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Abstract— In this paper, a new randomized iterative detection
algorithm (NRIDA) is proposed for uplink large-scale MIMO
systems, where the random iterations in it are designed to work
for the detection model (denoted by y = Hx + n) directly.
Different from those traditional iterations designed for the linear
system (denoted by Ax = b with A = HHH and b = HHy),
we show that besides the complexity reduction about the matrix
inversion, in the proposed NRIDA the computational complexity
of matrix multiplication for the linear detection is also greatly
reduced without any performance loss, thus leading to a much
lower detection complexity. Meanwhile, according to convergence
analysis, we demonstrate that the proposed NRIDA enjoys a
globally exponential convergence performance, enabling it well
suited to the various detection cases of interest. Besides, further
complexity reduction and the choices of the sampling distribution
in NRIDA are studied as well in full details. Moreover, in order
to achieve a better detection trade-off between performance
and complexity, we introduce the concept of the conditional
sampling into NRIDA, which brings significant gains in both
iteration convergence and efficiency. Finally, simulations with
respect to the uplink large-scale MIMO detection are presented
to illustrate the remarkable gains of the proposed NRIDA in both
performance and complexity.

Index Terms— Massive MIMO, large-scale MIMO detection,
low complexity, random sampling, iterative methods.

I. INTRODUCTION

AS A promising extension of multiple-input multiple-
output (MIMO) in beyond 5G and 6G, the large-scale

MIMO system is able to significantly improve the network
capacity without extra bandwidth [1], [2], [3]. However,
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because of the curse of dimensionality, there is also a big chal-
lenge upon the uplink signal detection with the fast increase
of the system dimension [4], [5]. In this condition, it has
been proved in [6] that the optimal maximum likelihood (ML)
detection can be achieved by the linear detection schemes like
zero forcing (ZF) and minimum mean-square error (MMSE)
if the number of received antennas at base station (BS) side
(denoted by N ) is sufficiently larger than the number of
transmitted antennas at user side (denoted by K), i.e., N ≫ K.
Nevertheless, because of the complicated matrix inversion, the
implementation of these linear detection are still challenging
in practice. To this end, a number of low-complexity iterative
detection schemes are proposed to bypass the matrix inversion
in an iterative way [7], [8], [9], [10], [11], [12].

In general, the low-complexity linear detection schemes
based on the traditional iterative methods have a common
problem solving paradigm [13], [14]. Specifically, they firstly
convert the uplink detection problem (i.e., y = Hx + n) into
decoding a linear system (i.e., Ax = b), and then employ
the traditional iterative methods designed for linear systems
to iteratively approximate the detection solution [15]. More
precisely, low-complexity linear detection schemes based on
Jacobi, Richardson, Gauss-Seidel (GS) and successive overre-
laxation (SOR) iterations have different matrix splitting ways
about matrix A, which correspond to the different convergence
performance and complexity cost [16]. Nevertheless, some
specific requirements like N ≫ K should be satisfied,
otherwise the convergence of these iterations can not be
ensured, making them severely limited in various cases of
interest [17]. For example, the convergence of Jacobi iteration
is guaranteed if ZF or MMSE filtering matrix A is heavily
diagonally dominant [9], [18]. The relaxation factor 0 < ω <
2/ϱ(A) in Richardson iteration needs to be well chosen for
the convergence [10], [19], where ϱ(·) indicates the spectral
radius of a matrix.

Nowadays, the network of wireless communications has
become much more complicated than before [20], [21], which
places a higher requirement about the flexible uplink detection
schemes. To well suit different cases of large-scale MIMO
systems, the randomized iterative detection algorithm (RIDA)
is given in [22], which adopts the random sampling into the
iteration methods. It has been demonstrated that RIDA not
only achieves a low computational complexity but also enjoys
a global convergence performance. To further enhance the
convergence performance, the modified randomized iterative
detection algorithm (MRIDA) is also given in [22] by fully
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taking advantages of the conditional sampling. Overall, the
method of random iteration greatly extends the applications
of iterative detection in large-scale MIMO systems. In fact,
besides the low-complexity detection, the concept of random
sampling has also been introduced into large-scale MIMO
systems to achieve a better detection performance [23], [24],
[25], [26], [27], [28].

However, before the iteration is carried out, both the tradi-
tional iterative detection (e.g., Jacobi, Richardson, GS, SOR)
and the randomized iterative detection (e.g., RIDA, MRIDA)
schemes require to get the filtering matrix A = HHH so
that the following iterations based on matrix splitting can be
performed. Essentially, this is because those iterative methods
are originated from solving the problem of linear systems
(i.e., Ax = b), so that a necessary transformation about
the uplink signal detection (i.e., y = Hx + n) has to be
made for such an adoption. Compared to avoiding the matrix
inversion about A via the designed iterations, calculating the
matrix A is also computationally expensive, but is widely
ignored in the related works as a preprocessing [15], [22].
Therefore, considerable complexity cost has been consumed
before the iterations, which imposes an inevitable obstacle on
the implementation of these iterative detection schemes.

In this paper, a new randomized iterative detection algorithm
(NRIDA) is proposed, which incorporates the random iteration
directly into the detection model y = Hx+n. By doing this,
we show that the computations of obtaining A and b in the
iterative detection schemes can be avoided without any perfor-
mance loss. Therefore, a lot of computational complexity are
saved, which is greatly beneficial to the implementation of the
low-complexity iterative detection. At the same time, we also
demonstrate that the proposed NRIDA scheme converges
exponentially and globally by means of mean squared error,
which is competitive among the iterative detection schemes.
Besides the convergence analysis, the choices of the sampling
distribution in the proposed NRIDA are investigated while fur-
ther convergence enhancement by taking full advantages of the
multi-conditional sampling is also presented as well. To sum-
marize, compared with the traditional iterative detection algo-
rithms, the proposed NRIDA not only achieves a better signal
detection trade-off between performance and complexity but
also entails a global and tractable convergence, thus making
it a better choice for uplink large-scale MIMO systems.

The organization of this paper is as follows. Section II
describes the background of the conventional linear detection
in large-scale MIMO systems and briefly introduces the state
of the art of the low-complexity iterative detection schemes.
Then, the proposed NRIDA is given in Section III, and the
feasible complexity reduction of it is also investigated in
detail. In Section IV, the convergence analysis is presented
to show the globally exponential convergence of the proposed
NRIDA, followed by the study of the choices of the sampling
distribution. In Section V, by making use of the conditional
sampling, NRIDA with multi-step conditional sampling is
proposed to achieve better iteration convergence and efficiency.
In Section VI, simulations about the proposed NRIDA for
uplink signal detection in large-scale MIMO systems are
shown, and Section VII concludes the paper finally.

Notation: Matrices and column vectors are represented
by upper and lowercase boldface letters, and the conjugate
transpose, inverse, pseudoinverse of a matrix B by BH ,B−1,
and B†, respectively. We apply bi for the ith column of the
matrix B, bi,j for the entry in the ith row and jth column
of the matrix B. Let ⟨X,Y⟩F (W−1) ≜ Tr(XHW−1YW−1)
indicate the weighting Frobenius inner product, where X,Y ∈
Cn×n and W ∈ Cn×n is a symmetric positive definite matrix.
Furthermore, let ∥X∥2F (W−1) ≜ Tr(XHW−1XW−1) =
∥W− 1

2 XW− 1
2 ∥2F and ∥ · ∥F is the standard Frobenius norm

with identity matrix I, where Tr(·) stands for the trace of the
matrix. ⌈x⌋ indicates rounding to the closest integer about x.
If x is a complex value, ⌈x⌋ separately rounds the real and
imaginary parts independently.

