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Abstract—This paper proposes a cluster-based low-complexity
codebook design scheme for hierarchical near-field beam training
in extremely large-scale MIMO(XL-MIMO), referred to as the
cluster hierarchical beam training (CHB). Specifically, to reduce
the codebook dimensionality while preserving essential angle
and distance information, the proposed CHB scheme employs a
cluster-based approach to identify cluster centers as new polar-
domain sampling points. By doing so, CHB significantly reduces
the complexity of codeword generation. The generated codewords
are then applied to hierarchical beam training, thereby further
decreasing the associated training overhead. Finally, simulation
results confirm that CHB reduces complexity while offering
comparable or even superior performance to other codebook-
based near-field beam training schemes.

Index Terms—Extremely large-scale MIMO (XL-MIMO), near
field communication, codebook design, beam training.

I. INTRODUCTION

With the rapid development of wireless communication
technologies, XL-MIMO has emerged as a critical technology
for future 6G due to its high spatial multiplexing and spec-
tral efficiency [1]. However, the transition in electromagnetic
propagation characteristics from far-field planar waves to near-
field spherical waves also renders traditional beamforming
approaches unsuitable [2]. For this reason, much more effort
has to be made for both codebook design and beam training
as extra complexity and overhead are naturally incurred in the
near-field scenarios.

Specifically, the polar-domain approach in [3] employs
uniform angular sampling and non-uniform distance sampling
to represent the near-field steering vector, but its large code-
book dimension unfortunately requires exhaustive searching.
The authors in [4] adopt a neural network to determine
the optimal beam. However, the corresponding resource con-
sumption remains proportional to the number of antennas,
which imposes significant overhead in XL-MIMO systems.
To further reduce the beam training overhead, a fast beam
training scheme proposed in [5] employs a far-field codebook
to determine candidate angles and then performs distance
estimation. Meanwhile, the time-delay-based beam training
approach in [6] leverages the near-field beam split effect over
a wide bandwidth to control beams, leading to the optimal
performance with extremely low training overhead. Nonethe-
less, the associated complex hardware architecture incurs high
deployment costs and power consumption. Building on the
the phase retrieval problem, [7] proposes a codebook design
method based on GS iteration. Although the hierarchical

beam training method in [7] achieves a favorable balance
between high achievable rates and low training overhead, the
matrix pseudoinverse calculation required for codebook design
remains computationally expensive.

In this paper, to reduce the codeword design complexity and
beam training overhead, we propose a novel low-complexity
scheme based on the concepts of clustering and hierarchical
beam training, which is named as cluster hierarchical beam
training (CHB). In particular, by employing clustering to
determine new angle and distance sampling points in the polar
domain, the dimensionality of the codebook is significantly
reduced, thereby reducing the computational complexity of
codeword generation. Subsequently, the dimension-reduced
codebook is applied to hierarchical beam training to further
reduce the training overhead. Finally, we highlight the ad-
vantages of CHB in terms of complexity and demonstrate its
superior performance through simulation results.

II. SYSTEM MODEL

As shown in Fig. 1, considering the typical downlink beam
training of a narrow-band XL-MIMO communication system,
base station (BS) is equipped with a uniform linear array
(ULA) comprising N antennas for communication with a
single-antenna uesr equipment (UE).

When the distance between BS and UE is smaller than
the Rayleigh distance Z = 2D2

λ with D and λ denoting the
antenna array aperture and the carrier wavelength respectively,
UE operates in the near-field region of the electromagnetic
radiation [8]. Consequently, the traditional far-field plane-wave
assumption no longer holds, and a near-field channel can be
characterized by a spherical-wave model:

h =
√
Nglb (θ, r) , (1)

where gl is the complex-valued channel gain. Here, b (θ, r)
represents the near-field steering vector:

b (θ, r) =
1√
N

[
e−j 2π

λ (r(1)−r), ..., e−j 2π
λ (r(N)−r)

]H
, (2)

where θ indicates the spatial angle at BS, and r represents
the distance from UE to the center of the antenna array. The
distance between the n-th antenna at BS and UE is given by
r(n) =

√
r2 + δ2nd

2 − 2rδndθ, where d = λ
2 is the antenna

spacing and δn = 2n−N−1
2 with n = 0, 1, 2, ..., N . Under the

downlink near-field channel model, the received signal at UE
is expressed as:

y = hHvs+ n0 =
√
Nglb

H (θ, r)vs+ n0, (3)



Fig. 1. A downlink near-field XL-MIMO communication system.

where v ∈ CN×1 indicates the beamforming vector at BS,
s ∈ C represents the transmitted symbol and n0 is the received
additive white Gaussian noise (AWGN) component with power
σ2. As such, given perfect CSI information (θ, r), the optimal
XL-MIMO BS beamforming vector can be obtained as v∗ =
b (θ, r) [3].

