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Abstract—In this paper, we propose a power allocation scheme
for optimizing the energy efficiency (EE) in cell-free multiple-
input and multiple-output (MIMO) downlink systems using nor-
malized conjugate beamforming (NCB) precoding. Specifically,
the NCB precoding-based EE optimization problem under short-
term power constraints is firstly formulated. To address its non-
convex nature, a power allocation scheme is proposed, which
employs the sequential convex approximation (SCA) to transform
it into a series of accessible second-order cone programming
(SOCP) problems, thereby enabling an iterative solution process.
Moreover, an access point (AP) selection scheme based on
K-means++ is also designed, which further improves EE by
eliminating the pilot contamination. Simulation result confirms
that the proposed power allocation scheme converges rapidly, and
attains an improved EE compared to the existing NCB precoding-
based power allocation schemes.

Index Terms—Cell-free massive MIMO, energy efficiency, nor-
malized conjugate beamforming, power allocation, AP selection.

I. INTRODUCTION

The cell-free massive multiple-input and multiple-output
(MIMO) has become a promising network architecture in be-
yond fifth-generation (B5G) and sixth-generation (6G), which
embraces the user-centric idea to eliminate the concept of
cell boundaries [1]. As one of the key technologies in cell
free massive MIMO, power allocation allocates the downlink
transmit power between users and access points (APs) [2],
given the fact that the AP is subject to long-term power
constraints (LTPCs) or short-term power constraints (STPCs)
[3]. With the network speed rapidly rising, hardware resource
processing has brought the challenging issues about energy
consumption and environmental pollution, thereby rendering
energy efficiency (EE) become an important criterion in power
allocation [4]. As a result, this leads to the EE optimization
problem in cell-free massive MIMO systems.

Specifically, in [4], under conjugate beamforming (CB)
precoding, the EE optimization problem is solved by sequen-
tial convex approximation (SCA), where two AP selection
schemes based on received-power-based (RPB) and largest-
large-scale-fading-based (LLSFB) are also proposed to re-
duce the power consumption caused by the backhaul links.
Although CB precoding has low complexity and backhaul
requirements, it suffers from the high inter-user interference.
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Fig. 1. Illustration of the cell free massive MIMO downlink systems.

To further improve the performance, zero-forcing (ZF) precod-
ing is employed in addressing the EE optimization problem
[5]. Unfortunately, ZF precoding includes complex matrix
inversion operations that grow cubically with the increasing
user numbers, rendering it infeasible in practice.

Different from CB and ZF, normalized conjugate beam-
forming (NCB) precoding is subject to STPCs rather than
LTPCs, making it very appealing in practical implementation
[3]. On one hand, compared to CB, NCB exploits the channel
hardening property and reduces the beamforming uncertainty,
consequently leading to a higher achievable rate [3]. On the
other hand, NCB avoids the complex matrix inversion opera-
tion with guaranteed minimum rate user service quality as the
network load increases, which results in lower complexity and
stronger robustness than ZF [6]. Therefore, in this paper, the
NCB precoding-based EE optimization problem is considered
under constraints of per-AP STPCs, followed by a novel AP
selection scheme for the further improvement of EE.

II. SYSTEM MODEL

As shown in Fig. 1, consider a cell-free massive MIMO
downlink system with M multi-antenna APs providing ser-
vice to K single-antenna user in the same time-frequency
resources, each AP is equipped with N antennas. With the
Rayleigh fading scenario, gmk =

√
βmkhmk ∈CN×1 reflects

the channel coefficient between the k-th user and the m-th
AP, βmk is the large-scale fading coefficient, and hmk∈CN×1

represents the small-scale fading vector. All APs are connected
to the central processing unit (CPU) through backhaul links,
and the system operates in time division duplex (TDD).



A. Uplink Training
During the uplink training phase, all K users simultaneously

transmit pilot sequences to APs. Let τu be the length of
coherence interval slot for the uplink training (in samples).
The pilot signal received at the m-th AP is

ym =
√
ρuτu

K∑
k=1

gmkψ
H
k + nm. (1)

Here, ρu is the normalized uplink transmit signal-to-noise ratio
(SNR), ψk ∈ Cτu×1 is the pilot sequence transmitted from
the k-th user, nm ∈ CN×τu is a Gaussian noise matrix whose
elements are CN (0, 1). Under the minimum mean square error
(MMSE) criterion, the variance of the channel estimate αmk
between the k-th user and the m-th AP is given by [1]

αmk
∆
=

ρuτuβ
2
mk

1 + ρuτu
∑K
k′=1 βmk′ |ψHk′ψk|2

. (2)

When the coherence interval is shorter than the number of
users, i.e τu < K, some users will use the same pilot so that
APs are not able to spatially separate the linearly dependent
channels. This is known as pilot contamination phenomenon.