II. PRELIMINARY

In this section, the classic linear detection in large-scale
MIMO systems is introduced, followed by the state of the art
about low-complexity iterative detection schemes.

A. Linear Uplink Signal Detection

Consider decoding a large-scale MIMO system, where N
antennas are equipped at base station (BS) and multiple
user equipments (UEs) with K antennas in all are served
simultaneously, N ≥ K. Let x represent the K × 1 transmit
signal from UEs, where the i-th element of x (i.e., xi) is a
symbol drawn from QAM constellation X . Then, given the
flat fading channel matrix H ∈ CN×K , the N × 1 receive
signal y at BS can be written by

y = Hx + n, (1)

where n is an N × 1 AWGN noise vector whose elements
obey CN (0, σ2). Intuitively, to restore the transmit signal x
in (1), the optimal maximum likelihood (ML) detection aims
to solve the following integer least square (ILS) problem

x̂ml = arg min
x∈XK

∥Hx− y∥2, (2)

which turns out to be NP-hard with the increase of system
dimension.

To solve the problem in (2), the traditional linear detection
schemes like ZF and MMSE can be applied with approximated
solutions

xzf = (HHH)−1HHy (3)

and

xmmse =
(
HHH + σ2I

)−1
HHy (4)

respectively. Then, the final decisions x̂zf and x̂mmse are
determined by quantizing xzf and xmmse according to the
modulation constellation XK , i.e.,

x̂zf = ⌈xzf⌋Q ∈XK and x̂mmse = ⌈xmmse⌋Q ∈XK . (5)

Theoretically, both xzf in (3) and xmmse in (4) are designed
to solve the following least square (LS) problem

x̂ = arg min
x∈CK

∥Hx− y∥2, (6)
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which is different from the ILS problem in (2). More specif-
ically, it has been demonstrated in [6] that the optimal ML
detection performance about ILS problem in (2) can be
obtained by ZF or MMSE detection if N ≫ K, making the
linear detection widely applied in large-scale MIMO systems.
Unfortunately, the implementation of ZF or MMSE decoding
is still challenging in practice due to the complicated matrix
operations in it. Typically, the computational complexities
of ZE and MMSE detection mainly consist of two parts,
namely, the matrix multiplication HHH with computational
complexity O(NK2) and the matrix inversion of it with
computational complexity O(K3).

B. Low-Complexity Iterative Detection

To approximate the matrix inversion in linear detection with
low complexity cost, some iterative detection schemes are
given based on the classic iterative methods.

In particular, the ZF decoding in (3) (or MMSE decoding
in (4)) can be interpreted by decoding an equivalent linear
system

Ax = b. (7)

Here, b = HHy ∈ CK , A = HHH ∈ CK×K is the
symmetric positive ZF filtering matrix (so is the MMSE
filtering matrix A = HHH+σ2I). To solve this linear system,
the matrix splitting about A = M + N is employed with
M ∈ CK×K and N ∈ CK×K so that iterative methods
compute the solution by repeatedly applying the following
iterations [29]

xk+1 = Gxk + g, (8)

where g = M−1b ∈ CK and G = −M−1N = I −
M−1A ∈ CK×K is known as the iteration matrix. Moreover,
the convergence of iterative methods is guaranteed if [17]

lim
k→∞

Gk = 0, (9)

so that xt+1 will gradually approach xzf along the iterations.
Intuitively, the choices of M and N for the matrix splitting

A = M+N are key to iterative methods. In Jacobi iteration,
the matrix splitting is set with M = D and N = L + U,
which leads to the following iterations [30]

Dxk+1 = −(U + L)xk + b. (10)

Here, D ∈ CK×K , L ∈ CK×K and U ∈ CK×K denote
the diagonal elements, the lower triangular elements and the
upper triangular elements of matrix A respectively as A =
D+L+U and L = UH . As for Richardson iteration, matrices
M = 1

ω I and N = A− 1
ω I are applied, where ω > 0 serves as

the relaxation factor [7]. For a faster convergence performance,
GS iteration with M = D + U and N = L is introduced
as [11]

(D + U)xk+1 = −Lxk + b. (11)

Based on GS iteration, SOR iteration is proposed for a better
convergence performance, which introduces the relaxation
factor 1 < ω < 2 into the iterations as [16]

(D + ωU)xk+1 = [(1− ω)D− ωL]xk + ωb. (12)

Consequently, given the iteration results xL, L ≥ 1, the final
detection solution of iterative methods for the ILS problem in
(2) is outputted by the direct quantization as

x̂ = ⌈xL⌋Q ∈ XK . (13)

Although low-complexity linear detection can be achieved by
iterative detection schemes, necessary conditions (e.g., N ≫
K) need to be fulfilled to guarantee the convergence, which
severely limits their applications in practice.

C. Low-Complexity Randomized Iterative Detection

In [22], the randomized iterative detection algorithm (RIDA)
is given for uplink signal detection in large-scale MIMO
systems. By adopting random sampling into the iterations,
it not only has a low computational complexity, but also entails
a globally exponential convergence.

Specifically, in [22], a general formation of randomized
iteration for large-scale MIMO detection is derived as

xk+1=xk+U−1AHSk(SH
k AU−1AHSk)−1SH

k (b−Axk).
(14)

Here, U ∈ CK×K serves as an auxiliary matrix, which
is symmetric positive definite. The matrix Sk is randomly
sampled from a designed discrete distribution D, namely,
Sk ∼ D. From it, the random iteration in RIDA follows

xk+1 = xk + AHSk(SH
k AAHSk)−1SH

k (b−Axk) (15)

with the initial choice x0 = D−1b, where Sk ∈
{I:,Q1 , . . . , I:,Qr

} at each iteration is randomly sampled from
a distribution D. Here, I:,Qi

with 1 ≤ i ≤ r denotes a
column partition of the identity matrix IK×K and Qi ≜
{index 1, . . . , index qi} ⊆ {1, . . . ,K} standards for an index
set with |Qi| = qi, namely,

I:,Qi
= [I:,index1, . . . , I:,indexqi

], (16)

which establishes a block operation as follows, e.g.,

{1, 2, 5}︸ ︷︷ ︸
Q1

∪ . . . ∪ {4, 8, 12}︸ ︷︷ ︸
Qr

= {1, . . . ,K} (17)

with Qi∩Qj = ∅, 1 ≤ i ̸= j ≤ r. Note that the indices in each
set Qi are determined initially while the following sampling
with respect to Sk is carried out block by block (i.e., I:,Qi

)
rather than column by column (i.e., I:,index). For simplicity,
the same block size |Q1| = . . . = |Qr| = K/r = q (i.e.,
q1 = . . . = qr = q) is applied [22].

