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Abstract—The severe spatial correlation of near-field channel
model imposes a great challenge upon the uplink signal detection
in XL-MIMO systems. To overcome this detection obstacle, the
optimized truncated singular value decomposition regularization
detection (OTSVD) algorithm is firstly proposed to improve
the detection performance in ill-conditioned channels, where an
optimal parameter selection mechanism for OTSVD algorithm is
given in terms of the mean squared error (MSE). Then, to achieve
a better detection performance, the Tikhonov regularization
detection (TRD) algorithm is also given. By well exploiting the
diagonal dominance property of the channel matrix, a simple
approach to determine the parameter in TRD is developed
as well. Finally, simulation results are given to confirm the
performance gains of these two proposed algorithms.

Index Terms—MIMO detection, TSVD regularization,
Tikhonov regularization, XL-MIMO, near-field.

I. INTRODUCTION

Extremely large-scale multiple-input-multiple-output (XL-
MIMO) is a promising technology to empower the next-
generation communications [1], [2], [3]. However, with in-
creased antenna array dimensions of the transmitter and re-
ceiver arrays, XL-MIMO pushes the electromagnetic wave
operating region from far-field region to near-field one. Hence,
several new channel characteristics need to be carefully con-
sidered, such as the near-field with non-uniform spherical wave
and spatial channel non-stationarity [4], [5]. Unfortunately,
these features render the channel ill-conditioned, imposing a
big challenge on the signal detection for XL-MIMO.

Given the ill-conditioned channel matrix, the traditional
linear detectors, such as zero forcing (ZF) and minimum mean
square error (MMSE), may exhibit severe degradation because
of the effect of noise amplification. Therefore, it is encouraged
to reconstruct the channel matrix by low-rank approximation.
By removing the small singular values, a better channel con-
dition can be attained, which leads to an improved detection
performance by surpassing the noise amplification in linear
detections. Most importantly, although a certain of matrix
information will be discarded, considerable performance gain
still can be achieved by such low-rank approximations. To this
end, a number of algorithms have been proposed [6], [7].

Specifically, a new detection algorithm that uses truncated
singular value decomposition (TSVD) as preprocessing before
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lattice reduction (LR) is proposed in [6], which removes
the least singular value of channel matrix H. In [7], the
analytical model for the post-detection signal-to-interference-
plus-noise ratio (PDSINR) is derived. From the empirical
cumulative distribution function (ECDF) of derived PDSINR,
the truncated singular value is determined to achieve the
comparable performance compared to MMSE.

In this paper, the near-field modeling of XL-MIMO com-
munication systems is considered, which takes into account
the phase and amplitude modeling of spherical waves. Based
on this model, we introduce the optimized TSVD regulariza-
tion detection (OTSVD) algorithm and give the criteria for
selecting the truncation parameters. Additionally, we demon-
strate that OTSVD outperforms the traditional linear detection
algorithms in terms of MSE. To achieve more remarkable
performance gain, we then propose the Tikhonov regulariza-
tion detection (TRD) algorithm aiming at rectifying the ill-
condition of channel matrix.

II. SYSTEM MODEL

In this work, we consider an XL-MIMO system that the
transmitter and receiver are equipped with K-element and N -
element antenna arrays, respectively. In contrast to the far-
field, the near-field channel depends on the distance between
the users and the receiver. Without loss of generality, we
assume that the users are uniformly distributed within the
near-field range, and the basic uniform linear array (ULA)
architecture with adjacent elements separated by distance
d = λ/2 is considered. Considering these facts, the received
signal vector y ∈ CN can be expressed as

y = Hx+ n, (1)

where x ∈ CK is transmitted symbol vector. The covariance
matrix of x is E

[
xxH

]
= IK , and n ∈ CN is the additive

white Gaussian noise (AWGN) with covariance E
[
nnH

]
=

σ2
nIN and zero mean. Let K represent the total number of

transmitter antennas with Nt antennas at each user such that
Nt = K/Nk. The overall channel matrix can be represented
as

H = [H1, . . . ,HNk
], (2)



Fig. 1. The mixed LoS/NLoS near-field channel model for XL-MIMO.

where Hnk
∈ CN×Nt represents the sub-channel matrix

corresponding to the nk-th user which is defined by [8]

