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Abstract— In this paper, the cross-layer optimization problem
of access point selection (APS) and beamforming (BF) in cell-free
network (CFN) with local CSI is studied, where constraints of
per AP power and the number of active APs are considered.
Such a joint APS&BF optimization problem is modeled as a
mixed-integer nonlinear programming (MINP) problem aiming
at maximizing the sum rate of the whole system. Fractional pro-
gramming (FP)-based and alternating optimization (AO)-based
algorithms with weighted l1-norm approximation are proposed
to solve this MINP problem. However, the latter performs better
than the former, with higher complexity. A lightweight multi-
head single-body graph neural network (MHSB-GNN) algorithm
is proposed, where the nodes and structures are innovatively
designed. The MHSB-GNN benefits from the different node
updating modules for different user equipment (UE), which
introduce extra prior information into the graph and mine
specific information of different UEs. Moreover, the equivalence
between GNN and FP-based algorithm is proved to provide
interpretability and theoretical guarantees for MHSB-GNN. The
analysis of convergence and complexity validates the accuracy
and effectiveness of the FP and AO-based algorithms. Leveraging
the existing APS and BF solver, it is shown that the three
proposed algorithms guarantee comparable performance as the
exhaustive search algorithm in performance and complexity.

Index Terms—User-centric cell free network, cross-layer opti-
mization, AP selection, beamforming, MINP, GNN.

I. INTRODUCTION

Communication networks never stop evolving, whether in
the past, present, or future. The fifth generation (5G) can
no longer meet the data transmission rate requirements of a
fully digitalized world. As a result, academia and industry
are motivated to start innovative research to shape the vi-
sion of future sixth generation (6G) networks that are well
summarized in [1], [2]. Cell-free network (CFN) is one of
the novel network technologies of 6G since this architecture
offers high spectral efficiency (SE) and coverage probability
required in 6G [3], [4]. However, with the existence of a
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large number of fronthaul links, significant interference, and
high synchronization requirement, non-coherent user-centric
CFN is applied to overcome these challenges by selecting
the serving access points (APs) for each user equipment (UE)
without sacrificing too much performance [5], [6].

To ensure the effective deployment of user-centric CFN,
the design of AP selection (APS) in the control layer and
beamforming (BF) in the physical layer is one of the chal-
lenging problems [7]. Jointly designing APS and BF brings
better performance than separately designing APS and BF
because the decoupled issues cannot ensure the optimality
of the APS&BF problem [7]–[11]. However, the cross-layer
optimization problem of APS&BF is a mixed-integer nonlinear
programming (MINP) problem, which is NP-hard. Solutions
for the MINP problem benefit from these studies of joint
design of base station clustering and BF in communication
systems [12]–[14]. Exhaustive search (ES) and Branch and
bound (B&B), which are usually treated as baselines, can
obtain the optimal solution of MINP problem [15]–[18].
However, the complexity of ES and B&B is exceptionally high
because they traverse the feasible domain of every possible
integer variable.

To further decrease the computational complexity of algo-
rithms, researchers investigate suboptimal solutions to solve
the MINP problem. A key point to solve the MINP problem
is the transformation of the integer variables. Smoothed l0-
norm approximation [13] and reweighted l1 transform [19]
are effective transforms to make the MINP problem a common
continuous optimization problem. Then the rest beamforming
design can be solved by typical algorithms, e.g., weighted
minimum mean squared error (WMMSE) [20], fractional
programming (FP) algorithms [21] and convex-concave proce-
dure (CCP) [13], [22]. However, these sub-optimal solutions
trade the performance for ease of implementation. Besides,
the direct form FP-based algorithm in [23], [24] adds a
significant complexity burden by introducing an additional
convex subproblem in each iteration, where such an introduced
subproblem still needs to be solved iteratively.

Recently, machine learning [25] has demonstrated great
potential in solving the communication problems, such as
channel estimation [26], beamforming [27], [28], beam track-
ing [29] and so on. The primary research area is learning-to-
optimize, which aims to exhibit promising results with afford-
able computational complexity [30]. The most straightforward
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way to implement learning-to-optimize is end-to-end learning,
where the input-output mapping of the optimization problem
is learned directly. Some classic architectures of DNN (i.e.,
fully connected networks (FCNs) and convolutional neural
networks (CNNs)) achieve near-optimal performance by either
supervised learning or unsupervised learning. For the joint
APS&BF problem, the authors in [31], [32] proposed to train
a DNN by unsupervised learning or supervised learning to
achieve the near-optimal sum-rate in CFN. Note that the
works [31], [32] treat the optimization problems as a black
box and thus lack interpretability. Moreover, although these
classic architectures achieve near-optimal performance and fast
execution on small-scale wireless networks, the performance
is not guaranteed when the number of samples for training
is reduced. For example, the authors in [33] verify that the
number of training samples for FCNs/CNNs is huge when
such networks are able to achieve comparable performance.

Researchers model the wireless system as a graph to address
the above issues and develop the graph neural network (GNN).
Specifically, researchers in [34] proposed a GNN-based algo-
rithm to design beamforming in an intelligent reflecting sur-
face (IRS) system by learning the mapping from the received
pilots to beamforming vectors and reflecting coefficients. In
[33], the authors give the theoretical underpinnings and design
guidelines when GNN is applied to communications and
prove the equivalence between message passing GNN and
iterative optimization algorithms. Researchers in [35] present
an unsupervised GNN structure to finish the joint beam
selection and link activation in ultra-dense device-to-device
(D2D) mmWave communication networks. Different from the
FCNs/CNNs, the adopted GNNs in [33]–[36] incorporate the
prior domain knowledge (i.e., the network topology informa-
tion) of wireless networks by modeling the UE/AP as the node
and the interference relationship between UEs as the edge
of the graph. This kind of modeling approach increases the
interpretability of the NNs. Another remarkable property of
GNN is permutation invariant that the outputs of GNN are
regardless of the indices of the inputs. Moreover, [33] proves
the advantages in the scalability and sample efficiency of
GNNs over FCNs/CNNs theoretically. One main issue of the
above GNN-based approaches is that they are not applied to
large-scale systems because the increased network size makes
it harder to train GNNs.

Distributed implementation of GNNs helps GNNs be ap-
plied to multi-cell systems and reduces the interaction over-
head among cells. In [37], researchers propose a distributed
GNN-based approach for IRS-enhanced cell-free MIMO net-
works by learning the mapping from the local channels to
beamformers and reflecting coefficients. Researchers in [38]
propose a novel communication-efficient distributed Auto-
GNN architecture to reduce computation and information ex-
change burdens. Researchers in [32] propose a novel scheme,
distributed learning for uplink cell-free massive MIMO beam-
forming, which can achieve multi-AP cooperation without
explicitly estimating their CSI. Since this distributed imple-
mentation of the network architecture requires local channel
information and statistical interference channel information as
inputs, this ensures the application of GNNs in large-scale

systems. However, these applications are essentially one-AP-
to-one-UE service relationships, and there is no way to solve
the problem of multi-AP-to-multi-UE beamforming design in
non-coherent transmission CFNs.

This paper aims to jointly design APS&BF with the power
constraint and the number of received data streams per UE.
Motivated by the advantages of the distributed GNN-based
algorithm over the centralized GNN-based algorithm, we pro-
pose APS&BF schemes with local CSI. This paper proposes
two optimization-based approaches and one learning-based
approach to design APS&BF with local CSI jointly. We adopt
non-coherent transmission to ensure synchronization as in our
published conference paper [39]. Each UE adopts successive
interference cancellation (SIC) to decode the singles. As in
[37], [38], the joint APS&BF design in this work is based
on local CSI, which brings lower interaction overhead and
practicality. Different from [34], [37], the GNN-based beam-
forming design scheme studied in this paper is suitable for
multi-cell multi-AP multi-UE scenarios. To summarize, the
major contributions of this paper are outlined as follows:

1) Three algorithms are proposed to design APS&BF with
local CSI, which brings lower interaction overhead. FP-based
and alternating optimization (AO)-based algorithms are de-
rived based on the weighted l1-norm approximation, Lagrange
dual transform, and quadratic transform.

2) This paper also proposes a novel multi-head single-body
structure GNN-based (MHSB-GNN) algorithm and proves the
equivalence between GNN and FP-based algorithms, providing
interpretability and theoretical guarantees for MHSB-GNN.
In this work, we innovatively model the beams as nodes of
the graph and treat the neighboring group as another kind of
node, providing the inter-group interfering information. The
critical design of MHSB-GNN lies in the fact that the node
updating modules belonging to different users are different,
which not only introduces more priori information into the
graph structure but also mines specific features of different
users.