Theorem 1: As for the uplink large-scale MIMO detection,
let Sk ∈ {I:,Q1 , . . . , I:,Qr

} be sampled randomly according to
the distribution D, RIDA converges by

E[∥xk − x∗∥2] ≤ ρk∥x0 − x∗∥2 (18)
with globally exponential convergence rate

ρ = 1− λmin(E[A:,Qi(AQi,:A:,Qi)
−1AQi,:]) < 1. (19)

Here, λmin(·) represents the minimum eigenvalue of a
matrix, x∗ = A−1b indicates the detection solution of (6)
and (7), E[·] represents the expectation of a random variable,
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AQi,: = IH
:,Qi

A and A:,Qi
= AHI:,Qi

stand for the row
and column partitions respectively with index set Qi. Clearly,
in [22], the exponential convergence of RIDA by means of
the mean squared error (MSE) is demonstrated in a statistic
way, where the global convergence can be verified because the
related convergence rate ρ is always less than 1.

Based on RIDA, further optimization and enhancement by
well exploiting the conditional sampling are given in [22],
where the modified randomized iterative detection algorithm
(MRIDA) is given for better iteration convergence and effi-
ciency. Typically, the iteration in MRIDA follows

xk+1=xk+Sk(SH
k ASk)−1(SH

k b− SH
k Axk) (20)

with Sk = D− 1
2 I:,Qi ∈ CK×q and Sk /∈ {Sk−1, . . . ,Sk−r+1}.

Considering the block size 1 ≤ q ≤
√
K, the overall compu-

tational complexity of MRIDA by updating all the elements
of x in a full iteration is O(K2), which is comparable to the
conventional iterative detection schemes. Note that obtaining
the filtering matrix A = HHH and b = HHy ∈ CK

is deemed as a preprocessing for these iterative detection
schemes, where the related complexity is not considered here.
Finally, the iterations results of RIDA and MRIDA are rounded
according to (13) to yield the detection solution.

III. NEW RANDOMIZED ITERATIVE DETECTION
ALGORITHM

In order to solve the ILS problem in (2), the existing
low-complexity iterative detection schemes try to firstly con-
vert the original system model in (1) into the classic linear
system in (7), where iterations (like Jacobi and GS) or
random iterations (like RIDA and MRIDA) are carried out
thereafter. However, during such an equivalent transformation
from y = Hx + n to Ax = b, the symmetric positive matrix
A = HHH (or A = HHH + σ2I) and vector b = HHy
need to be calculated as a preprocessing stage, so that the
matrix splitting in iterative methods or the column partition in
random iteration can be performed. In fact, due to N ≥ K,
matrix multiplication about A = HHH with computational
complexity (i.e., O(NK2)) is also computational expensive
compared to the matrix inversion. This is accordance with the
computational complexity of the traditional linear detection
schemes like ZF in (3) and MMSE in (4), which consists of
matrix multiplication with complexity O(NK2) and matrix
inversion with complexity O(K3).

However, most of current works about low-complexity
iterative detection mainly focus on how to effectively reduce
the complexity cost of matrix inversion A−1. For this reason,
a new randomized iterative detection algorithm (NRIDA) is
proposed, which is directly designed for the overdetermined
detection system in (1) rather than the linear system in (7).
By doing this, we show the preprocessing stage (i.e., the
matrix multiplication about A and b can be avoided without
any performance loss. Intuitively, this corresponds to the
complexity reduction with respect to the matrix multiplication
HHH in linear detection, where considerable complexity cost
is saved accordingly.

A. Algorithm Description

Specifically, based on the randomized iteration in (14),
by letting the auxiliary symmetric positive definite matrix
U = A and Sk ∈ {I:,Q1 , . . . , I:,Qr

}, the random iteration
in the proposed NRIDA is designed as follows

xk+1 = xk + Wk(GH
k HWk)−1GH

k (y −Hxk) (21)

with

Wk ≜ (HHH)−1HHGk, (22)

where Gk = HSk = HI:,Qi
= H:,Qi

∈ CN×q is randomly
sampled from the distribution D, i.e.,

pi = D(Gk = H:,Qi). (23)

Here, the same block size |Q1| = . . . = |Qr| = K/r = q is
applied. Similar to RIDA, the indices in set Qi, 1 ≤ i ≤
r are determined initially while a simple way is to group
these indices in a sequential order, i.e., Gk = H:,Qi

=
[h(i−1)q+1, . . . ,hiq], Qi = {(i − 1)q + 1, . . . , iq}. Based on
Qi, the sampling about Gk is performed block by block.

Specifically, given the detection model in (1), To be more
specific, given Gk = H:,Qi

, it follows that

Wk = I:,Qi
∈ CK×q (24)

while the random iteration in (21) can be rewritten as

xk+1 = xk + I:,Qi
(HH

:,Qi
H:,Qi

)−1HH
:,Qi

(y −Hxk) (25)

with random Qi. Consequently, by iterating x according to
(25), the desired detection solution x∗ = H†y = xzf in (6)
can be approximated asymptotically, where the globally expo-
nential convergence will be demonstrated in the following.
As for the choice of the initial setup x0, it can be an arbitrary
point from XK and we set x0 = 0 for simplicity. Finally,
after k = L times iteration, the iteration results xL is rounded
based on the constellation XK in (13) to output the detection
solution.

Another point should be noticed is the choice of the block
size q, where a small q ≪ N is preferable due to a small
size of matrix inversion (HH

:,Qi
H:,Qi)

−1 in (25). Nevertheless,
a larger size q also implies more elements of x are updated at
each iteration, which naturally results in a better convergence
performance. Clearly, there is a latent trade-off in the proposed
NRIDA between convergence and complexity about the choice
of q, and here the choice 1 < q ≤

√
K is recommended.

Further investigation about the choice of q will be one of our
work in future.

Now we go through the computational complexity of the
proposed NRIDA. In particular, the computational complexity
of computing (HH

:,Qi
H:,Qi)

−1 is q3 + q2N ; the multiplication
among I:,Qi and (HH

:,Qi
H:,Qi)

−1 and HH
:,Qi

costs q2K+qKN
while the computational complexity of multiplying it with
(y − Hxk) requires 2KN . Hence, the total computational
complexity of NRIDA at each iteration (i.e., compute xk+1

in (25)) is q3 +q2N +q2K+qKN +2KN . Given the choice
1 < q ≤

√
K, the complexity of NRIDA at each iteration is no

more than O(K1.5N). Note that the complicated matrix mul-
tiplication like HHH is not involved in the proposed NRIDA
so that significant computational complexity is reduced.
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Algorithm 1 The Proposed NRIDA for Large-Scale MIMO
Systems
Require: H,y, x0 = 0, L
Ensure: near linear detection solution x̂

1: for k = 1, . . . , L do
2: for t = 1, . . . ,K/q do
3: randomly sample index set Qi according to (23)
4: update x based on (25)
5: end for
6: end for
7: output x̂ = ⌈xL⌋Q ∈ XK

B. Complexity Reduction

The computational complexity of NRIDA can be further
reduced by making use of the inherent structure of I:,Qi .
As shown in (16), the matrix IH

:,Qi
can be depicted in the

following way:

IH
:,Qi

=


0 · · · 0 1 0 · · · 0 0 · · · 0
... · · ·

... 0
. . . . . .

...
... · · ·

...
... · · ·

...
...

. . . . . . 0
... · · ·

...
0 · · · 0 0 · · · 0 1 0 · · · 0

 . (26)

Intuitively, the operations of I:,Qi
and IH

:,Qi
are essentially

determined by the q× q nonzero matrix within it. Meanwhile,
every row or column of this submatrix only has a nonzero
element, i.e., 1, where all other elements in it are 0 as well.
From it, further complexity reduction with respect to the
proposed NIRDA can be achieved.