B. Downlink Payload Data Transmission
After obtaining the estimated channel state information

(CSI), the m-th AP transmits the signal

xm =
√
ρd

K∑
k=1

√
ηmk

ĝ∗mk
‖ĝmk‖2

sk. (3)

Here sk is the symbol intended for the k-th user with
E{‖sk‖2} = 1, ĝmk ∼ CN (0, αmk) is the channel estimation
of gmk, ρd represents the maximum downlink normalized
transmit power at each AP, ηmk is the power allocation
coefficient assigned to the link between the k-th user and the
m-th AP. When using NCB precoding, each AP needs to satisfy
the following STPCs [3]

E{‖xm‖22} = ρd

K∑
k=1

ηmk ≤ ρd,∀m. (4)

The signal-to-interference-plus-noise ratio (SINR) of the k-
th user using NCB precoding is shown in (5) with

ΓN
∆
=

Γ(N + 1/2)

Γ(N)
(6)

and

γkk′
∆
= (N − 1)

M∑
m=1

ηmk′αmk′
β2
mk

β2
mk′

+ Γ2
N

M∑
m=1

M∑
n 6=m

√
ηmk′ηnk′αmk′αnk′

βmkβnk
βmk′βnk′

, (7)

where Γ(·) denotes the Gamma function [7]. Then, based on
SINRk({ηmk}) in (5), the spectral efficiency (SE) of the k-th
user using NCB precoding can be obtained based on Shannon’s
theorem, i.e.,

Sek({ηmk}) = log2 (1 + SINRk ({ηmk})) . (8)

C. Downlink Energy Efficiency

In a cell-free massive MIMO downlink systems, the total
EE (in bit/Joule) is defined as [4]

Ee({ηmk}) =
BSe({ηmk})

Ptotal
=
B
∑K
k=1 Sek({ηmk})

Ptotal
(9)

with the power consumption of the downlink transmission

Ptotal =ρdN0

M∑
m=1

1

µm

(
K∑
k=1

ηmk

)
+Pfix+BSe({ηmk})

M∑
m=1

Pbt,m.

(10)

Here, B represents the system bandwidth, Se({ηmk}) is the
sum SE, 0 < µm ≤ 1 represents the power amplifier efficiency,
N0 denotes the noise power, Pfix is an element independent of
{ηmk} and is determined by the number of APs and the circuit,
Pbt,m denotes the traffic-dependent power consumption.

To ensure the reliable communication for all users, the SE
threshold Sok is set, and each AP should satisfy STPCs in (4).
In particular, the NCB precoding-based EE optimization prob-
lem aims at finding the optimal power allocation coefficients
{ηmk} to maximize the system EE in (9) [4]. Mathematically,
it can be formulated as

max
η

Ee({ηmk}), (11a)

s.t. Sek({ηmk}) ≥ Sok,∀k, (11b)

ρd

K∑
k=1

ηmk ≤ ρd,∀m, (11c)

ηmk ≥ 0,∀m,∀k, (11d)

which is further equivalent to [4]

max
η

BSe({ηmk})

ρdN0

∑M
m=1

1
µm

(∑K
k=1 ηmk

)
+ Pfix

, (12a)

s.t. (11b), (11c), (11d). (12b)

III. POWER ALLOCATION SCHEME FOR NCB
PRECODING-BASED EE OPTIMIZATION PROBLEM

Since the NCB precoding-based EE optimization problem
(12) is neither convex nor concave, we try to propose a power
allocation scheme that employs SCA for iterative problem-
solving in this section.

Firstly, note that the dual summation in (7) renders the
objective function complex and intractable. Therefore, the

SINRk({ηmk}) =
ρdΓ

2
N

(∑M
m=1

√
ηmkαmk

)2

1 + ρd
∑K
k′=1

∑M
m=1 ηmk′βmk + (N − 1− Γ2

N )ρd
∑M
m=1 ηmkαmk + ρd

∑K
k′ 6=k γkk′ |ψHk ψk′ |2

, (5)



SINRk({cmk}) =
Γ2
N (αTk ck)2

1
ρd

+
∑K
k′=1 ‖βkck′‖22 + (N − 1− Γ2

N )‖αk · ck‖22 +
∑K
k′ 6=k

(
(N − 1) ‖ξkk′ · ck′‖22 + Γ2

N

(
ξTkk′ck′

)2)
ζkk′

. (14)

following first-order approximation is taken to deal with the
user interference caused by the pilot contamination in the NCB
precoding scheme [8]

γkk′≈(N − 1)

M∑
m=1

ηmk′αmk′
β2
mk

β2
mk′

+Γ2
N

(
M∑
m=1

√
ηmk′αmk′

βmk
βmk′

)
2.

