear detection,
which maps the received signals back to the transmitted signal
space through a linear transformation and can obtain via (17)
and Ĥ. Furthermore, we update the weight coefficient wii as:

wii =
1

2
tanh{ 1

r2i
}. (19)

The update rule in (19) is a heuristic approach designed to
provide a smooth and bounded adjustment for the weight
coefficient. After getting the weight matrix W, the improved
weighted k(t) is then given by:

k̄(t) = k(t)W, (20)

and the following RLS channel estimation is reformulated as:

Ĥ(t) = Ĥ(t− 1) + e(t)k̄(t), (21)

P̄(t) = P̄(t− 1)− P̄(t− 1)x̂(t)k̄(t). (22)

By using this weighted RLS method, the performance of
both channel estimation and signal detection can be improved.
To summarize, the proposed WDRCED algorithm for uplink
massive MIMO systems is shown in Algorithm 1. As for the
convergence of RLS, the results of WDRCED method will
gradually converge to the MMSE solution with the initial setup
Ĥ(0) = 0 and δ = 1

σ2
n

.

IV. SIMULATION RESULTS

In this section, we evaluate the performance achieved by the
proposed WDRCED method. The performance is estimated
under i.i.d Rayleigh MIMO channels i.e., all elements in
H follow a circularly symmetric complex-valued Gaussian
distribution with zero-mean and unit variance. We consider
using the transpose of random Nt columns of Np × Np

DFT matrix as the orthogonal pilots matrix and each user

Algorithm 1 Weighted Diagonalized Recursive Channel Esti-
mation and Detection (WDRCED) algorithm
Input: y(t),xp(t), Np, Nd

Output: Ĥ, X̂d

1: Phase I: Pilot based estimation
2: Initialize: Ĥ(0) = 0,P(0) = δI
3: for t = 1, 2, . . . , Np do
4: e(t) = y(t)− Ĥ(t− 1)xp(t)

5: k(t) =
xH
p (t)P(t−1)

1+xH
p (t)P(t−1)xp(t)

6: Ĥ(t) = Ĥ(t− 1) + e(t)k(t)
7: P(t) = P(t− 1)−P(t− 1)xp(t)k(t)
8: end for
9: Phase II: Joint channel estimation and detection

10: Initialize: G−1(Np + 1) = (ĤH(Np)Ĥ(Np) + σ2
nI)

−1,
P̄(Np + 1) = diag(P(Np))

11: for t = Np + 1, Np + 2, . . . , Np +Nd do
12: Signal detection using G−1(t):
13: Calculate Ffirst by (15)
14: Calculate Fsecond by (17)
15: x̂(t) = ⌈FsecondĤ

H(t− 1)y(t)⌋Q ∈ ONt

16: Channel estimation update:
17: Calculate ri by (18)
18: Construct the weight matrix W(t)
19: e(t) = y(t)− Ĥ(t− 1)x̂(t)

20: k̄(t) = x̂H(t)P̄(t−1)

1+x̂H(t)P̄(t−1)x̂(t)
W(t)

21: Ĥ(t) = Ĥ(t− 1) + e(t)k̄(t)
22: P̄(t) = diag

(
P̄(t− 1)− P̄(t− 1)x̂(t)k̄(t)

)
23: Update G−1(t+ 1) = Fsecond for next time instance
24: end for

send signals independently. In the first set of experiments, we
investigate the channel estimation performance MSE, which
can be computed as:

MSE =
∥H− Ĥ∥2

NrNt
. (23)

We set Nr = 32, Nt = 4, Np = Nt, Nd = 80Np, 64-QAM
modulation and compare the MSE performance of three types
training based channel estimator, SVD subspace estimator [8],
EM with Gaussian Data estimator [10], heuristic EM estimator
[11] and data-aided RLS estimator [15]. MMSE Genie as-
sumes the channel estimator has the perfect knowledge of data
symbols and serves as a limit band. The proposed WDRCED
uses weighted diagonalized RLS channel estimator combined
with MMSE initial based two-stage detector.
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Fig. 4. MSE versus SNR under 64-QAM scheme with Nr = 32, Nt = 4,
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As shown in Fig. 4, compared with pilot based method,
data-aided methods achieve better estimation performance.
It also proves that with a proper initial value, RLS can
achieve MMSE performance. The proposed WDRCED method
outperforms other methods and operates as an online method
without requiring a full dataset. Under high SNR conditions,
WDRCED achieves estimation performance comparable to
scenarios with perfectly known transmitted signals, as the high
accuracy of signal detection minimizes errors in the estimation
process.
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Fig. 5. BER versus SNR under 64-QAM scheme with Nr = 32, Nt = 4,
Np = Nt, Nd = 80Np.

The detection performance is evaluated in terms of the bit
error rates (BERs) under MMSE detection. Fig. 5 demon-
strates that data-aided methods are superior to pilot-based
methods. It can be seen that the performance become better
as SNR increases. The proposed method can achieve better
performance compared with traditional approach that combine
linear detection with a simple RLS estimator by providing
a more accurate channel estimates while maintaining lower
complexity.

V. CONCLUSION

In this paper, we propose a weighted diagonalized re-
cursive channel estimation and detection method named as
WDRCED for massive MIMO systems. The autocorrelation

matrix of the input signal is diagonalized to simplify the RLS
channel estimation, and the complexity of signal detection
is significantly reduced by a two-stage method. Moreover,
a weight coefficient is updated for extra performance gains.
Then the complexity analysis of the proposed algorithm is
also provided. Simulation results confirm that the proposed
method attains better performance than other algorithms.
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