In particular, given the structure of I:,Qi
in (26), the

multiplication of I:,Qi and (HH
:,Qi

H:,Qi)
−1 can be finished

instantaneous by the simple shift and matrix augmentation
with 0, e.g., 

0 0 0
0 0 1
0 0 0
1 0 0
0 1 0


[
a b c
d e f
g h i

]
=


0 0 0
g h i
0 0 0
a b c
d e f

 . (27)

Since the complicated matrix operations can be avoided, the
complexity of multiplying I:,Qi

with (HH
:,Qi

H:,Qi
)−1 turns

out to be negligible. On the other hand, due to the fact that
the K × q matrix I:,Qi(H

H
:,Qi

H:,Qi)
−1 is essentially operated

by the q×q nonzero matrix in it (i.e., all the other columns in
it are 0), the computational complexity of multiplying it with
HH

:,Qi
can be reduced to q2N . Subsequently, as the K × N

matrix I:,Qi
(HH

:,Qi
H:,Qi

)−1HH
:,Qi

contains K − q zero rows,
the computational complexity of multiplying it with (y−Hxk)
can be reduced as NK+qN . Overall, the total computational
complexity of the proposed NRIDA can be reduced to q3 +
qN + 2q2N + KN , which is O(KN) given the choice of
q =

√
K.

Here, we point out that at each of iteration in NRIDA
only q elements of x are updated according to (25). For this
reason, to achieve a fair comparison with other low-complexity
iterative detection schemes, a full iteration which contains
K/q iterations is employed by NRIDA. Consequently, with
q =

√
K, this leads to the complexity O(K1.5N) of a full

iteration, which is competitive compared to other iterative
detection schemes in both theoretic and simulation results.
Note that both K/q and q are integers in practice.

Overall, the operations of the proposed NRIDA for uplink
large-scale MIMO systems is summarized in Algorithm 1.
Typically, the loop between step 1 and 6 denotes a full iteration
of NRIDA, which contains K/q times random iteration of
(25). For a better understanding, the related complexity com-
parison of various low-complexity iterative detection schemes
is presented in Table I, where k denotes the number of full
iteration. Clearly, besides the global convergence, consider-
able computational complexity is also saved by the proposed
NRIDA without incurring the preprocessing about the matrix
multiplication of HHH.

IV. CONVERGENCE ANALYSIS

In this section, the convergence of the proposed NRIDA is
investigated in terms of the statistic mean squared error (MSE),
where the globally exponential convergence is demonstrated in
detail. Meanwhile, the choice of the sampling distribution D
for the random iteration is also studied.

A. Globally Exponential Convergence

To start with, considering the full column rank channel
matrix H,1 the multiplication Hw with vector w ∈ CK is
0 if and only if w = 0. Therefore, it is clear to see that the
matrix HHH is positive definite because of

wHHHHw = (Hw)HHw > 0 for w ̸= 0. (28)

Clearly, since HHH is also symmetric, it is essentially a
positive definite Hermitain matrix.

Then, given the symmetric positive definite matrix HHH,
we define matrix V ∈ CK×K as

VV = HHH, (29)

where V can be easily calculated based on eigenvalue matrix
and eigenvector matrix [31].2 Besides, since V is symmetric
as well, the following relationship holds

VV = VVH = VHV. (30)

Next, based on the matrix V, we have the following result,
where the symmetric matrix Z ∈ CK×K is defined by

Z ≜ I:,Qi(H
H
:,Qi

H:,Qi)
−1IH

:,Qi
. (31)

Theorem 2: As for the uplink large-scale MIMO detection,
let Sk = H:,Qi be sampled randomly according to the
distribution D, the proposed NRIDA based on (25) converges
by

E[∥V(xk − x∗)∥2] ≤ ρk∥V(x0 − x∗)∥2 (32)
1Note that a full column rank channel matrix H is a general configuration

for MIMO detection, otherwise the solution for x will not be unique. For
example, any two UEs can not have the same channel responses in scale,
e.g., hi ̸= αhj , α is a constant.

2V is applied to depict the convergence process of NRIDA but its
computation is not needed in the implementation of NRIDA.
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with globally exponential convergence rate

ρ = 1− λmin(HHHE[Z]) < 1. (33)

Proof: According to (31), the random iteration in (25)
can be rewritten as

xk+1 = xk + ZHHH(x∗ − xk), (34)

which is further expressed as

xk+1 − x∗ = (I− ZHHH)(xk − x∗). (35)

Next, for a better presentation, by denoting rk = xk − x∗,
we have

∥V(xk − x∗)∥2 = ∥Vrk∥2 (36)

= rH
k VHVrk

(a)
= rH

k−1(I− ZHHH)HVHV(I

− ZHHH)rk−1

=rH
k−1(V −VZHHH)H(V

−VZHHH)rk−1

=rH
k−1(V

HV −VH

VZHHH−HHHZHVHV

+ HHHZHVHVZHHH)rk−1

(b)
= rH

k−1(V
HV −VHVZHHH)rk−1. (37)

Here, the equality (a) holds due to (35), the equality (b) comes
from the fact

ZHVHVZ = Z (38)

and VHV = HHH.
On the other hand, based on law of total probability (i.e.,

E[E[A|B]] = E[A]), it follows that

E[∥Vrk∥2] = E[E[∥Vrk∥2|rk−1]]. (39)

Then, based on (37), we have

E[∥Vrk∥2|rk−1] = E[rH
k−1(V

HV −VHVZHHH)rk−1]

= E[rH
k−1(V

HV −VHVZVHV)rk−1]

= E[rH
k−1V

H(I−VZVH)Vrk−1]

= E[⟨(I−VZVH)Vrk−1,Vrk−1⟩]
= ⟨(I−VE[Z]VH)Vrk−1,Vrk−1⟩
≤ ∥I−VE[Z]VH∥ · ∥Vrk−1∥2
(c)
= λmax(I−VE[Z]VH)∥Vrk−1∥2

= (1− λmin(VE[Z]VH))∥Vrk−1∥2

= (1− λmin(VVHE[Z]))∥Vrk−1∥2

= (1− λmin(HHHE[Z]))∥Vrk−1∥2

= ρ∥Vrk−1∥2, (40)

where the change in (c) from operator norm into spectral radius
holds because of the symmetry of I−VE[Z]VH .