3) FP and AO-based algorithms’ effectiveness and accuracy
are demonstrated via convergence and complexity analysis.
Simulations and theoretical analysis show that the proposed
MHSB-GNN algorithm performs better than the FP-based
algorithm with comparable complexity in terms of sum rate
for APS&BF design. Moreover, both algorithms have the same
order of magnitude of running time.

The rest of the paper is organized as follows. Section
II introduces the system model and the problem formula-
tion. Section III provides the details of FP and AO-based
algorithms. Section IV describes the proposed MHSB-GNN
scheme for the joint APS&BF design. Section V provides the
simulation results. Finally, conclusions are drawn in Section
VI.

Notations: Lower case letters x denotes scalars. Lower
case bold-faced letters a denote column vectors. Upper case
bold-faced letters A denote matrices. The operators (· )T and
(· )H correspond to the transpose and Hermitian transpose,
respectively. The real and imaginary parts of a complex
number x are denoted by <(x) and =(x), respectively. CN (· )
denotes complex Gaussian distribution. ‖· ‖p denotes the p-
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parametrization of one vector and E {· } denotes expectation.
O (·) is the big-O computational complexity notation. 1j is
equal to

√
−1. Finally, 0L denotes the all-zero vector of

dimension L.

II. SYSTEM MODEL FOR CELL FREE MISO SCENARIO

A. Network Model

!"#

$"

#%
&'()*+,

&'()*+-&'()*+.

&'()*+/

&'()* 0

Fig. 1. Cooperation AP clusters for different UE groups in a user-centric
cell-free network.

As shown in Fig. 1, we consider a time division duplex
(TDD) downlink non-coherent1 cell-free system, including K
APs with Nt antennas and M single-antenna UEs distributed
arbitrarily in the scenario. APs are divided into L groups. Each
UE selects the AP group relying on the average distance from
the UE to the APs in one group. For ease of derivation, we
assume that each group has the same number of UEs and APs.
Each group has a central processing unit (CPU), which is re-
sponsible for the AP cooperation. In each group, different APs
send different data streams to one UE, and UEs share the same
serving APs. Mathematically, letMl = {1, . . . ,m, . . . ,M/L}
be the UE set of group l and Il = {1, . . . , i, . . . ,K/L} be the
candidate AP set of group l. Set L denotes the group set.

The block fading channel between AP i and UE m is
denoted as hmi = βmigmi. The channel power βmi =
ΨmiPL (dmi) follows the large-scale fading characteristic
describing the shadowing Ψmi and path loss PL (dmi), where
dmi is the 3-dimensional (3D) distance between i-th AP
and m-th UE. The elements of small-scale fading gmi are
drawn from independent and identical distribution (i.i.d.) with
CN (0, 1).

Let wmi ∈ C1×Nt be the beamforming vector between i-
th AP and m-th UE. Let binary variable si ∈ {0, 1} be the
selecting decision on whether AP i serving UE m or not,
si = 1 indicates AP i serves UE m, and si = 0, otherwise.
Thus, the received signal at UE m is denoted as

ym =
∑

i∈Il
si
∑

n∈Ml

hmiw
H
nixni+∑

l′ 6=l

∑
j∈I

l
′
sj
∑

n∈M
l
′
hmjw

H
njxnj + nm,

(1)

1 Considering non-coherent transmission can avoid the problem of syn-
chronization in CFN [9].

where xmi is the signal and nm is the additive white Gaussian
noise (AWGN), with noise power E

{
nmn

H
m

}
= σ2. The right-

hand side of (1) includes the desired signal of UE m, inter-
group interference, and intra-group interference.

B. Problem Formulation

According to the sum rate formula of non-coherent trans-
mission [40], the achievable data rate at UE m,m ∈ Ml in
l-th group can be expressed by

rm = log2

(
1 +

Am
B1,m −Am + B2,m + σ2

m

)
, (2)

where Am =
∑
i∈Il si

∣∣hmiwH
mi

∣∣2 , i ∈ Il, B1,m =
∑
i∈Il si∑

n∈Ml

∣∣hmiwH
ni

∣∣2 and the inter-group interference B2,m =∑
j∈I

l
′ sj

∑
n∈M

l
′

∣∣hmjwH
nj

∣∣2 , l′ 6= l.
This paper aims at maximizing the downlink weighted sum

rate (WSR) at the UE side through the cross-layer optimization
of beamforming matrix W = {wmi} ,∀m ∈Ml,∀i ∈ Il, l ∈
L and AP selecting matrix S = {si} ∈ {0, 1}|Il| ,∀i ∈ Il, l ∈
L.

Mathematically, the problem can be formulated as follows:

(P0) max
W,S

L∑
l=1

∑
m∈Ml

δmrm,

s.t. si ∈ {0, 1} , (3a)∑
m∈Ml

‖wmi‖22 ≤ Pmax, ∀i ∈ Il, l ∈ L, (3b)∑
i ∈ Ilsi ≤ N, ∀l ∈ L, (3c)

where δm is the prior weight of UE m and Pmax is the
maximum transmission power per AP. (3c) limits the number
of serving APs for UE m because the ability to decode
different streams for one UE is always limited [40].

Intuitively, the optimal solution of (P0) can be obtained with
centralized algorithms with global instantaneous CSI. Note
that the centralized algorithms result in significant interaction
overhead between CPUs. Moreover, the centralized learning-
based schemes result in high training overhead for NN, as
the large scale of the communication system leads to a
significant increase in the size of NN. In order to reduce the
overhead and ensure the algorithms applicable to large-scale
communication systems, we transform the centralized problem
(P0) requiring global CSI into a distributed APS&BF design
problem requiring local instantaneous CSI.

First, we propose a two-timescale frame structure, as shown
in Fig. 2. The time is divided into several frames, and
each frame consists of Ts time slots. The channel statistics,
including UEs’ location, remains unchanged during several
frames [41]. Based on this premise, the statistical interference
CSI remains constant throughout the frame and is exchanged
by different groups at the beginning of each frame τ . The local
instantaneous CSI is obtained at the beginning of each time
slot. For UE m,m ∈ Ml in the current l-th group, the local
instantaneous CSI is the channel from the i, i ∈ Il-th AP to the
m,m ∈Ml-th UE of the current l-th group, denoted as hmi.
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The statistical interfering CSI is the statistical channel from the
j, j ∈ Il′ -th AP of the l

′
, l
′ 6= l-th group to the m-th UE from

the l-th group, denoted as Rmj = E
{
hH
mjhmj

}
∈ CNt×Nt .

We impose an extra effective power constraint∑
n∈M

l
′ Tr

(
wnjw

H
nj

)
≤ Pj , j ∈ Il′ on each AP. This

extra power constraint is exactly the per-AP power constraint
(3b) in (P0). In this case, imposing an extra power constraint
will not lose optimality. With the above power constraint,
we derive a lower bound r̊m for the actual data rate rm
by replacing the inter-group interference B2,m with an
interference upper bound in (2). The lower bound r̊m only
depends on the channel statistics of the cross-links and the
local CSI within group l. Then the following lemma is
derived.

! ! !!
! !!

"!" # $ ! !!
! " !" # $

!"#$%

&'$%()*+,

-./0#12% ,0%(

),#,'),'/#*(

'1,%"3%"%1/%(456

78,#'1(,0%(*+/#*(

'1),#1,#1%+9)(456('1(

%#/0(2"+9:40#11%* /+0%"%1/%

,'$%

Fig. 2. An illustration of two-timescale frame structure to obtain instantaneous
partial CSI and outdated CSI.

Lemma 1: (Lower Bound of Data Rate) Suppose that the
upper bound of each AP power is

∑
n∈M

l
′ Tr

(
wnjw

H
nj

)
≤

Pj . A lower bound of the achievable rate of user m is given
by

r̊m = log

(
1 +

Am
B1,m −Am + B2,m + σ2

m

)
, (4)

and

B2,m =
∑

j∈I
l
′
sj
∑

n∈M
l
′

Tr
(
wnjRmjw

H
nj

)
, (5)

where Rmj = E
{
hH
mjhmj

}
∈ CNt×Nt is the covariance

matrix of the interfering channel hmj .
Proof: Please refer to Appendix A for the proof. �
By replacing the original optimization function with the

lower bound of the sum rate, the centralized modeled problem
(P0) can be approximated by the distributed modeled problem
in l-th group as follows,

(P1) max
W,S

∑
m∈Ml

δmr̊m,

s.t. (3a), (6a)∑
m∈Ml

‖wmi‖22 ≤ Pmax, ∀i ∈ Il, (6b)∑
i∈Il

si ≤ N. (6c)

Simulations results in Fig. 3 also show that the gap between
the ”Actual Data Rate” obtained by solving (P0) and the ”Best

Data Rate” obtained by solving (P1) is narrow. The detailed
simulation setup is given in Section V. Therefore, The lower
rate bound r̊m in Lemma 1 is a good approximation of the
actual rate rm.

