
A Low-Complexity Gaussian Approximate Message
Passing Detection Algorithm For Massive MIMO

With High Order Modulation
He Zhu, Beilei Gong, Zheng Wang

School of Information Science and Engineering
Southeast University, Nanjing, China

Email: he zhu@seu.edu.cn, beilei gong@seu.edu.cn, wznuaa@gmail.com

Abstract—In this paper, the low-complexity Gaussian ap-
proximate message passing (LC-GAMP) detection algorithm is
proposed for massive MIMO with high order modulation. By
using the partial set instead of the full set of the constellation
symbols, the iterations in GAMP can be significantly reduced
with negligible performance loss. Meanwhile, the proposed
LC-GAMP algorithm is further improved via deep learning
(DL). After tuning the update step size by introducing the
trainable hyper-parameters, considerable detection performance
improvement can be achieved. The simulation results show that
the proposed LC-GAMP algorithm not only achieves a better
trade-off between performance and computational complexity
than the original GAMP algorithm, but also has a competitive
performance compared to other MP based detection schemes.

Index Terms—Low complexity, massive MIMO detection, mes-
sage passing (MP), deep learning (DL).

I. INTRODUCTION

Massive MIMO has become a crucial technology for the
beyond fifth-generation (B5G) and sixth-generation (6G) wire-
less communication systems due to its high spectral efficiency,
excellent energy efficiency and strong link reliability [1].
However, the dramatic increase of the system dimension also
imposes an unbearable pressure on the uplink signal detection
of massive MIMO [2]. To this end, as a promising technique
in signal processing, in recent years the message passing (MP)
based on factor graphs (FGs) has gained much attention in the
research of massive MIMO detection [3].

Specifically, the authors of [4] proposed the channel
hardening-exploiting message passing (CHEMP) receiver, but
it costs a high complexity due to the computation of the
Gram matrix. On the other hand, the Gaussian approximation
based message passing (AMP-G) detection was proposed
in [5], which avoids the computation of the Gram matrix.
Scaled-and-added Gaussian message passing (SA-GMP) was
presented in order to speed up the convergence of GMP
algorithm [6]. In [7], Gaussian approximate message passing
(GAMP) algorithm was given, which is attractive due to its
improved detection performance. However, the complexity of
GAMP still increases rapidly with the number of users and
the modulation order. In addition, the DL aided detection
scheme was proposed in [9] and obtained an improvement
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in detection performance on approximate message passing
(AMP) algorithm.

In this paper, with respect to GAMP for massive MIMO
detection, the LC-GAMP detection algorithm is proposed
for the further complexity reduction, which considers only a
partial set of constellation symbols during each iteration. Then,
the LC-GAMP algorithm is improved in terms of the detection
performance by tuning the update step size in LC-GAMP via
the trainable hyper-parameters. Simulation results show that
the proposed LC-GAMP algorithm achieves significantly com-
plexity reduction with better detection performance compared
to GAMP and the other MP based detection schemes.

II. GAMP ALGORITHM FOR MASSIVE MIMO DETECTION

Consider an uplink massive MIMO system with N receive
antennas at the base station, serving K single-antenna users
simultaneously at the transmitter with N � K. Then the
relationship between the receive and transmit signals is

ỹ = H̃x̃+ ñ. (1)

Here, ỹ ∈ CN denotes the received signal vector, H̃ ∈ CN×K
is the channel gain matrix with each element following
independent Gaussian distribution with zero mean and unit
variance, x̃ is the K-dimensional transmit signal vector, and
each element is a M-quadrature amplitude modulation (M-
QAM) symbol, ñ ∈ CN denotes additive white Gaussian
noise (AWGN) with zero mean and variance σ2

n. Here, for
notational simplicity, we convert the complex system in (1)
into an equivalent but real one, namely

y = Hx+ n (2)

with H = [R{H̃} − I{H̃}; I{H̃} R{H̃}] ∈ R2N×2K ,
y = [R{ỹ}; I{ỹ}] ∈ R2N , x = [R{x̃}; I{x̃}] ∈ S2K ,
and n = [R{ñ}; I{ñ}] ∈ R2N , where S = {−

√
M +

1, ...,−1, 1, ...,
√
M − 1} denotes the M-QAM.