The design principle of the codebook is to cover the
largest possible spatial range, enabling precise beam alignment
in different directions. The current effective approach is to
construct the polar-domain codebook M by including a large
number of the optimal beamforming vectors from different
sampling points (θn, r

s
n):

M =
[
b
(
θ1, r

1
1

)
, ...,b

(
θN , r1N

)
, ...,b

(
θN , rSN

N

)]
, (4)

where N represents the number of antennas, and SN denotes
the number of distance rings in polar sampling. The angle θ
is uniformly sampled as θn = 2n−N+1

N , n = 0, 1, ..., N , while
the distance r is non-uniformly sampled with a threshold dis-
tance Z∆ [3] according to formula rsn = 1

sZ∆

(
1− θ2n

)
, s =

1, 2, ..., SN . Here, n indicates the different angle directions
used for sampling, while s indicates the various rings used
for distance sampling. To be specific, each column of M
represents a codeword ws,n = b (θn, r

s
n), and the purpose

of the exhaustive search in near-field beam training is to find
the optimal codeword to serve as the beamforming vector v
in the polar-domain codewords that maximizes the received
signal power. However, since the dimension of a polar-domain
codebook is N×SN , exhaustive search incurs substantial beam
training overhead particularly in XL-MIMO systems.

In order to reduce the beam training overhead while main-
taining an acceptable performance loss in achievable rate, the
GS-based codeword design scheme in [7] is proposed. To
evaluate the effectiveness of a given codeword w, the concept
of beamforming gain is introduced:

G(w, θ, r) =
√
Nb(θ, r)Hw. (5)

According to the polar-domain codebook in (4), the beam
pattern obtained by the codeword w can be simplified to
MHw, which is composed of the beamforming gain at various
spatial positions. Moreover, the ideal beam pattern of the
codeword w is defined as:

gw =
[
gw(θ1, r

1
1), · · · , gw(θN , r1N ), · · · , gw(θN , rSN

N )
]
,

(6)

where gw(θ, r) = |gw(θ, r)|ejfw(θ,r) is the theoretical beam-
forming gain. The amplitude information |gw(θ, r)| in target
angle coverage and distance coverage are fixed and flattened,
while the phase information fw(θ, r) can be designed flexibly.

To ensure an acceptable performance loss, the GS-based
codeword design scheme in [7] seeks to maximize the achiev-
able rate of communication systems by minimizing the dis-
crepancy between the ideal beam pattern and the beam pattern
obtained by w, namely:

min
w,fw(θ,r)

∥∥MHw − gw

∥∥2
2
. (7)

In particular, the GS iteration algorithm starts with a randomly
selected initial codeword w(0). Under the constraint of con-
stant amplitude, the two variables w and gw are iteratively
updated:

g(s)
w = MHw(s),w(s+1) =

(
MMH

)−1

Mg(s)
w , (8)

where (s) represents the iteration index. However, the com-
putational cost of calculating the pseudoinverse of matrix M
during the iteration is rather expensive, raising questions about
the low-complexity feasibility of codeword generation.

III. PROPOSED CLUSTERING BASED HIERARCHICAL
NEAR-FIELD CODEBOOK DESIGN

This section begins by introducing the objectives of code-
word design in the proposed CHB scheme. After that, the CHB
algorithm is proposed, where the complexity comparison with
other codebook-based schemes is also provided.

A. Cluster-Based Hierarchical Near-Field Codebook Design

In principle, the proposed CHB scheme seeks to maximize
the achievable rate by minimizing the discrepancy between
the designed codebook W and the polar-domain codebook M.
Specifically, W contains cluster centers µθ and µr in the angle
and distance domains, while M comprises the sampling points
(θ, r) introduced in section II. To approximately evaluate the
discrepancy between these two codebooks, we define the sum
of the squared distances between all sampling points and their
corresponding cluster centers in M as the distance d2 (W,M)
between W and M, expressed as:

d2(W,M) =
∑

θ,r∈M

min
µθ,µr∈W

(
∥ θ − µθ ∥2 + ∥ r − µr ∥2

)
.