Hnk
= HLoS +HNLoS. (3)

Here, HLoS ∈ CN×Nt and HNLoS ∈ CN×Nt are the line-
of-sight (LoS) and non-line-of-sight (NLoS) channels. To be
more specific, the LoS channel matrix HLOS is modelled as

HLoS = HLoS (r) =
1

rn,nt

e−j 2π
λ rn,nt , (4)

where the rn,nt
is the distance of the n-th antenna at receiver

from the nt-th antenna at each user. Meanwhile, the NLoS
channel matrix HNLOS can be described as

HNLoS =
1√
L

L∑
l=1

βlaR (rl, θl)a
H
T (rl, θl) , (5)

where aR (rl, θl) and aT (rl, θl) denote the near-field receive
and transmit array response vectors of ULA for non-uniform
spherical wave (NUSW) model respectively, which are given
as follows

aR(r, θ)=

[√
U1

U

r

r1
e−j 2π

λ (r1). . .

√
UN

U

r

rN
e−j 2π

λ (rN )

]T

(6)

with r is the distance between the center of transmitter’s
antenna array and the center of receiver’s antenna array, and θ
denotes the angle of departure (AoD) of the signal. The exact
distance rn,nt in (4) presented by [8]

rn,nt =(nd− r sin θ)
2
+(r cos θ)

2 (a)
= r+nd sin θ+

n2d2 cos2 θ

2r
.

(7)
The approximation (a) is derived from the second-order Taylor
series expansion

√
1 + x = 1 + x

2 − x2

8 + O
(
x3

)
. In a

rich scattering environment, i.e.,(L ≫ 1), the MIMO channel
in (3) can achieve full rank due to the random phase-shifts
imposed by scatters [4], then L = 8 is set in this paper. To
our knowledge, this is the first time that signal detection is
considered for such a near-field XL-MIMO scenario.

Given the system model in (1), to recover the transmitted
signal x, the traditional linear detection schemes like ZF and
MMSE are commonly applied due to the significant detection
performance, which work as follows

x̃ZF =
(
HHH

)−1
HHy, (8)

x̃MMSE =
(
HHH+ σ2

nIK
)−1

HHy, (9)

respectively. Then, the signal detection x̂ is determined by
quantizing x̂ = ⌈x̃ZF⌋Q ∈ OK or x̂ = ⌈x̃MMSE⌋Q ∈ OK .
However, due to the noise amplification, both of ZF and
MMSE suffer from the ill-conditioned channel matrix a lot.
In this condition, TSVD technique is applied to approximate
the channel matrix by only retaining the first p largest singular
values [9]. By doing this, considerable performance gain can
be introduced with the improved channel condition. More
specially, the rank-p approximation Hp of H is defined by

Hp = UΣpV
H =

p∑
i=1

σiuiv
H
i , (10)

where Σp = diag (σ1, . . . , σp, 0, . . . , 0), U ∈ CN×N and V ∈
CK×K are orthogonal matrices, p < rank(H) and the entries
of the diagonal matrix Σp with the smallest K − p singular
values of H replaced by zeros are ordered according to σ1 ≥
σ2 ≥ . . . ≥ σp. Intuitively, how to select a proper size of
truncation parameter p for performance improvement is the
key to TSVD, thus leaving an open question at this point.

III. OPTIMIZED TSVD REGULARIZATION DETECTION
ALGORITHM

We now introduce an optimized choice rule of truncation
parameter p to further improve the detection performance of
TSVD for XL-MIMO systems, and this leads to the proposed
OTSVD algorithm.

First of all, the mean square error (MSE) measures the
discrepancy between an estimate and the corresponding true
value, which directly accounts for the detection performance.
Considering both bias and variance of the solution, the MSE
of ZF is expressed as

MSE (x̃ZF) = E
[
(x̃ZF − x)

2
]

= E

{[(
HHH

)−1
HHn

]H [(
HHH

)−1
HHn

]}
= σ2

n

K∑
i=1

1

σ2
i

. (11)

On the other hand, the detection estimate x̃TSVD of TSVD
can be written as follows

x̃TSVD =
(
HH

p Hp

)†
HH

p y

=
(
HH

p Hp

)†
HH

p (Hx+ n)