Fig. 3. Cumulative distribution function (CDF) of the data rate obtained from
150 channel samples with AO-based alg.

Note that the approximate data rate r̊m only depends on
the local channels hmi, i ∈ Il and the statistical interference
channels Rmj = E

{
hH
mjhmj

}
, j ∈ Il′ . Solving (P1) is

challenging as it is a NP-problem. The non-linear fractional
structure and the binary variable si make (P1) a mixed-integer
non-linear programming problem. Additionally, from (6b) and
(6c), different si and wmi for UE m strongly influences the
AP selection and beamforming design for other UEs.

C. Problem Transformation

Assume Wi = [w1i, . . .wmi, . . . ],m ∈ Ml. Without loss
of generation, if AP i serves UE m, i.e., Wi must exist
and si = smi = 1 holds. si = smi holds as the UEs in
one group select the same AP set. Naturally, the relationship
between si and Wi is constructed as si =

∥∥∥‖Wi‖22
∥∥∥
0

[13].
However, the equivalent problem is still challenging because
of the discontinues l0-norm. The reweighted l1-norm is a
smooth function that can approximate l0-norm. Assume a
vector x = [x1, . . . , xi, . . . , xI ], xi ∈ R and a diagonal matrix
α = diag{α1, . . . , αi, . . . , αI}, αi > 0. The l0-norm of x
is approximated by the reweighted l1-norm of x as ‖x‖0 ≈∑
i αi|xi| [19]. Based on the above approximation operation

and ‖Wi‖22 is a scalar. Then we get
∥∥∥‖Wi‖22

∥∥∥
0
≈ αi ‖Wi‖22,

where αi is computed as

αi =
1

‖Wi‖22 + ε
=

1∑
m∈Ml

‖wmi‖22 + ε
, (7)

where ε > 0 keeps αi away from being infinity. The smaller
ε, the better the approximation of l1-norm to l0-norm. Usually
ε is set to 10−6, which results in negligible error on the
achievable data rate. After relaxation of the binary variable
si, Problem (P1) is reformulated as

(P2) max
W

fo (W) ,

s.t. (6b), (8a)∑
i∈Il

αi ‖Wi‖22 ≤ N, (8b)
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with

fo =
∑
m∈Ml

δm log

(
1 +

Ao
m

Bo1,m −Ao
m + Bo2,m + σ2

m

)
, (9)

whereAo
m =

∑
i∈Il

∣∣hmiwH
mi

∣∣2, Bo1,m =
∑
i∈Il

∑
n6=m,n∈Ml∣∣hmiwH

ni

∣∣2, and Bo2,m =
∑
j∈I

l
′

∑
n∈M

l
′ Tr

(
wnjRmjw

H
nj

)
.

III. JOINT OPTIMIZATION OF AP SELECTION AND
BEAMFORMING

This section proposes AO and FP-based algorithms to
solve the transformed problem (P2) . Then, these algorithms’
optimality, convergence, and complexity analysis are also
provided.

A. Direct Solution

First, the AO-based alg2 is introduced. After transforming
the MINP problem into a general continuous problem, the
multi-dimensional quadratic transform (Theorem 2 in [23]) is
introduced to directly transform each SINR term in fo (W)
into the sum form. Then the problem (P2) is rewritten as
follows,

(P3) max
W,Y

fd (W,Y) , (10a)

s.t. (6b), (8b)

where fd is the new objective of problem (P2), as shown in
(11) with Bom = Bo1,m + Bo2,m.

An auxiliary variable ymi is introduced concerning each
pair, and the collection of auxiliary variable {ymi} ,m ∈
Ml, i ∈ Il is denoted by Y. When Y is fixed, the problem
(P3) is convex about wmi. ymi and wmi can be optimized
in an iterative form. The optimal ymi for fixed wmi can be
computed by ∂fd/∂ymi = 0. The result is

y∗mi =
(
σ2
m + Bom −Ao

m

)−1
wmih

H
mi. (13)

Then, the rest of the optimization problem for finding the
optimal wmi under fixed ymi is convex, which can be solved
by the interior-point method [42]. By alternately optimizing
ymi and wmi, a local optimum of (P3) can be obtained. This
approach is referred as the alternating optimization (AO)-based
algorithm. The AO-based alg is outlined in Algorithm 1.

2 For ease of presentation, ”Alg” and ”alg” stand for ”Algorithm” and
”algorithm” in the paper.

Algorithm 1 Iterative AO-based algorithm for APS&BF
Input: Initialize α, W and S to feasible

values,
1: t: Iteration Index, starting with t = 1.
2: ε: The maximum tolerance, ε > 0.
3: while

∣∣∣fo (W)
(t+1) − fo (W)

(t)
∣∣∣ > ε do

4: update Y(t+1) according to (13) with W(t),
5: update W(t+1) by solving problem (P3) over fixed

Y(t+1) with MATLAB toolbox CVX,
6: update α(t+1) according to (7) with W(t+1),
7: set t = t+ 1,
8: end while
Output: Beamforming Matrix W and selecting matrix S .

B. Closed Form Solution

As the complexity of AO-based alg shows exponential
growth with the number of users and APs, we introduce a low-
complexity scheme, FP-based alg. Each iteration of FP-based
alg is performed in closed form rather than numerically solving
a convex optimization problem. Lagrange dual transform [23]
[24] is introduced to convert the sum logarithm structure in
fo (W) into the sum of ratio form fγ (γ,W) by introducing
multipliers γ = {γm} ,∀m ∈ {1, . . . ,M}, as shown in (12).

When wmi is fixed, fγ (γ,W) is convex about multi-
plier γm, and optimal γm can be computed through setting
∂fγ/∂γm = 0. Therefore, the optimal γm is as follows,

γ∗m =
Ao
m

Bom −Ao
m + σ2

m

. (14)

After γ is solved, there is only one variable left. (12) is
a multi-dimensional sum-of-ratio form, which can be recon-
structed by a multi-dimensional quadratic transform [23]. By
treating (1 + γm)Ao

m as the numerator and Bom + σ2
m as the

denominator, respectively, (12) is rewritten as fq (γ,W,Y),

fq =
∑
m∈Ml

δm [log(1 + γm)− γm] + fp (γ,W,Y) , (15)

with fp (γ,W,Y),

fp =
∑
m∈Ml

2
√
δm(1 + γm)

∑
i∈Il

<
{
yH
miwmih

H
mi

}
−∑

m∈Ml

∑
i∈Il

|ymi|2
(
σ2
m+Bom

)
,

(16)

where an auxiliary variable ymi is introduced with re-
spect to each pair, and the collection of auxiliary variable
{ymi} ,∀m ∈Ml,∀i ∈ Il is denoted by Y.

fd =
∑
m∈Ml

δmlog

(
1 + 2

∑
i∈Il

<
{
yH
miwmih

H
mi

}
−
∑
i∈Il

|ymi|2
(
σ2
m + Bom −Ao

m

))
. (11)

fγ (γ,W) =
∑

m∈Ml

δm [log2(1 + γm)− γm] +
∑

m∈Ml

δm (1 + γm)
Ao
m

Bom + σ2
m

. (12)
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Thus, the objective function is transformed from fγ to fq .
Then, the problem (P2) is reformulated as follows,

(P4) max
γ,W,Y

fq (γ,W,Y) , (17a)

s.t. (6b), (8b)

After the update of γ in (14), the left two variables, Y
and W, need to be optimized. Firstly, we assume other vari-
ables are fixed except Y, which can be explicitly determined
through solving ∂fq/∂ymi = 0. Therefore, the optimal ymi
is computed as follows,

y∗mi =
(
σ2
m + Bom

)−1√
δm(1 + γm)hmiw

H
mi. (18)

Until now, only one variable W is left. When the other two
variables are fixed, the reconstructed objective fq (γ,W,Y)
with constraints (3b) (8b) about wmi is a classic con-
vex quadratic optimization problem. Unlike the AO-based
alg, wmi is solved by an efficient closed-form method.
The Lagrangian form of (15) is derived by introducing
two Lagrangian multipliers, ηi ≥ 0 and λ ≥ 0, related
to per AP power constraint and number of receiving data
streams constraint, respectively. Then the final form of fq is
Lfq (γ,W,Y),

Lfq =
∑
m∈Ml

δm [log(1 + γm)− γm] +
∑
m∈Ml

fp (wmi)

−
∑
i∈Il

ηi

(
M∑
m=1

‖wmi‖22 − Pmax

)

− λ

(∑
i∈Im

αi
∑
m∈Ml

‖wmi‖22 −N

)
.