Theoretically, the GAMP algorithm is based on a pairwise
FG consisting of the variable nodes (VNs) and check nodes
(CNs) [7]. Specifically, in GAMP algorithm, given the initial
setup m0

fn→xk
= 0 and v0fn→xk

→ +∞, the downward
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Fig. 1. An Illustration of the FG with N ×K = 6× 4.

oriented message µxk→fn transmitted from VN xk to CN fn
in the i-th (i = 1, 2, ..., t) iteration can be formulated as

µixk→fn(xk) ∝
CN

(
xk; z

i−1
xk→fn , γ

i−1
xk→fn

)
∑
xk∈S
CN

(
xk; z

i−1
xk→fn , γ

i−1
xk→fn

) (3)

with

γi−1xk→fn =

∑
n′ 6=n

h2n′,k

vi−1fn′→xk

−1 , (4)

zi−1xk→fn = γi−1xk→fn

∑
n′ 6=n

hn′,km
i−1
fn′→xk

vi−1fn′→xk

. (5)

Next, the message µixk→fn(xk) in (3) is approximated by
a Gaussian distribution by minimizing the KL divergence
DKL(µ

i
xk→fn(xk)||CN (xk;m

i
xk→fn , v

i
xk→fn)) for arbitrary

prior probability [8]. This gives the expressions

mi
xk→fn =

∑
s∈S

sµixk→fn(xk = s), (6)

vixk→fn =
∑
s∈S
|s|2µixk→fn(xk = s)− |mi

xk→fn |
2. (7)

Meanwhile, the mean and variance of the upward oriented
message µifn→xk

(xk) transmitted from CN fn to VN xk at
the i-th iteration are expressed as

mi
fn→xk

= yn −
∑
k′ 6=k

hn,k′m
i
xk′→fn , (8)

vifn→xk
= σ2

n +
∑
k′ 6=k

h2n,k′v
i
xk′→fn . (9)

To sum up, in each iteration, the messages in both directions
are exchanged between CNs and VNs, and are updated alter-
nately until the number of iterations t is reached. Subsequently,
the a posteriori probability µxk

(xk) is expressed as

µxk
(xk) ∝

CN (xk; zxk
, γxk

)∑
xk∈S
CN (xk; zxk

, γxk
) (10)

with

γxk
=

(∑
n

h2n,k
vtfn→xk

)−1
and zxk

= γxk

∑
n

hn,km
t
fn→xk

vtfn→xk

.

(11)

Algorithm 1: GAMP Detection for Massive MIMO

Input: y ∈ R2N , H ∈ R2N×2K

Output: x̂ = [x̂1, ..., x̂K ]T ∈ S2K
1 Initialize: m0

fn→xk
= 0 and v0fn→xk

→ +∞
2 for i = 1, ..., t do
3 compute γi−1xk→fn and zi−1xk→fn by (4)-(5)
4 compute µixk→fn , mi

xk→fn , vixk→fn by (3), (6), (7)
5 compute mi

fn→xk
and vifn→xk

by (8)-(9)
6 end
7 compute γxk

, zxk
and µxk

(xk) by (10)-(12)
8 compute x̂k by (12)

Finally, based on µxk
(xk) in (10), the target transmitted

signal x can be estimated by

x̂k = arg min
xk∈S

||
∑
s∈S

sµxk
(s)− xk||. (12)

III. THE PROPOSED LC-GAMP DETECTION ALGORITHM

A. Algorithm Description

Typically, under M-QAM, mi
xk→fn and vixk→fn in (6) and

(7) can be rewritten as

mi
xk→fn =s1µ

i
xk→fn(s1) + ...+ s√Mµ

i
xk→fn(s

√
M ), (13)

vixk→fn = |s1|
2µixk→fn(s1)+...+|s√M |

2µixk→fn(s
√
M )

− |mi
xk→fn |

2. (14)

Clearly, it can be found that the computations in (13) and (14)
involve many multiplication and addition operations, which
is rather sensitive to the increment of the modulation order.
Meanwhile, we also noticed that most of the terms in (13) and
(14) are quite small during the iterations. This is due to the
fact that many constellation symbols in S correspond to very
small values µixk→fn(xk).