=
(
HH

p Hp

)†
HH

p Hx+
(
HH

p Hp

)†
HH

p n. (12)

Given the low-rank approximation Hp in (10), HH
p Hp is a

singular square matrix, for this reason the matrix inversion



Algorithm 1 OTSVD algorithm
Require: H, y.
Ensure: estimated transmit signal x̂

1: compute H = UΣVH ;
2: determine p according to (15) and (24);
3: compute rank-p approximation Hp of H according to (10);
4: compute x̃ according to (12);
5: output x̂ = ⌈x̃⌋Q ∈ OK

6: end

operation in (8) is substituted with a pseudo-inverse. Based
on it, a similar MSE of x̃TSVD can be obtained

MSE (x̃TSVD) = E
[
(x̃TSVD − x)

2
]

= E

{[(
HH

p Hp

)†
HH

p Hx−x
]H [(

HH
p Hp

)†
HH

p Hx−x
]}

+ E

{[(
HH

p Hp

)†
HH

p n
]H [(

HH
p Hp

)†
HH

p n
]}

= E
{[(

H†
pH−I

)
x
]H[(

H†
pH−I

)
x
]}

+E
[(
H†

pn
)H(

H†
pn

)]
=

∥∥H†
pH− I

∥∥2
F
+ σ2

nTr
[(
H†

p

)H
H†

p

]
=

∥∥VΣ†
pU

HUΣVH − I
∥∥2

F
+ σ2

n

p∑
i=1

1

σ2
i

(b)
= (K − p) + σ2

n

p∑
i=1

1

σ2
i

, (13)

where the change in (b) holds because of the diago-
nal form Σ†

p = diag (1/σ1, . . . , 1/σp, 0, . . . , 0) and Σ =
diag (σ1, . . . , σp, σp+1, . . . , σK). Based on (13), we want to
find an optimized choice of truncation parameter p to minimize
the MSE of OTSVD, i.e.,

p⋆ = argmin
1≤p≤K

MSE (x̃TSVD) . (14)

Theorem 1. To solve the problem in (14), the optimized choice
of p⋆ should satisfy

p⋆ = max p,

s.t.σ2
n < σ2

p.
(15)

Proof: To start with, for notational simplicity, let the
right-hand side of (13) be denoted as the function f (·). It
follows that

f(i) = (K − i) +
σ2
n

σ2
1

+. . .+
σ2
n

σ2
i

, (16)

where i=1, 2,. . . ,K − 1. Then, we arrive f(i+ 1)<f (i) if

σ2
n < σ2

i+1. (17)

Hence, there is a value p satisfies the following conditions

σ2
n < σ2

i , i = 1, . . . , p and σ2
n > σ2

p+1 (18)

such that
f(p) < f(p− 1) < . . . < f(1), (19)

which corresponds to a descending order of MSE (x̂TSVD).
Specifically, the parameter p that satisfies condition (18) is
the desired one to minimize the MSE (x̃TSVD).

Algorithm 2 TRD algorithm
Require: H, b = HHy.
Ensure: estimated transmit signal x̂

1: compute H = UΣVH ;
2: determine Gram matrix A′ according to (36)
3: x̃ = (A′)

−1
b;

4: output x̂ = ⌈x̃⌋Q ∈ OK

5: end

Corollary 1. Given the truncation parameter p selected ac-
cording to (15), the proposed OTSVD algorithm achieves a
better detection performance than ZF due to

MSE (x̃TSVD) < MSE (x̃ZF) . (20)

Proof: According to the value p determined by (15), we
have

σ2
n > σ2

i , i = p+ 1, . . . ,K. (21)

Consequently, it follows
K∑

i=p+1

σ2
n

σ2
i

> (K − p). (22)

After that, by simple calculation, we have

MSE(̃xTSVD)=(K−p)+σ2
n

p∑
i=1

1

σ2
i

<σ2
n

K∑
i=1

1

σ2
i

= MSE(̃xZF),

(23)
which completes the proof.

Here, we point out that the choice of parameter p is derived
by a statistical way. In practice, for XL-MIMO systems with
ill-conditioned channels, such a choice mechanism can be
further relaxed to

σp > 1 and σp+1 < 1. (24)

Intuitively, this is easy to understand by removing all the
small singular values that amplify the noise. By doing this,
the effects of noise amplification can be effectively reduced.