Subsequently, by simply substituting (40) into (39), we can
arrive at

E[∥V(xk − x∗)∥2] = E[E[∥V(xk − x∗)∥2|rk−1]]

≤ ρE[∥V(xk−1 − x∗)∥2]
≤ · · ·
≤ ρkE[∥V(x0 − x∗)∥2]
= ρk∥V(x0 − x∗)∥2 (41)

where x0 is set as an initial setup.
Meanwhile, given the full rank matrix H as well as the full

row rank matrix HH
:,Qi

, the expectation of symmetric matrix
Z can be demonstrated to be positive definite as

E[Z]=
r∑

i=1

piI:,Qi
(HH

:,Qi
H:,Qi

)−1IH
:,Qi

=

(
r∑

i=1

p
1
2
i I:,Qi(H

H
:,Qi

H:,Qi)
− 1

2 (HH
:,Qi

H:,Qi)
− 1

2 IH
:,Qi

p
1
2
i

)
= (IJ)(JIH)

= J2 (42)

with the invertible matrix J ∈ CK×K , i.e.,

J=diag(p
1
2
1 (HH

:,Q1
H:,Q1)

− 1
2, . . . ,p

1
2
r (HH

:,Qr
H:,Qr )

− 1
2), (43)

which is block diagonal.
Therefore, because of the symmetric positive definite matrix

E[Z], it follows that

λmin(E[Z]) > 0. (44)

Since HHH is also symmetric positive definite, we can get
λmin(HHHE[Z]) > 0 so as to

ρ = 1− λmin(HHHE[Z]) < 1, (45)

thus completing the proof.
From Theorem 2, the proposed NRIDA converges to the

desired detection solution x∗ of (6) in an exponential way.
Note that the convergence of NRIDA is always ensured
(i.e., ρ < 1), making it well fitted to the various scenarios
of large-scale MIMO systems. Typically, to make sure the
approximation error of the proposed random iteration smaller
than a certain value

E[∥V(xk − x∗)∥2] ≤ ϵ∥V(x0 − x∗)∥2 (46)

with 0 < ϵ < 1, the iteration number k should satisfy

k ≥ 1
1− ρ

log
(

1
ϵ

)
, (47)

where the inequality ln(1 − δ) < −δ for 0 < δ < 1 is
employed. Hence, a tractable random iteration can be achieved
by flexibly adjusting k. Note that a better choice of x0 also
enables a positive impact upon the convergence in (32) so that
a closer choice of x0 to the detection solution x∗ is preferable
for the proposed NRIDA.

B. The Choice of Sampling Distribution D
As for the choice of the sampling distribution D in (23),

a natural solution is to apply the uniform distribution, where
the following result can be obtained.

Corollary 1: With Gk = H:,Qi
following the uniform

sampling probability
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TABLE I
COMPARISON OF VARIOUS LOW-COMPLEXITY ITERATIVE DETECTION SCHEMES

pi =
1
r
, (48)

the proposed NRIDA converges by

E[∥V(xk − x∗)∥2] ≤ ρk
uniform∥V(x0 − x∗)∥2 (49)

with

ρuniform = 1− 1
r
·min

i

{
λmin(HHH)

λmax(HH
:,Qi

H:,Qi
)

}
. (50)

Proof: To start with, from (42), we can obtain that

λmin(HHHE[Z]) = λmin(HHHJ2)
(d)

≥ λmin(HHH)λmin(J2)
(51)

where the inequality (d) holds due to λmin(EF) ≥
λmin(E)λmin(F) for positive definite matrices E, F. Mean-
while, according to (43), it follows that

J2=diag(p1(HH
:,Q1

H:,Q1)
−1, . . . ,pr(HH

:,Qr
H:,Qr )

−1). (52)

Then, given the uniform sampling probability pi = 1/r,
we have

λmin(J2) =
1
r
· 1
λmax(HH

:,Qi
H:,Qi

)
, (53)

Therefore, based on (51) and (53), the convergence rate ρ in
(33) is upper bounded by

ρ = 1− λmin(HHHE[Z])

≤ 1− λmin(HHH)λmin(J2)

≤ 1− 1
r
·min

i

{
λmin(HHH)

λmax(HH
:,Qi

H:,Qi
)

}
= ρuniform, (54)

which completes the proof.
According to Corollary 1, the convergence rate depends on

the block size q (i.e., q = K/r = |Qi|) as well as the partition
of H denoted by H:,Qi . To further investigate this point,
an alternative sampling choice is presented in the following.

Corollary 2: With Gk = H:,Qi
following the sampling

probability

pi =
∥H:,Qi

∥2F
∥H∥2F

, (55)

the proposed NRIDA converges by

E[∥V(xk − x∗)∥2] ≤ ρk
norm∥V(x0 − x∗)∥2 (56)

with

ρnorm = 1− α · λmin(HHH)
Tr(HHH)

, (57)

where

α ≜ min
i

{
Tr(HH

:,Qi
H:,Qi

)
λmax(HH

:,Qi
H:,Qi)

}
≥ 1. (58)

Proof: Considering the sampling probability pi in (55),
because of ∥B∥2F =

∑m
i

∑n
j |bi,j |2 = Tr(BHB), we have

λmin(J2) =
1

Tr(HHH)
min

i

{
Tr(HH

:,Qi
H:,Qi

)
λmax(HH

:,Qi
H:,Qi)

}
=

α

Tr(HHH)
, (59)

with α ≥ 1 due to

Tr(A) =
∑

i

λi(A) ≥ λmax(A) ≥ λmin(A). (60)

Then, according to (51) and (59), the convergence rate ρ in
(33) is upper bounded by

ρ ≤ 1− α · λmin(HHH)
Tr(HHH)

= ρnorm, (61)

completing the proof.
From (58), the coefficient α ≥ 1 is chiefly determined

by the block size q (i.e., |Qi|). More specifically, it is clear
to see that α = 1 if q = 1 while a larger size α can be
achieved with the increment of q. Therefore, the convergence
gain by the block operation can be confirmed explicitly. On the
other hand, because the matrix HHH is symmetric positive
definite, all its eigenvalues are larger than 0, which means
the global convergence ρ < 1 still holds under the sampling
probabilities in (48) and (55). Meanwhile, from Corollary
2, it is clear to see that the convergence rate ρnorm heavily
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Fig. 1. Convergence comparison of NRIDA in 64× 128 large-scale MIMO
systems.

relies on the condition number of the matrix HHH (i.e.,
κ = λmax(HHH)/λmin(HHH)), where a smaller κ is highly
desired for a better convergence performance.

For a better understanding, in Fig. 1, the convergence rates
ρuniform and ρnorm in the proposed NRIDA with both sampling
probabilities in (48) and (55) are illustrated in a Monte Carlo
way, where 64× 128 large-scale MIMO systems are applied.
Here, for the sake of efficient computation, in both uniform
and norm sampling distributions the partition is carried out in
a forward sequential order, namely,

H:,Q1=[h1, . . . ,hq], . . . ,H:,Qr
=[h(r−1)q+1, . . . ,hK ]. (62)

In this way, the impact of partitioning H is removed from
the comparison. Nevertheless, further optimization still can
be made by seeking for the optimal partition in the expense
of extra computational complexity. On one hand, both the
convergence of NRIDA are nearly the same, making the
uniform sampling a promising choice due to simplicity. On the
other hand, as expected, with the increment of the block
size q = 2, 4, 8, 16, 32, both the convergence become better
gradually.

V. CONVERGENCE ENHANCEMENT

In this section, to improve the convergence performance,
the concept of conditional sampling is introduced to the
random iteration in the proposed NRIDA. By well exploiting
it, a derandomized-like iteration can be achieved for both
better convergence and efficiency.

A. Enhancement by Conditional Sampling

In particular, define the conditional sampling probability in
the proposed NRIDA as

pi ≜ D(Gk = H:,Qi |Gk−1 = H:,Qj ), i ̸= j

=
pi

1− pj
, i ̸= j, (63)

where the last sampling choice Gk−1 is taken into account
at the current sampling of Gk. Clearly, by doing this, the

sampling choice Gk = H:,Qj
given Gk−1 = H:,Qj

will be
avoided, which effectively improves the sampling diversity.
In what follows, we show that more convergence gain can be
obtained from the application of conditional sampling.