(9)
By grouping numerous high-dimensional data points into a
limited number of cluster centers, the reduction of the data di-
mensionality in a codebook can be achieved. However, directly
minimizing such a distance function is highly complex. By
separately reducing angular and distance variations to generate
cluster centers, the CHB approximates the minimization of the
discrepancy between W and M.



a) Angle and Distance Clustering: The objective is to
perform kθ-class clustering for the angle θ and kr-class clus-
tering for the distance r, which is accomplished by iteratively
minimizing the following two cost functions:

Jθ =

N∑
i=1

kθ∑
j=1

(
cθi = j

) ∥∥θi − µθ
j

∥∥2 (10a)

Jr =

SN∑
i=1

kr∑
j=1

(cri = j)
∥∥ri − µr

j

∥∥2, (10b)

where θi represents the angular sampled points and ri indicates
the sampled distance rings in M. Notably, µθ

j and µr
j represent

the j-th cluster center in angular and distance respectively, and
ci denotes the class label to which the data point belongs.

In this clustering procedure, angle clustering starts by as-
signing each angular sampling point θi to the nearest center:

cθi = argmin
j

||θi − µθ
j ||2, (11)

and then updates the cluster centers according to:

µθ
j =

1

nj

∑
cθi=j

θi, (12)

where nj represents the number of data points belonging to
the j-th class. By repeatedly iterating these steps until the
error function Jθ falls below a threshold ϵ, fewer angular
cluster centers are produced. Similarly, the centers for distance
clustering are determined in an analogous procedure. After
clustering, both the angular and distance cluster centers are
sorted in an ascending order, resulting in the corresponding
sets: Wθ = {µθ

1, µ
θ
2, · · · , µθ

kθ
} and Wr =

{
µr
1, µ

r
2, · · · , µr

kr

}
.

These cluster centers are subsequently employed to determine
the coverage ranges and generate codewords.

b) Calculation of Beam Codeword Coverage: In cluster-
based near-field codeword design, each beam codeword covers
more than a single angle-distance point, spanning a coverage
region in the polar domain. To construct a multi-resolution
hierarchical codebook, angular and distance cluster centers are
initially paired to form all possible combinations

(
µθ
m, µr

n

)
,

where m ∈ {1, 2, ..., kθ} , n ∈ {1, 2, ..., kr}. The coverage
ranges of these centers are then computed and recorded for
each codeword. Specifically, to determine the angle coverage
range of the center

(
µθ
m, µr

n

)
, the procedure first calculates the

distance between each angle sampling point θi and the cluster
center:

dθim = |θi − µθ
m|, i = 1, 2..., N. (13)

After computing these distances, the algorithm sorts the an-
gular sampling points in ascending order. This produces an
ordered sequence of angle indices {θm1, θm2, ..., θmN}, where
dθm1
m < dθm2

m < ... < dθmN
m . Then, the algorithm selects

k angle samples with the smallest distances to define the
coverage range for the current cluster µθ

m:

θmin,m = min {θm1, θm2, ..., θmk} ,
θmax,m = max {θm1, θm2, ..., θmk}

(14)

with k = N
kθ

.

Algorithm 1 Cluster-based codeword design
Input: M, {θ1, θ2, ..., θN}, {r1, r2, ..., rSN

}, kθ, kr
1: Initialization: Randomly generate the angle and distance

cluster centers
{
µθ
1, µ

θ
2, ..., µ

θ
kθ

}
and

{
µr
1, µ

r
2, ..., µ

r
kr

}
2: for i = 1, 2, ..., N do
3: assign θi to the nearest center by (11)
4: update the cluster centers

{
µθ
1, µ

θ
2, ..., µ

θ
kθ

}
by (12)

5: end for
6: Jump to Step 2 until Jθ < ϵ
7: sort

{
µθ
1, µ

θ
2, ..., µ

θ
kθ

}
in ascending order to get Wθ

8: obtain Wr =
{
µr
1, µ

r
2, ..., µ

r
kr

}
in the same steps

9: pair all possible cluster center combinations:
(
µθ
m, µr

n

)
10: for m = 1, 2, ..., kθ do
11: for n = 1, 2, ..., kr do
12: calculate the near-field codeword wmn by (2)
13: end for
14: end for
15: generate codebook W = [w11,w12, ...,wmn, ...,wkθkr ]
16: for m = 1, 2, ..., kθ do
17: calculate dθim from θi to µθ

m by (13) and sort θi
18: find the angle coverage (θmin,m, θmax,m) of µθ

m by (14)
19: end for
20: get distance coverage (rmin,n, rmax,n) in the same steps
21: combine Bmn = [θmin,m, θmax,m, rmin,n, rmax,n]
22: obtain the beam coverage Bc by (15)
Output: Codebook W and beam coverage Bc