(13)
Here, in order to promote the quadratic convex transforma-

tion, we denote {ηmk} in (12) as {c2mk}, i.e. cmk
∆
=
√
ηmk.

Then, based on the following definitions:

ck
∆
= [c1k, · · · , cmk]T ∈ RM , ζkk′

∆
= |ψHk′ψk|2 ∈ R,

αk
∆
= [
√
α1k, · · · ,

√
αMk]T ∈ RM ,

βk
∆
= diag(

√
β1k, · · · ,

√
βMk) ∈ RM×M ,

ξkk′
∆
= [
√
α1k′

β1k

β1k′
, . . . ,

√
αMk′

βMk

βMk′
]T ∈ RM ,

Pabs
∆
= ρdN0

M∑
m=1

1

µm

(
K∑
k=1

c2mk

)
+ Pfix ∈ R,

we can characterize the user SINRk({ηmk}) in (5) as a
function of {cmk}, resulting in a more refined formulation
shown in (14). For notational simplicity, here we short the
expression SINRk({cmk}) as SINRk. Then, by introducing
the auxiliary variables {tk}, we can equivalently express the
original problem (12) by a more tractable one [4], which gives
rise to

max
c,t

B
∑K
k=1 tk

ln 2
, (15a)

s.t.
ln(1 + SINRk)

Pabs
≥ tk,∀k, (15b)

Sek({cmk}) ≥ Sok,∀k, (15c)
K∑
k=1

c2mk ≤ 1,∀m, (15d)

cmk ≥ 0,∀m,∀k. (15e)

On one hand, with respect to the constraint in (15c), it can
be expressed by a second-order cone (SOC) constraint for a
given SE threshold Sok, which is shown in (16).

On the other hand, as for non-convex constraint in (15b),
we invoke the following inequality [9]

ln(1 + x)

t
≥ a− b

x
− d · t, ∀x > 0, t > 0, (17)

where a ∆
= 2 ln(1+x̂)

t̂
+ x̂
t̂(x̂+1)

> 0, b
∆
= x̂2

t̂(x̂+1)
> 0, d

∆
= ln(1+x̂)

t̂2
>

0,∀x̂ > 0, t̂ > 0. Then, based on it, by letting {cnmk} be
the feasible solution obtained from the n-th iteration, we can
obtain the corresponding SINRnk and Pnabs. Subsequently, the
logarithmic numerator term ln(1 + SINRk) with variables
{cmk} can be seamlessly separated from the quadratic de-
nominator term Pabs through (17), i.e.,

ln(1 + SINRk)

Pabs
≥ ank − dnkPabs −

bnk
ρdΓ2

N (αkT ck)2
−∑K

k′=1 ‖βkck′‖22 + (N − 1− Γ2
N )‖αk · ck‖22

Γ2
N (αkT ck)2(bnk )−1

−∑K
k′ 6=k

(
(N − 1) ‖ξkk′ · ck′‖22 + Γ2

N

(
ξTkk′ck′

)2)
ζkk′

Γ2
N (αkT ck)2(bnk )−1

(18)

with

ank = 2
ln(1 + SINRnk )

Pnabs
+

SINRnk
Pnabs(SINR

n
k + 1)

, (19a)

bnk =
(SINRnk )2

Pnabs(SINR
n
k + 1)

, (19b)

dnk =
ln(1 + SINRnk )

(Pnabs)
2

. (19c)

Obviously, the right-hand-side (RHS) of (18) is still a
non-convex function with respect to the independent variable
{cmk}. For this reason, another convex inequality in the
following is introduced [5]

x2

t
≥ 2

x̂x

t̂
− x̂2

t̂2
t, ∀x > 0, x̂ > 0, t > 0, t̂ > 0. (20)

By (20), the quadratic term of ‖βkck′‖22, ‖αk ·ck‖22, ‖ξkk′ ·
ck′‖22 and

(
ξTkk′ck′

)2
will become the first-order term

of (‖βkcnk′‖2‖βkck′‖2), (‖αk · cnk‖2‖αk · ck‖2), (‖ξkk′ ·
cnk′‖2‖ξkk′ · ck′‖2) and

((
ξTkk′c

n
k′

) (
ξTkk′ck′

))
respectively.