Typically, according to the condition sampling probability
pi in (63), the conditional expectation of Z based on the last
sampling choice Gk−1 = H:,Qj

turns out to be

E[Z|Gk−1] =
r∑

i=1,i̸=j

piI:,Qi
(HH

:,Qi
H:,Qi

)−1IH
:,Qi

=

 r∑
i=1,i̸=j

p
1
2
i I:,Qi(H

H
:,Qi

H:,Qi)
− 1

2 (HH
:,Qi

H:,Qi)
− 1

2 IH
:,Qi

p
1
2
i


= (IJ)(JI

H
), (64)

which is still symmetric positive definite. Here, matrix
I ∈ CK×(K−q) is a partition of the identity matrix
I by removing the related columns in the index set
Qj , matrix J ∈ C(K−q)×(K−q) takes the form J =
diag(p

1
2
1 (HH

:,Q1
H:,Q1)

− 1
2 , . . . , p

1
2
j−1(H

H
:,Qj−1

H:,Qj−1)
− 1

2 , p
1
2
j+1

(HH
:,Qj+1

H:,Qj+1)
− 1

2 , . . . , p
1
2
r (HH

:,Qr
H:,Qr

)−
1
2 ).

Based on E[Z|Gk−1] in (64), the globally exponential
convergence of conditional random iteration in the proposed
NRIDA can be easily demonstrated. Note that the related proof
is omitted here, and more details can be found in Theorem 2.

Theorem 3: As for the uplink large-scale MIMO detection,
let Gk = H:,Qi

be sampled randomly according to the
conditional sampling probability pi in (63), the proposed
NRIDA converges by

E[∥V(xk − x∗)∥2] ≤ ρ∥V(xk−1 − x∗)∥2 (65)
with globally exponential convergence rate

ρ = 1− λmin(HHHE[Z|Gk−1]) < 1. (66)

We then show that the proposed NRIDA with conditional
sampling probability pi has a better convergence performance
than that with sampling probability pi.

Corollary 3: With the conditional sampling probability pi

in (63), the proposed NRIDA has a better convergence per-
formance than that with the sampling probability pi in (23)
because of a smaller upper bound of the convergence rate.

Proof: On one hand, the convergence rate under the
conditional sampling probability pi is upper bounded as

ρ = 1− λmin(HHHE[Z|Gk−1])

≤ 1− λmin(HHH)λmin(J
2
)

≤ 1−min
i

{
pi ·

λmin(HHH)
λmax(HH

:,Qi
H:,Qi

|i ̸= j)

}
. (67)

On the other hand, the convergence rate with sampling prob-
ability pi is upper bounded as

ρ = 1− λmin(HHHE[Z])

< 1−min
i

{
pi ·

λmin(HHH)
λmax(HH

:,Qi
H:,Qi)

}
. (68)
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TABLE II
ILLUSTRATION OF THE CONVERGENCE RATE UPPER BOUND

Therefore, it is clear to see that ρ has a smaller upper bound
than ρ by

min
i

{
pi

λmax(HH
:,Qi

H:,Qi
|i ̸= j)

}
>min

i

{
pi

λmax(HH
:,Qi

H:,Qi
)

}
,

(69)

where λmax(HH
:,Qi

H:,Qi |i ̸= j) ≤ λmax(HH
:,Qi

H:,Qi) and pi >
pi can be verified in a straightforward way.

B. Extension by Multi-Step Conditional Sampling

To further exploit the convergence gain brought by con-
ditional sampling, more previous sampling results can be
taken into account so that the multi-step conditional sampling
probability in the proposed NRIDA is defined as

pf
i ≜ D(Gk = H:,Qi

|Gk−1, . . . ,Gk−f ) (70)

with H:,Qi /∈ {Gk−1, . . . ,Gk−f}, where 1 ≤ f ≤ r −
1 indicates the length of the multi-step conditional sampling.
Clearly, the conditional sampling probability pi in (63) can be
viewed as a special case of pf

i with f = 1. According to the
multi-step conditional sampling probability pf

i , we arrive at
the following result, and the proof is omitted for the sake of
simplicity.

Theorem 4: As for the uplink large-scale MIMO detection,
let Gk = H:,Qi

be randomly sampled following the condi-
tional sampling probability pf

i in (70), the proposed NRIDA
converges by

E[∥V(xk − x∗)∥2] ≤ ρf∥V(xk−1 − x∗)∥2 (71)
with globally exponential convergence rate

ρf = 1− λmin(HHHE[Z|Gk−1, . . . ,Gk−f ]) < 1. (72)

Based on Theorem 3, the convergence gain of multi-step
conditional sampling can be verified as follows. Here, the
proof is omitted where the related details can be found in
Corollary 3.

Corollary 4: With the increment of 1 ≤ f ≤ r−1, the con-
vergence of the proposed NRIDA with multi-step conditional
sampling probability pf

i in (70) improves gradually due to a
smaller upper bound of convergence rate.

According to Corollary 4, we can see that the smallest upper
bounded of the convergence rate is obtained when f = r−1 is
applied. More specifically, given Gk−1, . . . ,Gk−r+1, k > r−
1, we have

ρr−1 = 1− λmin(HHHE[Z|Gk−1, . . . ,Gk−r+1])

Fig. 2. BER performance versus average SNR per bit for 16×128 large-scale
MIMO with 16-QAM.

≤ 1− λmin(HHH)
λmax(HH

:,Qi
H:,Qi

)
(73)

with H:,Qi
/∈ {Gk−1, . . . ,Gk−r+1}. Interestingly, under the

f = r − 1 steps conditional sampling, only one sampling
choice is left for Gk when k > r − 1, which makes the
sampling about Gk become deterministic. Undoubtedly, this
is greatly beneficial to the implementation in practice since
the process of random sampling can be effectively avoided
without any performance loss, thus leading to a more efficient
iteration. Hence, for the consideration of better convergence
and efficiency, multi-step conditional sampling with f =
r− 1 is highly recommended in the proposed NRIDA, which
simply replaces pi (23) in step 3 of Algorithm 1 with pf

i in
(70).

For a better understanding, as shown in Table II, the
convergence rate upper bounds of NRIDA with different q
and f in 64 × 128 large-scale MIMO systems are presented
in a Monte Carlo way. Clearly, with the increase of the
multiple steps of the conditional sampling (i.e., f ), a better
convergence performance can be obtained by NRIDA with
uniform sampling probability, which is accordance with the
results of Corollary 3 and 4.

VI. SIMULATIONS

In this section, the detection performance and complexity
of the proposed NRIDA for uplink large-scale MIMO systems
are investigated by simulations.

In Fig. 2, the bit error rate (BER) performance of the
proposed NRIDA is illustrated in 16× 128 large-scale MIMO
systems with 16-QAM. In particular, NRIDA-uniform and
NRIDA-norm denote the proposed NRIDA with sampling
probabilities in (48) and (55) respectively, and NRIDA-f rep-
resents NRIDA with f = r−1 multi-step conditional uniform
sampling. Meanwhile, the initial vector x0 = 0 is applied, the
block size is set as q = 4. Also, for a fair comparison, k is
the number of full iteration for NRIDA in this simulation part.
Clearly, as can be seen from Fig. 2, the BER performance of
all the NIRDA schemes improve gradually with the increment
of full iterations, which is accordance with the convergence

Authorized licensed use limited to: Southeast University. Downloaded on February 27,2024 at 03:44:50 UTC from IEEE Xplore.  Restrictions apply. 