To make this point more specific, we can rewrite the
downward oriented message µxk→fn in (3) as

µixk→fn(xk = sj) ∝
exp

(
−di 2

xk→fn
(sj)

2γi−1
xk→fn

)
∑
sj∈S

exp

(
−di 2

xk→fn
(sj)

2γi−1
xk→fn

) (15)

with

dixk→fn(sj) = |sj − z
i−1
xk→fn |. (16)

Obviously, the size of µixk→fn(xk = sj) heavily depends on
the distance between sj and zi−1xk→fn , i.e., dixk→fn(sj). A larger
value dixk→fn(sj) corresponds to a smaller µixk→fn(xk = sj).
For a better understanding, in Fig. 2, we give the result of
tracking one set of µixk→fn(xk) by simulations. Specifically,
the following observations can be found:

µixk→fn(xk = s1)� µixk→fn(xk = s2) > ..., (17)
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Fig. 2. Illustration of µixk→fn
(xk) for xk = s1, ..., s4 respectively in a

128× 16 massive MIMO system using 16-QAM.

where this trend becomes more obvious as the iteration
proceeds. Given it, by ignoring these trivial symbols directly
during the iterations, significant complexity reduction can be
achieved but only with negligible performance loss. Therefore,
assuming that the approximation set of symbols we employ is
A, then (15) can be approximated by

µ̂ixk→fn(xk = sj) ∝
exp

(
−di 2

xk→fn
(sj)

2γi−1
xk→fn

)
∑
sj∈A

exp

(
−di 2

xk→fn
(sj)

2γi−1
xk→fn

) . (18)

Similarly, we can also ignore the small terms related to these
symbols in (13) and (14), so as to

m̂i
xk→fn = s1µ̂

i
xk→fn(s1) + ..+ s|A|µ̂

i
xk→fn(s|A|), (19)

v̂ixk→fn = |s1|
2µ̂ixk→fn(s1)+...+|s|A||

2µ̂ixk→fn(s|A|)

− |m̂i
xk→fn |

2. (20)

To summarize, we outline the proposed LC-GAMP detection
algorithm in Algorithm 2.

B. Approximate Set Size Selection Criteria

Obviously, according to (15) and (18), the size of A has
a great impact on the approximation accuracy and implemen-
tation efficiency. Hence, how to choose the appropriate size
of A, i.e., |A|, is a worthy issue to consider in the proposed
LC-GAMP detection.

To clearly depict the approximation accuracy, based on
the right-hand sides (RHS) of (15) and (18), we define the
approximation error as

e=
∑
sj∈S

exp

(
−di 2

xk→fn
(sj)

2γi−1
xk→fn

)
ρin,k(S)

−
∑
sj∈A

exp

(
−di 2

xk→fn
(sj)

2γi−1
xk→fn

)
ρin,k(S)

=
∑

sj /∈A,sj∈S

exp

(
−di 2

xk→fn
(sj)

2γi−1
xk→fn

)
ρin,k(S)

(21)

Algorithm 2: LC-GAMP Detection for Massive MIMO

Input: y ∈ R2N , H ∈ R2N×2K

Output: x̂ = [x̂1, ..., x̂K ]T ∈ S2K
1 Initialize: m0

fn→xk
= 0 and v0fn→xk

→ +∞
2 for i = 1, ..., t do
3 compute γi−1xk→fn and zi−1xk→fn by (4)-(5)
4 compute dixk→fn by (16)
5 select the symbols to form A by dixk→fn
6 compute µ̂ixk→fn , m̂i

xk→fn , v̂ixk→fn by (18)-(21)
7 compute mi

fn→xk
and vifn→xk

by (8)-(9)
8 end
9 compute γxk

, zxk
and µxk

by (10)-(12)
10 compute x̂k by (12)

with ρin,k(S) =
∑
sj∈S

exp

(
−di 2

xk→fn
(sj)

2γi−1
xk→fn

)
. Then, by letting

|A| = 2N , we can arrive at the following results.
Lemma 1: The approximation error e in (21) decays expo-

nentially with the increment of N as

e < α−4N
2

(22)

with α=exp(1/(2γi−1xk→fn)).