Meanwhile, for the quadratic terms (αTk ck)2, we then recall
another convex inequality [9]

x2 ≥ 2x̂x− x̂2, ∀x ≥ 0, x̂ ≥ 0, 2x ≥ x̂, (21)

and we can obtain

(αTk ck)2 ≥ 2(αTk c
n
k )(αTk ck)− (αTk c

n
k )2,∀k, (22a)

2cmk ≥ cnmk, ∀m,∀k. (22b)

(αTk ck)2≥(2Sok−1)

(
1

ρdΓ2
N

+

∑K
k′=1 ‖βkck′‖

2
2

Γ2
N

+
(N−1−Γ2

N )

Γ2
N

‖αk · ck‖22+
K∑

k′ 6=k

(
ξTkk′ck′

)2
ζkk′+

(N − 1)

Γ2
N

K∑
k′ 6=k

‖ξkk′ · ck′‖22 ζkk′

, ∀k.
(16)



Furthermore, as shown in (22a), the terms containing the
quadratic independent variables (αTk ck)2 can also be replaced
with the first-order terms ςk

∆
= 2(αTk c

n
k )(αTk ck)−(αTk c

n
k )2 ∈

R,∀k, which leads to a more computationally efficient formu-
lation [10].

Based on the two convex inequalities (20) and (21), we have
the following results to approximate the non-convex terms in
the RHS of (18)

tk ≤ ank − dnkPabs −
bnk

ρdΓ2
N (αkT ck)2

−

bnk
Γ2
N

{∑K
k′=1(‖βkcnk′‖2‖βkck′‖2)

0.5(αTk c
n
k )2

−
∑K
k′=1 ‖βkcnk′‖22
(αTk c

n
k )4ς−1

k

}
−

bnk (N − 1− Γ2
N )

Γ2
N

{
‖αk · cnk‖2‖αk · ck‖2

0.5(αTk c
n
k )2

− ‖αk · c
n
k‖22

(αTk c
n
k )4ς−1

k

}
− bnk (N − 1)

Γ2
N

{∑K
k′ 6=k(‖ξkk′ · cnk′‖2‖ξkk′ · ck′‖2)ζkk′

0.5(αTk c
n
k )2

−∑K
k′ 6=k ‖ξkk′ · cnk′‖22ζkk′

(αTk c
n
k )4ς−1

k

}
+ bnk

{∑K
k′ 6=k

(
ξTkk′ck′

)2
ζkk′

(αTk c
n
k )4ς−1

k

−
∑K
k′ 6=k

((
ξTkk′c

n
k′

) (
ξTkk′ck′

))
ζkk′

0.5(αTk c
n
k )2

}
,∀k, (23)

which means that the non-convex constraint (15b) can be
substituted by the convex approximation (23).

To sum up, the constraints (15d), (16) and (23) are SOC, and
the constraint (15e) is linear matrix inequality (LMI). Based on
them, since the objective function in (15) is a linear fractional
function, the NCB precoding-based EE optimization problem
can be reformulated as a series of accessible SOCP problems.
Hence, the (n+1)-th iteration of the proposed power allocation
scheme to solve this problem can be designed as follows

max
c,t

B
∑K
k=1 tk

ln 2
, (24a)

s.t. (15d), (15e), (16), (22b), (23), (24b)

where the computational complexity order of each iteration
is O(M3.5K3.5 + 2M3.5K2.5 + 2M2.5K3.5) [10]. On the
other hand, at the beginning of the iterations, a suitable
initial feasible solution can be obtained by simply solving the
constrained optimization problem

max
c0

0, (25a)

s.t. (15d), (15e), (16). (25b)

Finally, we follow the standard framework of SCA to
analyze the convergence of the proposed power allocation
scheme in (24). Suppose {c∗mk} is the optimal solution for the
(n + 1)-th iteration to (24), by relaxing convex inequalities
(17), (20) and (21), solution {c∗mk} is also feasible to (15).
When c∗mk = cnmk, the equalities in (17), (20) and (21) hold,
indicating that the optimal solution {cnmk} for the n-th iteration
is still valid for the (n+1)-th iteration. Therefore, the objective
function consistently exhibits non-decreasing behavior, which
ensures the convergence during the iterations.