(19)

Let ∂Lfq/∂wmi = 0, the optimal wmi can be derived as
follows,

w∗mi =

 ∑
n∈Ml

∑
j∈Il

hHniynjy
H
njhni+(ηi+λαi)I

−1
√
δm (1 + γm)

(
hmiy

H
mi

)
.

(20)

Note that multipliers ηi and λ need to be solved, and these
two constraints cannot be tight simultaneously. According to
complementary slackness, one of these two multipliers must
be zero. Hence, at each iteration, a heuristic algorithm is
designed, where if constraint (6b) can be satisfied, ηi = 0;
otherwise, λ is initialized with a non-zero value, and ηi is
determined by bisection search to meet (6b). The proposed
FP-based algorithm is outlined in Algorithm 2.

C. The Optimality, Convergence and Complexity of AO-based
and FP-based Algorithms

The two proposed traditional schemes can only guarantee
a high-quality suboptimal solution to the original problem
(P1). The reasons are as follows. First, to transform the
original problem (P1) to the more tractable problem (P2),
we relax the binary variables si by approximating the l0-
norm with the l1-norm, thus leading to a performance loss.
Second, for the AO-based alg, the transformed problem (P2)

Algorithm 2 Iterative Closed Form FP-based algorithm for
APS&BF

Input: Initialize W and S to feasible val-
ues,

1: t: Iteration index, starting with t = 1.
2: ε: The maximum tolerance, ε > 0.
3: while

∣∣∣fo (W)
(t+1) − fo (W)

(t)
∣∣∣ > ε do

4: compute γ(t+1) according to (14) with W(t),
5: compute Y(t+1) according to (18) with γ(t+1) and

W(t),
6: compute W(t+1) according to (20) with γ(t+1) and

Y(t+1),
7: determine

{
η
(t+1)
i , λ(t+1),∀m ∈M

}
through the

heuristic algorithm, as described in the paragraph after
(20),

8: update α(t+1) according to (7) with W(t+1),
9: set t = t+ 1,

10: end while
Output: Beamforming matrix W and selecting matrix S.

is solved by applying the quadratic transformation and CVX
techniques in the alternating optimization framework. Thus,
only a locally optimal solution can be guaranteed. Third,
for the FP-based alg, the transformed problem (P2) is also
solved in the alternating optimization framework. Unlike AO-
based alg, FP-based alg is solved by introducing Lagrange
dual transform and quadratic transform techniques, which
guarantees a locally optimal solution. Generally, both AO-
based and FP-based algorithms are high-quality suboptimal
solutions to the original problem (P1).

1) AO-based alg: The AO-based algorithm is essentially a
block coordinate ascent algorithm for the reformulated prob-
lem (P3), which is a convex optimization problem due to the
concave-convex form of (P2), so it converges to a stationary
point (w∗mi,Y

∗) of (P3). According to C3 and C2 in [23], the
first-order condition on wmi for (P3) under the optimal Y∗ is
the same as for the original problem (P1). Hence, the algorithm
also converges to a stationary point of (P1). Condition C3
in [23] guarantees that the sum-of-functions-of-ratio value is
nondecreasing after every updating of Y∗.

The main complexity of the AO-based algorithm lies in
steps 4 and 5 in Algorithm 1. Assume Titer is the number
of iterations of alg. Specifically, the complexity of step 4
is O

(
|Ml|2 |Il|2Nt

)
. In step 5, (P3) can be solved by the

interior-point method, whose complexity is O
(
N3.5
t |Ml| |Il|

)
[42]. Therefore, the total complexity of AO-based alg is
O
(
Titer

(
N3.5
t |Ml| |Il|+ |Ml|2 |Il|2Nt

))
.

2) FP-based alg: The FP-based algorithm is non-decreasing
in the objective function (12) within each iteration. The non-
decreasing convergence can be proven by considering the
following chain of reasoning going from iteration t to t+ 1:

fo(W
(t))

(a)
= fγ(W(t),γ(t))

(b)

≤ fγ(W(t),γ(t+1)) (21a)
(c)
= fq(W

(t),γ(t+1),Y(t)) (21b)
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(d)

≤ fq(W
(t),γ(t+1),Y(t+1)) (21c)

(e)

≤ fq(W
(t+1),γ(t+1),Y(t+1)) (21d)

(f)
= fγ(W(t+1),γ(t+1))

(g)
= fo(W

(t+1)), (21e)

where (a) holds because the reformulated objective function
fγ equals to the original function fo when the optimal γ
is substituted; (b) derives from the fact that the update of
γ with other fixed variables maximizes fγ ; (c) follows the
similar step as (a); From the fact that the update of Y or
W with other fixed variables maximizes fq , (d) or (e) can be
derived; Both (f) and (g) follow the similar steps as (c) and (a),
respectively. So far, the objective function fo has been proven
non-decreasing because the function fo is bounded. Thus,
the FP-based algorithm converges, and the original objective
function fo arrives at a local optimum.

The main computational complexity of the FP-based al-
gorithm lies in steps 4-7 in Algorithm 2. Specifically, the
computational complexity of steps 4-6 is O

(
|Ml|2 |Il|2Nt

)
.

The complexity of computing the neighboring interference
is O (|Ml| |Il|L). In step 7, the complexity of search-
ing for Lagrangian multiplier ηi is O (log2 θ). There-
fore, the total complexity of the FP-based algorithm is
O
(
Titer

(
|Ml|2 |Il|2Nt + |Il| log2 θ

)
+ |Ml| |Il|L

)
.

IV. GRAPH NEURAL NETWORK ARCHITECTURE DESIGN

These two conventional algorithms require iterative op-
timization, especially AO-based alg, which incurs a high
computational complexity. Although FP-based alg has low
computational complexity, it is inferior to AO-based alg in
terms of WSR performance. This section proposes a machine
learning-based scheme where each group applies APS&BF
alg independently with local CSI and statistical interference
CSI. In the following subsections, the graph representation
will be introduced first. Then, the structure of the proposed
distributed machine learning algorithm, and network training
will be elaborated. Finally, the equivalence between GNN and
FP-based algorithm is proved.

A. Graph Presentation for Cross-Layer Optimization Problem

!!"! !!"# !!"$

!#"! !#"#

<." ,#$"+1(+"')"

<."+3%-4#=)4&89+3%-"45"4"%6"+"')"+
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>
>
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Fig. 4. Graph Modeling of Cell Free Networks, G = {V1, V2, E1, E2, E3}.

The proposed MHSB-GNN-based beamforming design
aims to map the local instantaneous CSI, the historical inter-
ference CSI, the transmit power, and the interference power
to the beamforming vectors. The GNN in previous research is
responsible for the single-cell single-AP-to-multi-UE beam-
forming design, where UEs and APs are modeled as nodes

[33], [43]. This paper aims to solve the single-cell multi-
AP-to-multi-UE beamforming problem, which differs from
the previous research. We innovatively model the beams as
nodes and other neighboring groups as another kind of nodes,
providing an intuitive representation of the beam-to-beam
relationship. This graph representation is suitable for single-
cell multi-AP-to-multi-UE beamforming design, which helps
the algorithm’s distributed implementation and makes it more
suitable for large-scale scenarios.