Proof. Assuming that sm corresponds to the minimum value
of dixk→fn(sj) for 1 ≤ j ≤

√
M . Then, by letting d = |sm −

zi−1xk→fn |, we have

dixk→fn(sj) =

{
j − 1 + d, if j is even
j − d, if j is odd . (23)

Then, (21) can be rewritten as

e =

√
M/2∑

j=N+1

α−(2(j−1)+d)
2

+ α−(2j−d)
2

ρin,k(S)

<

√
M/2∑

j=N+1

α−(2j−2)
2

(α−d
2

+ α−(2−d)
2

)

ρin,k(S)

< (1+α−4+α−16+...)·α
−(2N)2(α−d

2

+α−(2−d)
2

)

ρin,k(S)

≈ α−(2N)2(α−d
2

+ α−(2−d)
2

)

ρin,k(S)
. (24)

Finally, due to ρin,k(S)>(α−(2(j−1)+d)
2

+α−(2j−d)
2

)|j=1=

α−d
2

+ α−(2−d)
2

, we can easily arrive at the result in (22),
which completes the proof.

From (22), we can conclude that the approximation error e
decays rapidly in an exponential way, which is negligible even
very few symbols are considered in A. Therefore, we suggest
to use N = 1, i.e., |A| = 2 for the practical signal detection,
which means only the first two constellation symbols are
employed during each iteration.
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Fig. 3. Illustration of the i-layer of LC-GAMP with DL.

TABLE I
COMPLEXITY COMPARISONS IN N ×K MASSIVE MIMO SYSTEMS UNDER M-QAM PER ITERATION

multiplication addition
RI (4K + 2)K (4K + 2)K

SA-GMP 36NK 40NK − 4N − 4K

CHEMP (2
√
M + 1)(2K − 1)2N ((2

√
M + 1)(2K − 1)− 2)2N

GAMP (24
√
M + 24)NK (20

√
M + 28)NK − 4N − 4K

LC-GAMP (24A+ 24)NK (16A+ 4
√
M + 28)NK − 4N − 4K

Reduced number 24(
√
M −A)NK 16(

√
M −A)NK

IV. DEEP LEARNING AIDED LC-GAMP DETECTION

In this section, the proposed LC-GAMP detection algorithm
is now improved with DL. First of all, it can be deep unfolded
into a t-layer forward propagation network [9]. Then, to
improve the detection performance, we introduce the trainable
hyper-parameters into LC-GAMP.

In particular, according to (12), we can find that the esti-
mation accuracy of x̂k depends on the reliability of µxk

(xk),
which is estimated by the Gaussian function in (10) with the
mean zxk

and variance γxk
. Given it, we can introduce the

hyper-parameters (ki1, k
i
2) to provide the appropriate step sizes

for the update of (8) and (9), so as to improve the reliability
of the equivalent mean and variance for µxk

(xk). In this way,
(8) and (9) can be modified as

m̃i
fn→xk

= yn − ki1
∑
k′ 6=k

hn,k′m
i
xk′→fn , (25)

ṽifn→xk
= σ2

n + ki2
∑
k′ 6=k

h2n,k′v
i
xk′→fn . (26)

For a better understanding, the structure of the LC-GAMP
with DL is illustrated in Fig. 3, which is a revised version of
LC-GAMP by adding the learnable scalar variables (ki1, k

i
2).