The upper and lower bounds of the coverage range are
respectively defined as the maximum and minimum values
of these k angle samples: (θmin,m, θmax,m). Similarly, the
distance coverage range (rmin,n, rmax,n) is obtained by the
same approach, resulting in a complete beam coverage range
Bc that serves as the codeword record:

Bc = [B11,B12, ...,Bmn, ...,Bkθkr ] , (15)

where Bmn = [θmin,m, θmax,m, rmin,n, rmax,n]. Next, for
each pair of cluster centers

(
µθ
m, µr

n

)
, the near-field steering

vector b
(
µθ
m, µr

n

)
is computed via (2) to serve as the near-

field codeword wmn. Finally, these codewords are combined
to form a cluster-based hierarchical near-field codebook W of
size kθ ×kr. Algorithm 1 outlines the generation of near-field
codewords and their respective coverage ranges via clustering.
By varying the number of cluster centers, the algorithm con-
structs multiple multi-resolution codebooks, further reducing
beam training overhead when applied to hierarchical beam
training.

c) Hierarchical Near-Field Beam Training: Hierarchical
codebooks are widely used in conventional massive MIMO
systems to reduce training overhead by progressively narrow-
ing the search space through multi-resolution codebooks [9].
Here, we extend this concept to near-field beam training in XL-
MIMO, with the critical distinction lying in the transition from
one-dimensional angle-domain searching to two-dimensional
polar-domain joint searching.

As illustrated in Fig. 2, the hierarchical codebook spans
different angle and distance ranges, with the coverage of each
codeword discussed in the preceding sections. Lower-layer



Fig. 2. Near-field hierarchical beam training process.

codebooks adopt coarser resolution and lower dimensionality,
whereas upper-layer codebooks refine the search area by
increasing both resolution and dimensionality. In the proposed
scheme, we define L layers of subcodebooks. In the l-th layer,
the angle and distance coverage are given by [θ

(l)
min, θ

(l)
max] and

[r
(l)
min, r

(l)
max], and the step sizes ∆θ(l) and ∆r(l) are determined

by the number of cluster centers k
(l)
θ and k

(l)
r :

∆θ(l) =
θ
(l)
max − θ

(l)
min

k
(l)
θ

,∆r(l) =
r
(l)
max − r

(l)
min

k
(l)
r

. (16)

A larger step size corresponds to lower resolution and is
typically employed in the initial layers to enable broad but
efficient scanning. As the layer index increases, a simple and
effective strategy is to double the number of cluster centers
(e.g. k(l+1)

θ = 2k
(l)
θ ), thereby halving the step size and refining

the search region. For instance, a typical three-layer codebook
might begin with coarse-grained clustering (e.g. k

(1)
θ = 64

and k
(1)
r = 4) to cover the full angular range θ ∈ [−1, 1] and

a predefined distance range, and then progressively narrow
those ranges in subsequent layers. Notably, the number of
angular and distance cluster centers can be flexibly adjusted
to accommodate dynamic XL-MIMO scenarios [11].

In practice, using low-resolution codebooks in the initial
layer to globally scan the received signal power substantially
reduces the pool of candidate regions. Subsequent codebook
searches leverage the prior information gleaned from the lower
layer, retaining only the codewords that fall within the high-
gain candidate areas. Consequently, the number of codewords
to be scanned is much smaller than the size of the codebook,
leading to significantly reduced beam training overhead. Com-
pared with exhaustive search methods, this approach achieves
a balanced trade-off between performance and overhead.