As Fig. 4 shows, we model the current group l as a graph
G = {V1, V2, E1, E2, E3}. There are |V1| beam nodes denoted
as V1 = {vm,i|m ∈Ml, i ∈ Il}, representing the transmission
of each beam for each UE. The beam node feature vector
is denoted as zmi ∈ R1×2Nt . The beam node representation
vector is denoted as xmi ∈ R1×2Nt . We also introduce another
|V2| = L − 1 neighboring group nodes, V2 =

{
vl′ |l

′ 6= l
}

,
whose feature vector is denoted as zl′ ∈ R1×1. If two beam
nodes belong to one user, there is no intra-group interference
edge between them; otherwise, there is a bidirectional intra-
group interference edge ami,nj , n 6= m between them. The
edges bmi,l′ from the neighboring group nodes to beam
nodes are inter-group interference edges. The beam nodes
contain the representation vectors to be updated, which is
the output of MHSB-GNN. The neighboring group nodes
do not have representation vectors to be updated, and they
provide information for updating the beam nodes. Modeling
the neighboring group nodes without representation vectors
can reduce the computational size of the GNN and also save
the training overhead of the GNN. Such graph representation
makes GNN a lightweight network and more suitable for large-
scale systems.

B. Structure Design for Multi-Head Single-Body GNN

In this subsection, we will introduce the architecture of
the proposed MHSB-GNN in detail. MHSB-GNN aims to
encode all valuable information of corresponding nodes in
these representation vectors xmi. The overall network consists
of one initial module, TNN node updating modules and one
normalization module, as illustrated in Fig. 5 (on the next
page) and described as follows,

1) Initial module: The inputs of the initial module include
the current group CSI, the statistical interference CSI, AP
transmitting power, and noise power. Specifically, the inputs
are beam node feature zmi ∈ R1×2Nt , i ∈ Sl,m ∈ Ml,
neighboring group node feature zl′ ∈ R1×1, l

′ 6= l, edge
features ami,nj , n 6= m, j 6= i, and bmi,l′ , l

′ 6= l. To
compute the data rate easily during the training phase, we
simply separate the channel into the real and imaginary parts,
denoted as zmi = vec

[
(<{hmi})T, (={hmi})T

]
, ami,nj =

vec
[
(<{hmj})T, (={hmj})T

]
, zl′ = Pmax, and bmi,l′ =

[. . . , vec (<{Rmj} ,={Rmj}) , . . . ], j ∈ Il′ .
For each beam node vm,i, the node feature zmi is processed

by a shared initial network, denoted as finit, expressed as
x
(0)
mi = finit (zmi). Similarly, for the intra-group interfering

edge, the edge feature ami,nj is processed by the same initial
network, expressed as emi,nj = finit (ami,nj). For the inter-
group interfering edge, the node feature and edge feature
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Fig. 5. Overall GNN architecture with one initialization module, TNN node updating modules, and one normalization module.

zl′bmi,l′ are processed by another initial network, denoted

as f
′

init, expressed as emi,l′ = f
′

init

(
Pmaxbmi,l′

)
, where the

input dim of f
′

init is different from that of finit and the output
dim of f

′

init is equal to that of finit.
2) Node updating module: The initialized feature vectors

are passed to the TNN node updating modules to update the
representation vectors xmi. TNN is a hyper-parameter. Each
node updating module contains two blocks: the aggregation
and combination blocks. The update of the representing vec-
tor x

(t)
mi, t = 1, . . . , TNN at the t-th module is based on

combining its previous representation x
(t−1)
mi , the aggregation

of the previous presentations x
(t−1)
nj , (n, j) 6= (m, i) of its

neighboring nodes, the aggregation of its neighboring edges
features emi,nj , n 6= m, and the aggregation of the features
emi,l′ , l

′ 6= l from the neighboring group nodes V2.
One key in designing GNN is to design an effective node

updating module so that the GNN can achieve comparable
performance. A multi-head single-body (MHSB) structure
is designed to serve as the node updating module. Each
aggregation block has two branches, namely neighboring node
feature aggregation branch f

(t)
m,node and edge feature aggre-

gation branch f
(t)
m,edge. The combination block is denoted as

f
(t)
m,com. Note that the aggregation and combination blocks

corresponding to different UEs are different, while the beam
nodes belonging to the same UE share the same aggregation
and combination blocks. Using different blocks for different
UEs helps mine the different features of UEs. The different
features of UEs mean the distance information and the in-
terference information. While for the nodes of the same UE,
the shared neural network can exploit the similarity between
beams. We refer to this kind of structure as multi-head single-
body structure. Another key in designing GNN is to choose
a suitable pooling function so that the GNN is scalable and
generalizes well. We choose the element-wise mean function,
represented by meannj , as the pooling function PLnj because
it is invariant to the permutation of the inputs. The aggregation
blocks are described as follows.

Fig. 6 demonstrates an efficient implementation of the ag-
gregation block in MHSB-GNN for node vmi, which consists
of two components as described in (22) and (23). In (22) and
(23), x(t−1)

mi , N(t)
mi and E

(t)
mi represent the representation vector

of the mi-th node in the t−1-th module, the embedding vectors

N
(t)
mi = PLnj

(
f
(t)
m,node

(
x
(t)
nj , |W

(t)
m,1

))
= meannj

(
f
(t)
m,node

(
x
(t−1)
nj , |W(t)

m,1

))
, n 6= m,n ∈Ml, j ∈ Il (22)

E
(t)
mi =PLnj

(
f
(t)
m,edge

(
bmi,nj |W(t)

m,2

))
= meannj

(
f
(t)
m,edge

(
bmi,nj |W(t)

m,2

))
, n 6= m,n ∈Ml, j ∈ Il (23)

wmi =

{
Pmax

Xsum

(
x
(TNN)
mi [1 : Nt] + 1j × x

(TNN)
mi [Nt+ 1 : 2Nt]

)
x
(TNN)
mi [1 : Nt] + 1j × x

(TNN)
mi [Nt+ 1 : 2Nt]

Xsum > Pmax,

other,
(24)
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of node features and edge features, respectively. The difference
in the aggregation blocks for different UEs is reflected in the
fact that the weights of their block are different, while the
aggregation methods are the same, as shown in (22) and (23).
By applying the element-wise mean function, the beam node
obtains equal information from the other beam nodes. Besides,
the features from the previous module are concatenated to
retain the previous information.
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Fig. 6. The t-th updating module for mi-th node.

After aggregating the neighboring node features and neigh-
boring edge features, the next part is the combining network,
denoted as x

(t)
mi = f

(t)
m,com

(
x
(t−1)
mi ,N

(t)
mi,E

(t)
mi|W

(t)
m,3

)
. The

difference in the combination blocks for different UEs is
reflected in the fact that the weights of their block are
different, while the combination methods are the same. After
multiple node updating modules, the representation vectors of
beam nodes contain sufficient information for designing the
beamforming vectors.

3) Normalization Module: The last module is the nor-
malization module. After TNN node updating modules, the
representation vectors are passed to a normalization layer to
produce the beamforming matrix wmi, which ensuring the per
AP power constraints on wmi,m ∈ Ml. Representation vec-
tors belonging to the i-th AP are normalized together, wmi =

fnorm

(
x
(TNN)
1i , . . . ,x

(TNN)
mi , . . .

)
, ∀m ∈ Ml. Specifically,

wmi is computed as (24), where Xsum =
∑
m∈Ml

∥∥∥x(TNN)
mi

∥∥∥2
2
.

The above is the entire MHSB-GNN structure. This struc-
ture has the following advantages. First, GNN increases the
interpretability of the network because the modeling of the
graph considers the priori information of the communication
system, e.g., interference relations. Second, GNNs can gener-
alize so that when the number of users changes, there is no
need to retrain the network, and the trained network remains
usable. Because when the number of users becomes small, the
trained network invokes the relevant sub-modules to compute
the representation vectors based on the number of users. We
will demonstrate this advantage in the later experiments as
well. The third advantage, also the core innovation of this
network structure, is to design different node updating modules

for beam nodes of different users. The network not only mines
the unique features of the beams belonging to different users
but also mines the similar features of the beams belonging
to the same user. We introduce a comparison network in the
later simulations, SGNN, with the same updating modules
for all nodes. Please refer to the simulation section for the
specific settings. The experiments demonstrate that the MHSB-
GNN with different updating modules performs better than
the SGNN with the same updating module regarding the same
FLOPs and approximate running time.

C. Network Training

During the whole training process, the proposed MHSB-
GNN is trained to adjust its parameters to maximize the lower
bound of WSR by unsupervised learning with an Adam opti-
mizer. The training samples and testing samples are generated
by different channel realizations. The loss function is chosen
to align with the objective function in (P2), denoted as

floss = − 1

B

B∑
b=1

∑
m∈Ml

δmr̊m, (25)

where B is the batch size.
The proposed MHSB-GNN-based algorithm for cross-layer

APS&BF design is outlined in Algorithm 3. The overall end-
to-end training allows the network to design the beamforming
matrix with the local instantaneous CSI and statistical interfer-
ence CSI. Noting that the training phase is completed offline,
the computational complexity is less of a concern.