In this way, we are intended to obtain the optimal (ki1, k
i
2)

by DL. Meanwhile, (ki1, k
i
2) are trained by minimizing the

following mean squared error (MSE) loss function:

l (xl; x̂) =
1

t

t∑
i=1

||xl − x̂i||2. (27)

Here x̂i is the estimation of the training data xl at the i-th
layer, and the outputs of all layers are taken into account.

Clearly, the only difference between LC-GAMP and LC-
GAMP with DL lies in the computation of mi

fn→xk
and

vifn→xk
, where the introduced hyper-parameters (ki1, k

i
2) do

not deteriorate the complexity. Therefore, the proposed LC-
GAMP with DL maintains the same complexity order as LC-
GAMP but realizes an improved detection performance.

V. SIMULATION RESULTS

A. Complexity Comparisons

We now perform the complexity comparisons in terms of
the numbers of multiplication and addition operations per
iteration, which are shown in Table I and Table II.

In particular, the difference of the complexities between
GAMP and LC-GAMP comes from the computations of
µixk→fn(xk), m

i
xk→fn and vixk→fn . From Table I, in LC-

GAMP, the reduced ratio in terms of multiplication and
addition operations are

√
M−A√
M+1

and (16
√
M−A)NK

(20
√
M+28)NK−4N−4K

compared to GAMP, respectively.
Moreover, the detailed numerical comparisons between

GAMP and LC-GAMP algorithms under 64-QAM and |A| =
2 are shown in Table II. Clearly, compared to the original
GAMP algorithm, the proposed LC-GAMP algorithm can
achieve about 67% complexity reduction per iteration, which
means the proposed LC-GAMP algorithm is a better choice
for massive MIMO detection with high order modulation.

B. Performance Comparisons

To fully illustrate the superiority of the proposed LC-GAMP
and LC-GAMP with DL algorithms, the detection performance
comparisons are presented in terms of the bit error rate (BER)
in massive MIMO systems, where the iteration numbers of all
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Fig. 4. BER performance comparison in a 128× 16 massive MIMO system
using 64-QAM.
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Fig. 5. BER performance comparison in a 128× 32 massive MIMO system
using 64-QAM.

iterative detection schemes are set as 3 with the approximation
set size |A| = 2 for the proposed LC-GAMP and LC-GAMP
with DL.

TABLE II
NUMERICAL COMPARISONS UNDER 64-QAM AND |A| = 2

128× 16 128× 32

multiplication addition multiplication addition

GAMP 442368 384448 884736 769408

LC-GAMP 147456 187840 294912 376192

Reduced
number 294912 196608 589824 393216

Reduced
ratio 66.7% 51.1% 66.7% 51.1%

Fig. 4 shows the BER performance in a 128× 16 massive
MIMO system using 64-QAM. As can be seen clearly, the
detection performance of LC-GAMP is comparable to that of
GAMP and AMP-G, and is much better than other MP-based
schemes (CHEMP, SA-GMP), NS [10] and RI [10]. The same
conclusion can be drawn from Fig. 5 where a 128×32 massive
MIMO is applied, which is consistent with Lemma 1 in the

previous section. Meanwhile, it can be found that the detection
performance of LC-GAMP with DL is approaching to that of
MMSE in the 128×16 system but with a growing performance
gap in the 128×32 systems. This is because the system antenna
ratio N/K has decreased while more iterations are required
to ensure the performance of the MP-based schemes, and LC-
GAMP with DL may outperform MMSE in respect of the
detection performance if the iteration number is large enough.
However, from Table I we can find that the complexity of
the LC-GAMP algorithm is only O(ANKt), which is much
lower than that of MMSE with O(N3).

VI. CONCLUSION

In this paper, by using the strategy of constellation set
approximation, the LC-GAMP detection algorithm for massive
MIMO with high order modulation was proposed. By demon-
stration, significant complexity reduction can be achieved by
the proposed scheme but only with negligible performance
loss. Moreover, by introducing the trainable hyper-parameters
to tune the update step size, the detection performance of
the LC-GAMP algorithm was further improved with deep
learning, which leads to a competitive detection trade-off
between performance and complexity.
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