IV. FURTHER IMPROVED BY AP SELECTION

In the previous section, we assumed that the connections are
established between all users and APs. As the network terminal
density experiences rapid growth, in the scenario where the
number of network users is larger than coherent interval, i.e.
K > τu, the quality of cell-free network will significantly
decline due to the pilot contamination, especially when the
adjacent users being assigned the same pilot sequence [1].

Therefore, we now propose an AP selection scheme based
on the K-means++ in this section. On one hand, this scheme
considers clustering to enable users within each cluster to use
orthogonal pilot sequences. On the other hand, it combines
power allocation to eliminate the inter user interference caused
by multiplexing pilots between different clusters. Specifically,
the AP selection scheme consists of the following 5 steps.
• Initialization: Consider dividing the user set K =
{1, · · · ,K} into L disjoint clusters K1, · · · ,KL. To
ensure that the users within each cluster can be assigned
with orthogonal pilot sequences, the size of each cluster
should satisfy |Kl| ≤ τu,∀l. Hence, we set the number
of clusters as L = dKτu e and invoke the K-means++ to
initialize the cluster centroid position κ0

1, . . . ,κ
0
L∈RM .

• User clustering: Adopt large-scale fading coefficients
βk

∆
= [β1k, . . . , βMk]T ∈ RM as the k-th user feature

vectors. The Euclidean distance between each user and
the clusters centroid is taken as the measurement

dlk = ‖βk − κil‖22, ∀l,∀k, (26)

based on the obtained distance at the i-th iteration, where
the following criteria is used for user clustering [11]

Kl={k-th user belongs to cluster l |if dlk<djk, ∀j 6= l|}.
(27)

• Centroid position update: Update the centroid position
of each cluster according to

κi+1
l =

∑
k∈Kil

βk

|Kil |
, ∀l. (28)

Once all the centroid positions stop updating, i.e. κi+1
l =

κil,∀l, move to the next step. Otherwise, continue iterat-
ing the user clustering process.

• Modify cluster size: If all cluster sizes obey the require-
ment |Kl| ≤ τu,∀l, proceed to the next step. Otherwise,
we need to take some modified measures. Specifically,
for clusters that exceed the size limit, i.e. |Kl′ | > τu, we
record the number of clusters that exceed the limit as L′

and calculate the variance between all the users and the
centroid

σl′k =
‖βk − κil′‖22

M
, ∀k, (29)

then order the variance in descending way and remove the
corresponding users from cluster Kl′ , until |Kl′ | ≤ τu.
Meanwhile, we fix the clusters Kl′ after the modified
completion. After that, the removed users and the clusters
that remain unmodified will be regrouped for another



Algorithm 1 The Proposed Power Allocation Scheme For
EE Optimization With NCB

Input: Sok, ρd, N, {αmk}, {βmk}, NI
Output: power allocation coefficients {ηmk} = {c2mk}
Step 1: perform AP selection, go to Step 2; without AP
selection, go to Step 4
Step 2: perform AP selection scheme based on the K-
means++ to obtain the connectivity matrix X
Step 3: if Xmk = 1, let α̂mk = αmk; else α̂mk =
0, ∀m,∀k. Replace {αmk} with {α̂mk} as Step 4 input,
proceed to the next step
Step 4: obtain an initial feasible solution c0 by solving (25),
set n = 1
Step 5: perform the n-th iteration: solving problem (24) by
using SOCP solver, obtain optimal solution c∗

Step 6: when n=NI , terminate the algorithm; else go to
Step 7
Step 7: update cn = c∗, n = n+ 1, go to Step 5

iteration of user clustering. Significantly, not only the user
participation in clustering is reduced, but there is also a
reduction in the number of clusters, i.e. L = (L− L′).

• AP selection: Select the serving APs for each cluster
based on the final location of the cluster centroids matrix
κf ∈ RM×L

Al = {m-th AP serves cluster l |if κfml > κfmj , ∀j 6= l|},
(30)

based on the obtained Al and Kl, we can establish
the unique connectivity between APs and users. Define
connectivity matrix X ∈ ZM×K , where Xmk ∈ {0, 1}.
Xmk = 0 means that the m-th AP does not serve the k-th
user, and ηmk = 0. If and only if m-th AP ∈ Al and k-th
user ∈ Kl, it has Xmk = 1.