5102 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 9, SEPTEMBER 2023

Fig. 3. BER performance versus average SNR per bit for 32×128 large-scale
MIMO with 16-QAM.

Fig. 4. BER performance versus average SNR per bit for 32×128 large-scale
MIMO with the imperfect CSI using 16-QAM.

results given in Theorem 2 and 4. More specifically, the
proposed NRIDA with sampling probabilities in (48) and (55)
have nearly the same BER performance, which is in line with
the convergence rates provided in Fig. 1. Since the uniform
sampling is more straightforward to implement, it is more
preferable for NRIDA compared to the sampling choice in
(55). On the other hand, as expected, the proposed NRIDA
with f = r − 1 multi-step conditional sampling significantly
outperforms those with random sampling probabilities. To be
more specific, the detection performance of near-MMSE can
be obtained by NRIDA-f with k = 2. This implies a faster
convergence, which has been explained in Corollary 4. Note
that the complexity cost of each iteration in NRIDA-f is also
less than NRIDA-uniform or NRIDA-norm as the sampling
becomes derandomized gradually.

In Fig. 3, the BER performance comparison between the
proposed NRIDA and other iterative detection schemes are
presented with respect to 32×128 large-scale MIMO systems
with 16-QAM. Apart from MMSE detection scheme, the
traditional iterative detection schemes such as Jacobi itera-
tion in [9], Richardson iteration in [19] with the relaxation

factor ω = 1/(N + K), Gauss Seidel iteration in [11],
successive over-relaxation (SOR) iteration in [32] with the
relaxation factor ω = 2

1+
√

1−[ϱ(I−D−1A)]2
are also employed.

Meanwhile, the randomized iterative detection schemes like
RIDA and MRIDA in [22] are applied as well for a better
comparison. To make a fair comparison, the block sizes in
RIDA, MRIDA and NRIDA are set as q = 8 with the initial
setup x0 = 0. In particular, with the same full iteration number
k = 3, the proposed NRIDA with uniform sampling achieves
a better BER performance than RIDA with uniform sampling.
Meanwhile, NRIDA with f = r− 1 multiple step conditional
sampling has a comparable BER performance with MRIDA,
and both of them outperform other iterative detection schemes
like Jacobi, GS and SOR. Note that NRIDA has a much
lower computational complexity than MRIDA by removing
the preprocessing stage, making it a better choice in uplink
signal detection.

Fig. 4 is presented to illustrate the BER performance of the
proposed NRIDA without the perfect channel state information
(CSI) in 32× 128 large-scale MIMO systems using 16-QAM.
In particular, Ĥ = H + ∆H denotes imperfect CSI at the
receiver, where ∆H ∼ CN (0, σ2

eIN ) represents the channel
estimation errors with σ2

e = K
np·Ep

[33]. Here, np and Ep

respectively stand for the number and power of pilot symbols,
and we apply σ2

e = 0.1 in the simulation. Compared with the
detection performance under perfect CSI in Fig. 3, the BER
performance of detection schemes with imperfect CSI decline
accordingly in Fig. 4. Nevertheless, the performance gain of
NRIDA with f = r − 1 multi-step conditional sampling still
can be verified.

Furthermore, in Fig. 5, the BER performance comparison
based on the common pilot channel estimation is shown with
respect to 32 × 128 large-scale MIMO systems using 16-
QAM. In particular, we consider a pilot matrix X composed
of K columns of the τ × τ discrete Fourier transform (DFT)
operator and we set τ = 32. Based on it, the model of
channel estimation is formulated as Yp = HX + Wp where
Wp and Yp denote the noise matrix and the receive signal
matrix during the training period respectively. Then, the classic
least-squares (LS) channel estimate Ĥ = YpXH(XXH)−1 is
applied as the imperfect channel state information (CSI) with
the estimation errors ∆H = Ĥ−H = WpXH(XXH)−1 [34],
[35], [36]. Similar to the imperfect CSI case in Fig. 4, the
BER performance of all detection schemes in Fig. 5 are
degraded compared to the perfect case in Fig. 3. This is easy
to understand as the errors ∆H in channel estimation are also
taken into account. Nevertheless, the BER performance of the
proposed NRIDA is easy to confirm, which is due to a faster
convergence performance during the iteration process.

Apart from the independent, identically distributed (i.i.d.)
Rayleigh channels, the correlated channels of large-scale
MIMO systems are also studied to illustrate the conver-
gence performance of NRIDA. Typically, following the con-
figurations in [37] and [38], the correlated channel matrix
R

1
2
corHT

1
2
cor is applied with the normalized correlation coef-

ficient 1 ≥ ψ ≥ 0, where Rcor ∈ CN×N and Tcor ∈
CK×K represent the receive and transmit correlation matrices
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Fig. 5. BER performance versus average SNR per bit for 32×128 large-scale
MIMO using 16-QAM with common pilot based channel estimation.

Fig. 6. BER performance versus average SNR per bit for 32×128 large-scale
MIMO using 16-QAM with ψ = 0.05.

respectively, i.e.,

Rcor =


1 ψ ψ4 · · · ψ(N−1)2

ψ 1 ψ · · ·
...

ψ4 ψ 1 · · · ψ4

...
...

...
. . . ψ

ψ(N−1)2 · · · ψ4 ψ 1

 ,

Tcor =


1 ψ ψ4 · · · ψ(K−1)2

ψ 1 ψ · · ·
...

ψ4 ψ 1 · · · ψ4

...
...

...
. . . ψ

ψ(K−1)2 · · · ψ4 ψ 1

 .

Specifically, an uncorrelated scenario entails ψ = 0 and a
completely correlated case corresponds to ψ = 1. Intuitively,
with ψ = 0.05 in Fig. 6, the BER performance of all the
detection degrade accordingly compared to the results given
in Fig. 3. On one hand, it is clear to see that iterative detection
schemes like Jacobi and Richardson fail to converge as they are
not globally convergent. In contrast to them, detection schemes

Fig. 7. BER performance versus average SNR per bit for 32×128 large-scale
MIMO using 16-QAM with ψ = 0.1.

Fig. 8. BER performance versus average SNR per bit for 32×128 large-scale
MIMO using 16-QAM under local scattering spatial correlation model with
σφ = 10◦.

based on random iteration enjoy the global convergence so
that their convergence are still guaranteed. More specifically,
under the same full iteration, the proposed NRIDA with
f = r − 1 multi-step conditional sampling achieves the
comparable BER performance with MRIDA. As expected,
with the increase of iterations, both of their performance
improve accordingly. Meanwhile, the similar observations can
also be found in Fig. 7 with ψ = 0.1, where the channel matrix
is getting more correlated. In this case, the BER performance
of MMSE detection becomes worse, and the proposed NRIDA
with f = r−1 multi-step conditional sampling still works due
to its global convergence. However, because of the correlated
channel matrix, the convergence performance of NRIDA-f is
slower than before. Nevertheless, by increasing the iteration
number k, the detection performance of near-MMSE still can
be achieved by the proposed NRIDA.