Algorithm 3 MHSB-GNN algorithm for cross-layer APS&BF
design

1: At the beginning of the τ -th frame, FP and AO-based
algorithms are used to design the active AP set S and the
beamforming vectors of the τTs + 1-th time slot;

2: During the following time slots τs, beamforming vectors
are computed according to the pre-trained MHSB-GNN.

D. Theoretical Proof

The machine learning-based alg is responsible for beam-
forming in the short term. APS is operated at the beginning
of each frame.

Theorem 1: For any algorithm in distributed message pass-
ing (DMP), there exists a GNN that solves it.

Proof: This result is proved by following Theorem 2 in
[33]. �

Theorem 2: FP-based algorithm is a DMP algorithm.
Proof: Please refer to Appendix B for proof. �
Corollary 1: There exists a GNN that can solve problem

(P2) without AP selecting variable S.

V. NUMERICAL RESULTS

In this section, we provide performance evaluation for
the proposed algorithms in comparison with the benchmark
methods.
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Fig. 7. Coverage plot of proposed algorithms.

TABLE I
SIMULATION SETTINGS

Description Value Description Value

Simulation Area 1.5km×1.5km Bandwidth 10MHz

AP/UE distribution unif. rand. AP PSD −47dBm/Hz

AP/UE antenna height 12/2m Noise PSD −169dBm/Hz

Carrier frequency 2GHz σsd 8dB

Coherence bandwidth 200kHz Nt 4

A. Simulation Setup

1) CFN Setting: Consider L = 5 groups and K/L = 5 APs,
M/L ∈ {1, 2, 3, 4} UEs in each group. The group-to-group
distance is 800m. APs and UEs are randomly placed in each
group with a minimum distance 50m from each other. The
maximum transmit power spectrum density (PSD) for APs is
−47dBm/Hz, and the background noise PSD is −169dBm/Hz
over 10 MHz bandwidth [44]. The channel model is set as
[44]: 1) Large-scale fading coefficients include path loss PL =
−30.5−36.7 log10 (dmi) and uncorrelated shadow fading with
standard deviation σsd; 2) Rayleigh channel fading with zero
mean and unit variance. The simulation settings are reported
in Tab. I.

2) FP/AO: APS&BF is designed by FP-based and AO-based
algorithms with local CSI.

3) MHSB-GNN: Active AP set is determined by FP-based
algorithm, and then BF is designed through Algorithm 3 with
local CSI. MHSB-GNN is a 4-module network, including
one initial module, TNN = 2 node updating modules, and
one normalization module. The sub-networks of MHSB-GNN
are summarized in Tab. II. The MHSB-GNN is trained for
100 epochs, and the optimizer is Adam, with the initial
learning rate set to 1, decayed by 10 every 20 epochs. The
batch size B is set to 100. After randomly generating the
locations of APs and UEs, we generate Tc times local channels
{h1

mi, . . . ,h
Tc
mi},m ∈ Ml, i ∈ Il and interfering channels

{h1
mi, . . . ,h

Tc
mi}, i ∈ I

′

l . We treat the Tc-th channel hTc
mi as the

local instantaneous channel. The statistical interference CSI,
channel covariance matrix, is calculated by the past Tc − 1
channels {h1

mj , . . . ,h
Tc
mj}. As the system has L = 5 groups,

TABLE II
ARCHITECTURE OF FULLY CONNECTED NETWORK

Name Size Active function

finit 8× 128× 256 ReLU

f
′
init 32× 128× 256 ReLU

fm,node 256× 256× 512× 256 ReLU

fm,edge 256× 256× 512× 256 ReLU

fcom 768× 512× 256× 256 ReLU

fnorm 256× 8 −

the above process can generate L samples simultaneously.
Repeat the above process for 1200 times. There are 6000
samples finally, including 5000 training and 1000 testing
samples.

4) SGNN: SGNN is directly derived from the FP-based alg.
The specific SGNN structure refers to the DMP derived from
the FP-based alg. In this network, all nodes share the same
node update module. SGNN has the same number of modules
as MHSB-GNN. The difference between MHSB-GNN and
SGNN is that all nodes in SGNN share the same updating
module fm,node = fnode, fm,edge = fedge, fm,com = fcom.
The SGNN is trained for 100 epochs, the optimizer is Adam,
and the learning rate is set to 0.001.

5) ESAO: When N is determined, the active AP set is
determined by the exhaustive search. Then, the AO-based
alg with the determined variable S is performed under every
selection.

B. Convergence Behavior

Fig. 7(a), Fig. 7(b), and Fig. 7(c) demonstrate the conver-
gence performance of the proposed FP, AO, and MHSB-GNN
APS&BF algorithms, providing evidence for the accuracy of
these methods. The algorithms for simulations are represented
by LRofFP, ARofFP, IRofOA, ARofOA, and MHSB-GNN.
”LR” and ”AR” mean the lower bound of the data rate and
the actual data rate, respectively. For example, LRofFP means
the lower rate of the FP-based algorithm. In Fig. 7(a), the
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TABLE III
RUNNING TIME (S) WITH DIFFERENT NUMBERS OF UE AND AP

K = 25 K = 20 K = 15

Alg. M = 10 M = 15 M = 20 M = 10 M = 15 M = 20 M = 10 M = 15 M = 20

AO-based 13.84 16.1240 26.78 11.97 14.48 14.17 10.68 11.14 12.25

FP-based 0.062 0.1654 0.285 0.0578 0.0684 0.1036 0.0534 0.0675 0.0910

MHSB-GNN 0.0598 0.1246 0.23825 0.0339 0.1067 0.1825 0.0219 0.0498 0.0917

SGNN 0.04686 0.156 0.2342 0.03485 0.0877 0.1595 0.01994 0.0498 0.0907

TABLE IV
FLOPS WITH DIFFERENT NUMBERS OF UE AND AP

K = 25 K = 20 K = 15

Alg. M = 10 M = 15 M = 20 M = 10 M = 15 M = 20 M = 10 M = 15 M = 20

MHSB-GNN 0.3× 105 0.5× 105 0.7× 105 0.29× 105 0.43× 105 0.57× 105 0.22× 105 0.32× 105 0.43× 105

SGNN 0.3× 105 0.5× 105 0.7× 105 0.29× 105 0.43× 105 0.57× 105 0.22× 105 0.32× 105 0.43× 105

changing curves represent the convergence process of LR,
while the invariant curves represent the actual achievable
data rate (ADR). It can be seen that the lower bound of
WSR monotonically increases and converges rapidly with the
number of iterations, and all curves generally converge within
seven iterations. It also can be observed that AO outperforms
FP in sum-rate performance. As expected, the actual ADR of
FP and AO are always higher than the lower bound of the data
rate, providing further evidence for the accuracy of Lemma 1.
Fig. 7(a) also illustrates the impact of the number of active
APs on performance, and algorithms with a larger number of
active APs can converge to a larger WSR due to higher spatial
degrees of freedom. However, it is shown that 66% increase
in transmit power results in 20% gain in ADR performance.

Fig. 7(c) plots the loss evaluated on the training set against
the training epochs in a single group with M/L = 3 and
N/L = {3, 4}. Fig. 7(b) plots the average ADR evaluated
on the validation set. Both MHSB-GNN and SGNN converge
within 60 epochs. The loss and test performance curves of
MHSB-GNN exhibit a step-like character due to the changing
learning rate with epochs. Changing the learning rate does not
work in SGNN, and the curves of SGNN do not have a step-
like character. It shows that MHSB-GNN converges in fewer
iterations than SGNN, e.g., the former achieves a sum rate of
750Mbps within 10 epochs, but the latter needs 60 epochs, as
shown in Fig. 7(b). Therefore, the training time for MHSB-
GNN is significantly less than that of SGNN.

C. FLOPs and Running Time

The performance of FP-based alg is lower than that of AO-
based alg with a finite number of iterations, as shown in Fig.
7(a). On the same device, the running time of AO-based alg
is almost 100 times that of FP-based alg, as shown in Tab.
III. AO-based alg contains two layers of looping algorithm.
The number of iterations for the outer algorithm is the same

TABLE V
THE GENERALIZATION OF MHSB-GNN TO DIFFERENT NUMBER OF UES.