Then, we analyze the impact of the proposed AP selection
scheme with respect to EE in the downlink cell-free massive
MIMO systems. Looking back at (5), when the k-th user and
the k′-th user belong to the same cluster, the orthogonal pilot
sequences will be assigned, i.e |ψHk ψk′ |2 = 0. Alternatively,
if the k-th user and the k′-th user belong to different clusters,
they might potentially reuse pilot sequences. Nevertheless,
our AP selection scheme guarantees that the m-th AP cannot
simultaneously serve two clusters. For example, if ηmk 6= 0,
then there must have ηmk′ = 0, which leads to γkk′ = 0.
In conclusion, the interference caused by pilot contamination
will be completely eliminated, i.e.

∑K
k′ 6=k γkk′ |ψHk ψk′ |2 = 0.

Additionally, AP selection also reduces the backhaul power
consumption, which helps to further improve the EE [4].

In a nutshell, after obtaining the connectivity matrix X,
channel estimation are reassigned as the input to EE opti-
mization, based on the duality of {ηmk} and {αmk} [4].
To summarize, the proposed power allocation scheme for
solving the NCB precoding-based EE optimization problem
in cell-free massive MIMO downlink systems is outlined in
Algorithm 1.

Fig. 2. Illustration of the energy efficiency versus the number of iterations
(M = 100, N = 1,K = 20, τu = 5, D = 1).

V. SIMULATION RESULTS

In this section, we consider a D×D Km2 cell-free area,
where wrapped-around technique is used to imitate an infi-
nite network. In particular, the large-scale fading coefficient
follows the model in [1]

βmk = PLmk · 10
σshzmk

10 , (31)

where PLmk represents the path loss following the three-slope
model, 10

σshzmk
10 represents the shadow fading coefficient

with the standard deviation σsh, and zmk ∼ N (0, 1). Other
parameters in our system follow the same settings as in [4].

First of all, we verify the convergence of the proposed
power allocation scheme, where MOSEK is employed as the
solver for large-scale convex optimization problems. Mean-
while, we also apply the full power transmission scheme as
a comparative benchmark. As shown in Fig. 2, the proposed
power allocation scheme facilitates the rapid iterative growth
in EE and achieve stability after a few iterations. Furthermore,
as expected, in combination with the AP selection scheme,
significant enhancements are achieved.

Fig. 3 compares the proposed scheme with other power
allocation schemes in terms of the EE performance. Obviously,
the proposed scheme significantly improves EE compared to
other power allocation schemes. Specifically, compared to full
power transmission, the EE performance is increased by 2 to
3 times. Meanwhile, NCB precoding benefits from STPCs and
has some improvements in EE compared to CB precoding. In
addition, the EE performance tends to decrease as the number
of APs increases, which is caused by the energy consumed
due to the increase in backhaul links.

In Fig. 4, we investigate the impact of the proposed
AP selection scheme on EE under short coherence interval.
The proposed AP selection scheme not only mitigates the
reduced throughput caused by pilot contamination but al-
so minimizes backhaul links power consumption [4], thus



Fig. 3. Illustration of downlink energy efficiency versus the number of APs,
comparison of proposed scheme with other power allocation schemes (N =
2,K = 16, τu = 16, D = 1).

Fig. 4. Illustration of the downlink energy efficiency versus the coherence
interval (M = 100, N = 1,K = 40, D = 1).

resulting in an enhanced EE at the cost of the increased
complexity. Specifically, LLSFB, RPB, and the proposed AP
selection scheme have computational complexities O(KM(1+
log2M),O(KM(1+N+log2M),O((KMdKτu e)I+Md

K
τu
e+

M log2M+(K−1)dKτu e) respectively, where I is the number
of iterations in which cluster size modifications are performed.
It is worth noting that, the RPB AP selection needs to
firstly execute the optimization algorithm, which requires
extra O(M3.5K3.5+2M3.5K2.5+2M2.5K3.5) computational
complexity. Significantly, as the number of coherence interval
increases, the performance of proposed AP selection scheme
may be degraded due to the reduction in the number of
clusters, which results in users being served by redundant
APs. When K ≤ τu, the proposed AP selection scheme will
degenerate into the fully connected model.

VI. CONCLUSION

In this paper, a novel power allocation scheme for NCB
precoding-based EE optimization is proposed. It converts the
non-convex problem into a series of SOCP problems by SCA,
so that it can be iteratively solved with polynomial complexity.
Furthermore, an AP selection scheme based on K-means++
is designed to eliminate the pilot contamination and further
improve EE. The simulation results show that the proposed
power allocation scheme significantly improves the system EE
compared to the other traditional power allocation schemes.
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