IV. TIKHONOV REGULARIZATION DETECTION
ALGORITHM

When the TSVD regularization is more reliant with achiev-
ing significant performance gains in scenarios the channel
matrix contains small singular values, Tikhonov regularization
technique is also universally used to solve ill-conditioned
problems. To find the regularized solution x̃λ of the equation
in (1), the Tikhonov method is applied as

x̃λ =
(
HHH+ λIK

)−1
HHy, λ > 0. (25)

Here, the regularization parameter λ controls the “smoothness”
of the regularized solution. If λ is too small, the numerical
implementation may be unstable due to ill-conditioning of the
original system. On the other hand, in the case of a large λ, the
approximation error may become considerable [10]. Clearly,
how to choose λ in a reasonable way is a key problem.

Considering the matrix A = HHH = [aij ] ∈ CK×K with
diagonal elements ajj and off-diagonal elements aij (i ̸= j),



A′ = HHH + λI =
[
a′ij

]
with diagonal elements a′jj and

off-diagonal elements a′ij (i ̸= j) for notational simplicity, we
have

a′jj = ajj +λ,

K∑
i ̸=j

| a′ij |=
K∑
i̸=j

| aij |, j=1, 2,. . . ,K. (26)

Then, by letting

α = min
1≤j≤K

∣∣a′jj∣∣− K∑
i ̸=j

∣∣a′ij∣∣
, (27)

it is clear to see that matrix A′ is diagonal dominant when
α ≥ 0 holds [11]. To simplify the summation component on
the right-hand side of (27), we assume that

m = argmax
1≤j≤K

K∑
i̸=j

∣∣a′ij∣∣, (28)

where m denotes the column with the maximum column sum
norm of off-diagonal elements. Therefore, by considering the
value of α in (27) when the column j = m, we have

α= min
1≤j≤K

∣∣a′jj∣∣− K∑
i ̸=j

∣∣a′ij∣∣
≤|a′mm|−

K∑
i̸=m

|a′im|. (29)

Subsequently, by some manipulations, the following derivation
can be achieved

α ≤ |a′mm| −
K∑

i̸=m

|a′im|

(c)

≤ |amm|+ λ− 1√
K

∣∣∣∣σ′
1 − max

1≤j≤K

∣∣a′jj∣∣∣∣∣∣
(d)

≤ max
1≤j≤K

|ajj |+ λ− 1√
K

∣∣∣∣σ1 − max
1≤j≤K

|ajj |
∣∣∣∣ . (30)

Here, the transfer in (c) comes from the fact: given a general
matrix B = [bij ] ∈ CK×K , it satisfies [12]∣∣∣∣σ1 (B)− max

1≤j≤K
|bjj |

∣∣∣∣ ≤ √
K max

1≤j≤K

K∑
i ̸=j

|bij |, (31)

the inequality (d) holds due to |amm| ≤ max
1≤j≤K

|ajj |. There-

fore, due to the fact α > 0, the upper bound of α derived in
(30) should be larger than 0, which results in

λ ≥ 1√
K

∣∣∣∣σ1 − max
1≤j≤K

|ajj |
∣∣∣∣− max

1≤j≤K
|ajj | (32)

to ensure the diagonal dominance property of matrix A′.
Next, to further fulfill the requirement of λ > 0 in Tikhonov
regularization, we update the right-hand side of (32) via the
absolute value, namely,

λ ≥
∣∣∣∣ 1√

K

∣∣∣∣σ1 − max
1≤j≤K

|ajj |
∣∣∣∣− max

1≤j≤K
|ajj |

∣∣∣∣ . (33)

Furthermore, to determine the optimum value of λ, let

λ=µ

∣∣∣∣ 1√
K

∣∣∣∣σ1− max
1≤j≤K

|ajj |
∣∣∣∣− max

1≤j≤K
|ajj |

∣∣∣∣ , µ ≥ 1 (34)
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Fig. 2. ECDF of average PPSNR for the 512× 64 XL-MIMO.