(UNIT: MBIT/S)

Alg. M1 = 2 M1 = 3 M1 = 4

MHSB-GNN 131.488 162.145 210.140

MHSB-GNN-Re-train 145.430 188.246 210.140

SGNN 130.516 161.310 185.213

SGNN-Re-train 137.488 162.141 185.213

as that for FP-based alg, while the number of iterations for
the inner algorithm is unknown. Usually, the interior-point
method implements the internal algorithm through the CVX
toolbox on Matlab. The interior-point method goes through
many iterations to satisfy a specific error, which results in the
long running time and high complexity.

As shown in Tab. III, SGNN, MHSB-GNN, and FP-based
alg have the same order of magnitude of running time. The
running time of these three algorithms is less affected by the
different numbers of users. In contrast, the running time of
AO-based is highly influenced by the different number of
users. The FLOPs of SGNN and MHSB-GNN also show linear
growth with the changing number of users. Moreover, from the
previous complexity derivation, it is clear that the complexity
of AO-based shows exponential growth with the number of
users. From the experimental results Fig. 7, Tab.III and Tab.
IV, SGNN and MHSB-GNN have similar FLOPs and the same
order of magnitude of running time. However, MHSB-GNN
outperforms SGNN by 13.25% when N = 25.

D. The Generalization of MHSB-GNN
Tab. V shows the generalization performance of MHSB-

GNN at different numbers of UEs. There are still L = 5 groups
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(a) N = 15 (b) N = 25

Fig. 8. The average ADR achieved by different algorithms under different numbers of users and active APs.

and there are |Ml′ | = 4 UEs in l
′
, l
′ 6= l-th group. The number

of UEs in l-th is set to |Ml| = {2, 3, 4}. The networks MHSB-
GNN and SGNN are first trained with |Ml| = 4,∀l, and then
tested under the different numbers of UEs without retraining
the network. We also compare with the retrained MHSB-
GNN and SGNN, represented by ”MHSB-GNN-Re-train” and
”SGNN-Re-train”, independently retrained and tested under
different UEs. The average ADR in l-th group is obtained
by averaging over all 100 test channel realizations. It is
observed that MHSB-GNN consistently outperforms SGNN
under the different numbers of UEs regardless of whether the
testing network is retrained or not. SGNN performs better than
MHSB-GNN in terms of generalization. Specifically, the gaps
between MHSB-GNN and MHSB-GNN-Re-train are larger
than the gaps between SGNN and SGNN-Re-train. When
|M1| = 3, the achievable ADR of SGNN is almost 0.5%
lower that of SGNN-Re-train. The fundamental reason is that
MHSB-GNN designs the specific node updating modules for
different UEs, while different UEs in SGNN share the same
updating module.

E. Performance Versus the Number of UEs

Fig. 8 shows the average ADR evaluated on 100 channels at
the different UE numbers with N = {15, 25}. ”FullFP” and
”FullAO” mean that the FP-based and AO-based algorithms
are applied with global instantaneous CSI. ”StatisGNN” means
that the local covariance information Rmi = E

{
hH
mihmi

}
∈

CNt×Nt instead of local instantaneous CSI hmi is used as the
input of the MHSB-GNN. Fig. 8(a) shows the average ADR
performance with APs (N = 15) of different algorithms. It is
observed that MHSB-GNN performs better than FP-based alg.
Especially when M = 20, the average ADR achieved by the
MHSB-GNN is 18.8% higher than FP-based alg. Note that the
computational time of MHSB-GNN is in the same order as that
of FP-based alg from Tab. III, which is acceptable in a practical
system. Fig. 8(b) illustrates the simulation results without APS
(N = 25). It is observed that the gap between FP-based alg

and MHSB-GNN becomes narrow, although the average ADR
of the latter remains a little higher than that of the former. The
main reason is that the number of APs becomes large, and
thus, the MHSB-GNN is difficult to learn well. StatisGNN
achieves lower performance than MHSB-GNN because the
input of StatisGNN is not accurate enough, and is all statistical
CSI.

It is obtained from Fig. 8(b) that the performance loss
caused by applying local CSI instead of full CSI is small, less
than 1%. Replacing full CSI with local CSI helps reduce the
interaction overhead among groups and complexity, which is
acceptable in a practical system. In Fig. 8(a), the gap between
full CSI and local CSI increases in average ADR as the
number of UEs increases. The reason is that when M becomes
larger, the more estimation error accumulation in the optimiza-
tion objective function. Obviously, the best average ADR is
achieved by ESAO, followed by AO-based alg. However, this
performance advantage comes at the cost of computational
complexity and long running time. Therefore, MHSB-GNN is
more practical than AO and FP-based algorithms as it balances
the ADR performance and complexity.

F. Performance Versus the Transmitting Power

Fig. 9 investigates the impact of transmitting power on the
performance of different APS&BF schemes with N = 15 and
N = 25. It can be seen that the ADR of all APS&BF schemes
increases with the increasing transmitting power. Meanwhile,
as the transmitting power increases, the increase in power
brings fewer and fewer performance gains. This is because the
power of the useful signals and the interfering signals increases
at the same time. When the number of active APs is N = 15,
ESAO can obtain the best ADR performance with the highest
complexity cost. Additionally, it is observed that the FP-based
alg and MHSB-GNN alg benefit more from the increase of
Pmax than other algorithms.
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Fig. 9. The average sum rate of different algorithms with different transmitting
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VI. CONCLUSION

This article investigated a distributed maximizing the down-
link weighted sum rate (WSR) with local CSI in non-coherent
CFN. A joint optimization scheme of APS&BF was formu-
lated as a MINP problem, which was challenging. To solve this
problem, we proposed three distributed algorithms, named FP,
AO, and MHSB-GNN-based algorithms. The novel MHSB-
GNN took local instantaneous CSI and statistical interference
CSI as input. The MHSB-GNN benefited from the different
node updating modules for different users, which introduced
more prior information into the graph and mined specific
features of different users. As a result, MHSB-GNN obtained
better performance than the baseline, SGNN. Moreover, for
the interpretability and theoretical guarantees of MHSB-GNN,
the equivalence between GNN and FP-based algorithms is
provided. Simulation results showed the superiority of the
proposed MHSB-GNN over the FP-based algorithm in terms
of data rate with comparable computations. This research
validates the generalization of the trained GNN to a smaller
number of users. In practice, one should also take generalizing
the trained GNN to a larger number of users into account,
which is left as future work.

APPENDIX A
PROOF OF THE LEMMA 1

We can easily find the sum rate function is convex, which
can be checked by second order derivative of rate function is
always larger than 0. By leveraging the Jensen’s inequality, a
lower bound of the average achievable date rate of user m is
given by

E {r̂m} , log
(

1 + S̃INRm

)
≤ E {rm} , (26)

where E {rm} is the average achievable rate of UE m,
S̃INRm = Am/

(
B1,m −Am + B2,m + σ2

m

)
. B2,m =

∑
j∈I

l
′

sj
∑
n∈M

l
′ Tr

(
wnjRmjw

H
nj

)
is the expectation value of the

inter-group interference B2,m and Rmj = E
{
hH
mjhmj

}
∈

CNt×Nt is the expected correlation matrix of the channel

vector hmj . Then, an upper bound of average inter-cell in-
terference B̃2,m is given by

B̃2,m ≤ Tr
(
wnjw

H
njRmj

) a
≤ Tr

(
wnjw

H
nj

)
Tr (Rmj)

b
≤ PjTr (Rmj) , B2,m,

(27)

where (27-a) follows from the Tr (AB) ≤ Tr (A) Tr (B); (27-
b) follows from the power constraint. Replacing the inter-
group interference B2,m with the inter-group interference
upper bound B2,m, this completes the proof.