B. Complexity Analysis and Comparison

In general, the complexity of codeword design is primarily
determined by the codeword-generation process. Meanwhile,
the beam training overhead is chiefly dictated by the size of the
codebook. In the GS-based iterative near-field 2D hierarchical
codebook training scheme [7], the codeword design involves
both the ideal and practical codeword design stages. Each stage
relies on matrix pseudoinverse computations. Specifically, the

Fig. 3. Achievable sum-rate performance comparison versus overhead.

ideal phase computes the pseudoinverse of M with complexity
O(NS2) per codeword, while the practical phase employs
alternating analog and digital processing matrix optimizations,
incurring O(NN2

RF + NLθ). Simply, the total complexity
is approximately O(NN2

RF ), where NRF is the number of
radio frequency (RF) chains. Thus, a single codeword requires
O(NS2 +NN2

RF ), yielding O(N2S2 +N2N2
RF ) overall. In

contrast, the CHB focuses solely on two clustering processes,
which requires O(Nkθ+Skr) to cluster angles and distances,
approximately two orders of magnitude lower than the GS-
based scheme.

Regarding beam training overhead, the exhaustive scheme
needs to traverse the entire polar-domain codebook, incurring
overhead of O(NS). From the hierarchical beam training per-
spective, the overhead is dictated by the initial low-resolution
search. Therefore, the beam training overhead of CHB is
O
(∑(

k
(l)
θ k

(l)
r

))
, where k(l)θ k

(l)
r denotes the number of code-

words to be searched at layer l. In many cases, this overhead
can be approximated by only the first layer O

(
k
(1)
θ k

(1)
r

)
.

Since the low-resolution codebook has a smaller dimension,
the hierarchical approach significantly reduces training over-
head compared with exhaustive search.

IV. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
effectiveness of the proposed CHB scheme. We consider a
narrowband XL-MIMO system with 512 antennas at BS. The
system bandwidth is 100 MHz, and the carrier frequency is
50 GHz, which corresponds to a wavelength of 0.006 meters.
Since the antenna spacing is half of the wavelength, the array
aperture is D = N × λ

2 = 1.536m. The calculated Rayleigh
distance is Z = 2D2

λ = 786.432m. In our simulations, the
user distance ranges from (20, 100), which is well within the
Rayleigh distance, ensuring that all users operate in the near-
field regime. Additionally, the angle range is θ ∼ U (−1, 1),
and the complex path gain gl satisfies gl ∼ CN (0, 1).

Fig. 3 shows the achievable rate versus beam training
overhead for various schemes in XL-MIMO systems. For



Fig. 4. Achievable sum-rate performance comparison versus distance.

our simulations, we employ a three-layer multi-resolution
codebook. The size of the first-layer codebook is designed
to be 192, while the second and third layers require scan-
ning 32 and 3 codewords, resulting in a total beam training
overhead of 227. Clearly, the CHB scheme outperforms the
legacy DFT codebook [9], [10]. Although near-field exhaustive
search achieves optimal performance as the training overhead
increases [3], it is constrained by the enormous codebook size
of an overhead 512× 16 = 8192. The time-delay scheme [6]
requires a beam training overhead of only 16. However, it
faces multiple hardware constraints in the narrowband system
in this paper. The near-field 2D hierarchical beam training
also employs a multi-resolution codebook design [7], incurring
a training overhead of 256 + 8 + 4 = 268. Although this
method strikes a reasonable balance between overhead and
rate, its high codeword-generation complexity hinders dynamic
adjustments of each layer’s codebook. By contrast, the CHB
scheme adapts codebook sizes to channel conditions, thereby
surpassing the near-field 2D scheme in both overhead and
achievable rate.

Fig. 4 illustrates the impact of the distance from UE to BS
on the beam training performance. As shown, the proposed
CHB scheme performs closer to that of the optimal exhaustive
search. Moreover, at 65 meters, it enhances performance by
more than 10% compared with the near-field 2D scheme. Fig.
5 depicts the impact of system SNR on the achievable rate,
demonstrating that the CHB scheme remains near-optimal,
with only a small gap relative to the near-field 2D approach.
When considering codeword-generation complexity, the CHB
delivers superior overall performance.

V. CONCLUSION

In this paper, we propose a low-complexity codeword
generation scheme CHB based on the clustering concept.
The beam coverage range corresponding to each codeword
is calculated, enabling its application in hierarchical near-field
beam training to further reduce training overhead. Notably, this
scheme achieves low complexity and overhead in codeword
design and beam training respectively, facilitating system

Fig. 5. Achievable sum-rate performance comparison versus SNR.

initialization, maintenance, and real-time responsiveness in
near-field scenarios. Simulation results demonstrate that the
proposed codeword generation scheme delivers high-quality
beam training performance in near-field systems.
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