where µ is the proportionality constant. Then, the optimum
value of λ is determined from the ECDF of post-processing
signal-to-noise ratio (PPSNR). In particular, the PPSNR is a
good indicator for the error rate performance, where the higher
the probability of a large PPSNR accounts for the lower the
uncoded error rate [13]. Moreover, the receiver can estimate
the transmitted signal by applying the TRD detector W to the
received signal, x̃ = Wy = WHx+Wn, and W is derived
as W = (A′)

−1
HH . Therefore, the PPSNR of i-th antenna

is calculated as

γi =
Es |(WH)i,i|2

Es

∑
j ̸=i

|(WH)i,j |2 + σ2
n (WWH)i,i

, (35)

where Es denotes the signal energy at each transmit antenna.
To illustrate it in a better way, the ECDF of PPSNR for ZF,
OTSVD and TRD algorithm with different values of µ are
plotted in Fig. 2. As can be seen clearly, for a 512 × 64
XL-MIMO system at SNR = 20dB with 4-QAM, greater
performance is achieved with smaller value of µ. Specifically,
there is a high likelihood of a large PPSNR when µ = 1.
Meanwhile, it is observed that the TRD performs better than
ZF and OTSVD in terms of PPSNR.

In summary, based on the above analysis, the proposed TRD
algorithm takes the form of Gram matrix

A′ = HHH+ λI, (36)

where

λ =

∣∣∣∣ 1√
K

∣∣∣∣σ1 − max
1≤j≤K

|ajj |
∣∣∣∣− max

1≤j≤K
|ajj |

∣∣∣∣ . (37)

This parameter λ mitigates the effect of noise amplification
by enhancing the diagonal dominance property of the filter
matrix. In addition, we point out that the impact of the noises
has not been considered in the choice of λ in (37). The addition
of noise guarantees convergence of the regularized solution
[10], allowing it to adapt to the noise level, thus ensuring better
performance in various scenarios. As a remedy solution, we
update λ in the following way

λσ =

∣∣∣∣ 1√
K

∣∣∣∣σ1 − max
1≤j≤K

|ajj |
∣∣∣∣− max

1≤j≤K
|ajj |

∣∣∣∣σ2
n, (38)
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where the noise variance σ2
n serves as a scaling factor. Ac-

cording to Fig. 3, it can be verified that the TRD algorithm
with λσ in (38) has the minimum error ∥x− x̃λ∥ among the
various λσ values. In fact, such a modification really facilitate
the operations of proposed regularized scheme, which can be
observed in simulations.

V. SIMULATION RESULTS

In this section, the simulation results of the bit error rate
(BER) performance against the signal-to-noise ratio (SNR) are
provided for uplink near-field channel model in XL-MIMO
systems. The carrier frequency is f = 50GHz. Each user has
a ULA with eight antennas. The number of BS antennas is
N = 512. Considering the antenna spacing is half-wavelength,
the array aperture at BS can be calculated as N × c

2f = 512×
0.003

2 = 1.536m.
Fig. 4 shows the BER performance comparison with re-

spect to the proposed algorithms are illustrated in 512 × 64
and 512 × 32 XL-MIMO systems with 4-QAM. The legend
“TSVD” refers to the algorithm proposed in [7]. Due to the ill-
conditioned channel matrix, the performance of ZF and MMSE
detectors are poor whereas the OTSVD and TRD algorithms
lead to significant performance gains in both cases of 512×64
and 512×32 XL-MIMO. They also exhibit better performance
compared to the TSVD algorithm. Moreover, the TRD algo-
rithm with λσ achieves a faster convergence performance than
that with λ, improving the atypical behaviour of the TRD with

λσ at higher SNR, and both of them outperform other linear
detection schemes. Simultaneously, they significantly improve
the BER performance over the 1LAS detection with MMSE
solution as initial solution. Performance limitation due to the
intra-user interference in XL-MIMO systems with multiple
antennas per user will be investigated in the future.

VI. CONCLUSION

In this paper, two regularization detection schemes are
proposed to overcome the performance limitation in the near-
field scenario of interest for the uplink detection of XL-MIMO
systems. Compared to traditional linear detection schemes,
the proposed OTSVD algorithm is able to achieve enhanced
performance for ill-conditioned systems. Then, by analysis, a
choice of the truncation parameter is determined in terms of
MSE. We also proposed the TRD algorithm which outperforms
OTSVD due to the more substantial PPSNR, and a simple way
to obtain the parameter is described.
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