To further illustrate the proposed NRIDA in correlated
channel models, Fig. 8 is presented to show the BER per-
formance comparison in a 32 × 128 uncoded MIMO system
with 16-QAM under local scattering spatial correlation model
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Fig. 9. BER performance versus average SNR per bit for 32×128 large-scale
MIMO using 16-QAM under local scattering spatial correlation model with
σφ = 20◦.

in [39]. In particular, in the local scattering spatial correlation
model, the uniformly distributed deviations are applied with
θ ∼ U [−

√
3σφ,

√
3σφ], and we set the angular standard

deviation (ASD) σφ = 10◦, where the correlation matrices are
normalized with matrix trace equaling to N = 128. As can be
seen clearly in Fig. 8, under local scattering spatial correlation
model, the proposed NRIDA still outperforms the traditional
iterative detection schemes by a better BER performance.
Meanwhile, with the increment of the full iteration number k,
the BER performance of NRIDA improves gradually, which
is in line with the results derived in Theorem 2 and 4. On the
other hand, compared to the i.i.d. Gaussian channel model
shown in Fig. 3, we can observe that the BER performance
of all the detection schemes including MMSE, NRIDA and
so on degrade accordingly. This is due to the fact that more
channel correlation are introduced by the local scattering
spatial correlation model. To make it clear, Fig. 9 is added
as a complement, where the angular standard deviation is set
as σφ = 20◦. Clearly, with the increase of σφ, the spatial
channel correlation of the local scattering spatial correlation
model is reduced gradually, so that the BER performance of all
the detection schemes in Fig. 9 are better than those in Fig. 8.
Meanwhile, as expected, the performance gain of the proposed
NRIDA still can be found while near-MMSE performance can
be achieved by simply increasing the iteration number.

In Fig. 10, the BER performance comparison about the pro-
posed NRIDA is extended to 64×128 large-scale MIMO sys-
tems with 4-QAM. Clearly, the antenna ratio N/K decreases,
which imposes a higher requirement upon the detection
schemes. Nevertheless, detection schemes like RIDA, MRIDA
and NRIDA still work, and their BER performance gradually
improve with the increase of iterations. Here, the block size
of them are set as q = 8 with initial setup x0 = 0.
Meanwhile, the detection schemes based on the steepest
descent method in [40] and the conjugate gradient (CG)
iterations in [41] are also applied for a better comparison.
Compared to the detection cases 16 × 128 in Fig. 2 and
32 × 128 in Fig. 3, more iterations are needed to achieve

Fig. 10. BER performance versus average SNR per bit for 64×128 large-s-
cale MIMO with 4-QAM.

Fig. 11. BER performance versus average SNR per bit for 64×128 large-s-
cale MIMO using 4-QAM under local scattering spatial correlation model
with σφ = 15◦.

the near-MMSE detection performance. This is straightforward
to interpret since less receive diversity can be exploited with
the increment of K. As a complement of Fig. 10, the BER
performance comparison in a 64×128 large-scale MIMO using
4-QAM is illustrated in Fig. 11 under local scattering spatial
correlation model with angular standard deviation σφ = 15◦.
Specifically, the uniformly distributed deviations are applied
with θ ∼ U [−

√
3σφ,

√
3σφ], and the correlation matrices

are normalized with matrix trace equaling to N = 128.
Clearly, because of the introduced channel correlation by local
scattering spatial correlation model, both the BER performance
of NRIDA and MMSE degrade accordingly compared to
their counterparts in Fig. 10. Nevertheless, due to the global
convergence, the proposed NRIDA still works as usual, and
its BER performance improves gradually with the increment
of the full iteration number k.

In order to study the choice of the block size q in NRIDA,
Fig. 12 is given to show the BER performance of different
choices of q in 64 × 128 large-scale MIMO systems with
4-QAM. Typically, the choices q = 1, 8, 16, 32 are applied
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Fig. 12. BER performance versus average SNR per bit for 64×128 large-s-
cale MIMO with 4-QAM.

Fig. 13. Complexity comparison in flops for K × 128 large-scale MIMO
using 16-QAM at SNR per bit = 7dB.

while the number of iterations for NRIDA is set as k = 3.
As can be seen, with the improvement of size q, both the
BER performance of NRIDA-uniform and NRIDA-f improve
gradually. This is easy to understand since a larger q means
more components of x are updated each time, where the
correlations between components of x can be further exploited.
As explained before, this accounts for a better convergence
performance, which is accordance with the results shown in
Table II. However, according to the random iteration in (25),
a larger size q also accounts for more computational cost.
Therefore, there is a latent trade-off between the convergence
and complexity with respect to the choice of q, and how to
well balance such a trade-off will be one of our work in future.

To illustrate the computational cost of the proposed NRIDA,
Fig. 13 is presented to show the complexity compari-
son in flops among different iterative detection schemes.
Here, the method of flops evaluation that we used comes
from [42]. Specifically, the large-scale MIMO system with
N = 128 received antennas is applied using 16-QAM at
SNR per bit = 7dB, and the simulation is performed on the
platform of MATLAB R2021a on a computer, with a processor

at 2.8GHz and 16GB RAM. Meanwhile, the block size of
RIDA, MRIDA and NRIDA are set as q = 8 with initial setup
x0 = 0. As can be seen clearly, with the improvement of
K, the complexities measured by flops of all the detection
schemes grow gradually. This is easy to understand as a
higher system dimension improves the difficulty of the signal
detection problem in large-scale MIMO systems.

As demonstrated, we can see that the proposed NRIDA
with f = r − 1 multi-step conditional sampling achieves the
smallest computational cost among them. This is because the
random iteration in the proposed NRIDA is designed to work
for the detection model in (1) directly without incurring the
matrix multiplication about HHH. Different from NRIDA,
the iterations in GS, RIDA and MRIDA are designed for
the linear system in (7) so that considerable computational
complexity have to be paid in the preprocessing stage for
matrix multiplication. To make it more specific, both the
complexity costs of preprocessing and iteration in GS, RIDA
and MRIDA are depicted in Fig. 13. Clearly, the preprocessing
stage takes a significant part in running GS, RIDA and
MRIDA. Note that the preprocessing of MRIDA has a higher
complexity cost than those of GS and RIDA, which is because
an extra approximated diagonal matrix needs to be computed
in MRIDA. Interestingly, the proposed NRIDA still achieves
a lower complexity cost than RIDA and MRIDA even the
preprocessing of them are not taken into account, making the
proposed NRIDA perspective in the uplink large-scale MIMO
signal detection due to a better detection trade-off.

VII. CONCLUSION

In this paper, a new randomized iterative detection algo-
rithm (NRIDA) is proposed for large-scale MIMO systems.
By adopting the random iteration directly into the detection
model, considerable complexity cost is saved by the proposed
NRIDA without the preprocessing stage for the problem trans-
formation. Meanwhile, we also demonstrate that the proposed
NRIDA achieves a globally exponential convergence, making
it a promising choice in the uplink signal detection. Besides,
the possible complexity reduction of NRIDA is presented
while the choices of the sampling distributions in NRIDA are
also investigated as well. In addition, to further enhance the
convergence performance, the concept of conditional sampling
is introduced into the proposed NRIDA, where significant
gains in both convergence and complexity can be obtained.
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