APPENDIX B
PROOF OF THE THEOREM 2

There are two kinds of nodes in the graph, beam nodes
V1 = {vmi|m ∈ Ml, i ∈ Il} and neighboring group nodes
V2 = {vl′ |l

′ 6= l}. The node feature of vmi is [δmi, σmi,hmi].
The internal state of node vmi at the (t − 1)-th iteration is
[γ

(t−1)
mi ,y

(t−1)
mi ,w

(o−1)
mi , δmi, σmi,hmi]. If n 6= m, there is an

intra-group interference edge between the the node vmi to the
node vnj . If n = m and j 6= i, the beam node belongs to
the same user m. The edge feature of the edge (nj,mi) is
enj,mi = [hmj ,hni]. The node feature of vl′ is Pmax. An
edge is drawn from the node vl′ to the node vmi is the inter-
group interference edge. The edge feature of the edge (l

′
,mi)

is [. . . ,Rmj , , . . . ], j ∈ Il′ .
Assume the FP-based alg need TFP iterations, which means

the corresponding multi-set broadcasting distributed local al-
gorithms (MB-DLA) has at least 2TFP iterations. In the corre-
sponding MB-DLA, the variables γmi and ymi are updated at
the odd iterations while wmi is updated at the even iterations.
Specifically, at the t-th iteration with t being an odd number,
the (n,j)-th node broadcasts its state wnj along its edges. The
edge (nj,mi), n 6= m processes the first kind of message
by forming m

(1)
nj,mi = hmjw

(t−1)H
nj w

(t−1)
nj hH

mj and the node
(m, i) receives the message set {m(1)

nj,mi}. The agent (m, i)

sums over the messages M (1)
mi =

∑
j∈Il

∑
n 6=mm

(1)
nj,mi. The

edge (l
′
,mi) processes the second kind of message by forming

m
(2)

l′ ,mi
= Pmax

∑
j∈I

l
′ Tr(Rmj′ ) and the node (m, i) receives

the message set {m(2)

l′ j′ ,mi
}. The agent (m, i) sums over the

messages M (2)
mi =

∑
l′ 6=lm

(2)

l′ j′ ,mi
. The edge (nj,mi), n = m

processes the third kind of message by forming m
(3)
mj,mi =

hmjw
(t−1)H
mj w

(t−1)
mj hH

mj and the node (m, i) receives the mes-
sage set {m(3)

mj,mi}. The agent (m, i) sums over the messages
M

(3)
mi =

∑
j∈Il

∑
n=mm

(3)
mj,mi. Then, the (m, i)-th node

updates its internal state as γ(t)m,i =
|hmiw

(t−1)H|2
M

(1)
mi+M

(2)
mi+σmi

and ymi =

(M
(1)
mi + M

(2)
mi + M

(3)
mi + σmi)

−1
√
δm(1 + γm)hmiw

(t−1)H
mi .

Specifically, we construct the following process. When n 6= m,

x
(t−1)
nj = [γ

(t−1)
nj ,y

(t−1)
nj ,w

(t−1)
nj , δnj , σnj ,hnj ],

enj,mi = [hmj ,hni],

ymi = h
(t)
1,0(x

(t−1)
mi ) = x

(t−1)
mi ,

m
(1)
nj,mi = hmjw

(t−1)H
nj w

(t−1)
nj hH

mj = h
(t)
2,0(ymi, enj,mi),
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M
(1)
mi = g

(t)
1,0({m(1)

nj,mi}) =
∑
j∈Il

∑
n 6=m

m
(1)
nj,mi.

When n = m,

x
′(t−1)
mj = [γ

(t−1)
mj ,y

(t−1)
mj ,w

(t−1)
mj , δmj , σmj ,hmj ],

emj,mi = [hmj ,hmi],

y
′

mi = h
(t)
1,1(x

′(t−1)
mi ) = x

′(t−1)
mi ,

m
(3)
mj,mi = hmjw

(t−1)H
mj w

(t−1)
mj hH

mj = h
(t)
2,1(y

′

mi, emj,mi),

M
(3)
mi = g

(t)
1,1({m(3)

mj,mi}) =
∑

j∈Il
m

(3)
mj,mi,

xl′ j′ = [Pmax],

el′ ,mi = [. . . ,Rmj , . . . ],

y
(2)
mi = h

(t)
1,2(x

′(t−1)
mi ) = x

′(t−1)
mi ,

m
(2)

l′ ,mi
=
∑

j∈I
l
′

Tr(Rmj)Pmax = h
(t)
2,2(y

(2)
mi , el′ ,mi),

M
(2)
mi = g

(t)
1,2({m(2)

l′ ,mi
}) =

∑
l′ 6=l

m
(2)

l′ ,mi
,

γ
(t)
mi = (M

(1)
mi +M

(2)
mi + δ2mi)

−1
∣∣∣hmiw(t−1)H

mi

∣∣∣2 ,
ymi = (σ2

mi +M
(1)
mi +M

(2)
mi +M

(3)
mi )
−1√

δmi(1 +
∑

i∈Il
γ
(t−1)
mi )hmiw

(t−1)H
mi ,

x
(t)
mi = g

(t)
2 (x

(t−1)
mi ,M

(1)
mi ,M

(2)
mi ,M

(3)
mi )

= [γ
(t−1)
mi ,y

(t−1)
mi ,w

(t−1)
mi , δmi, σmi,hmi].

At the t-th iteration where t is even, the (n,j)-th node
broadcasts its state [γ

(t−1)
nj ,y

(t−1)
nj ] along its edges. The edge

(nj,mi) processes the first kind of message by forming
mnj,mi = hH

miynjy
H
njhmi. Node (m, i) receives the mes-

sage set {m(1)
nj,mi, n 6= m, j ∈ Il}. The agent (m, i) sums

over the messages M (1)
mi =

∑
j∈Il

∑
n 6=mm

(1)
nj,mi. The edge

(l
′
,mi) processes the second kind of message by forming

m
(2)

l′ ,mi
= Pmax

∑
j∈I

l
′ Tr(Rmj′ ) and the node (m, i) re-

ceives the message set {m(2)

l′ j,mi
}. The agent (m, i) sums over

the messages M
(2)
mi =

∑
l′ 6=lm

(2)

l′ j′ ,mi
. The edge (nj,mi)

processes the third kind of message by forming m
(3)
mj,mi =

hH
miymjy

H
mjhmi and the node (m, i) receives the message

set {m(3)
mj,mi, n = m, j ∈ Il}. The agent (m, i) sums

over the messages M (3)
mi =

∑
j∈Il

∑
n=mm

(3)
mj,mi. Then the

(m, i)-th node updates its internal state as w
(t)
mi = (M

(1)
mi +

M
(2)
mi +M

(3)
mi +η∗miI)

−1
√
δmi(1 +

∑
i∈Il γ

(t−1)
mi )hmiy

(t−1)H
mi .

Specifically, we construct the following process. When n 6= m,

x
(t−1)
nj = [γ

(t−1)
nj ,y

(t−1)
nj ,w

(t−1)
nj , δnj , σnj ,hnj ],

enj,mi = [hmj ,hni],

ymi = h
(t−1)
1,0 (x

(t−1)
mi ) = x

(t−1)
mi ,

m
(1)
nj,mi = hmjy

(t−1)H
nj y

(t−1)
nj hH

mj = h
(t)
2,0(ymi, enj,mi),

M
(1)
mi = g

(t)
1,0({m(1)

nj,mi}) =
∑

j∈Il

∑
n 6=m

m
(1)
nj,mi.

When n = m,

x
′(t−1)
mj = [γ

(t−1)
mj ,y

(t−1)
mj ,w

(t−1)
mj , δmj , σmj ,hmj ],

emj,mi = [hmj ,hmi],

y
′

mi = h
(t)
1,1(x

′(t−1)
mi ) = x

′(t−1)
mi ,

m
(3)
mj,mi = hmjy

(t−1)H
mj y

(t−1)
mj hH

mj = h
(t)
2,1(y

′

mi, emj,mi),

M
(3)
mi = g

(t)
1,1({m(3)

mj,mi}) =
∑

j∈Il
m

(3)
mj,mi,

xl′ = [Pmax],

el′ j′ ,mi = [. . . ,Rmj , . . . ],

y
(2)
mi = h

(t)
1,2(x

′(t−1)
mi ) = x

′(t−1)
mi ,

m
(2)

l′ ,mi
=
∑

j∈I
l
′

Tr(Rmj)Pmax = h
(t)
2,2(y

(2)
mi , el′ j′ ,mi),

M
(2)
mi = g

(t)
1,2({m(2)

l′ j′ ,mi
}) =

∑
l′ 6=l

m
(2)

l′ ,mi
,

wmi = (ηmiI +M
(1)
mi +M

(2)
mi +M

(3)
mi )
−1√

δmi(1 +
∑

i∈Il
γ
(t−1)
mi )hmiy

(t−1)H
mi ,

η∗mi = arg min
ηmi≥0,Tr(wmiwH

mi)≤Pi

ηmi,

wmi = (η∗miI +M
(1)
mi +M

(2)
mi +M

(3)
mi )
−1√

δmi(1 +
∑

i∈Il
γ
(t−1)
mi )hmiy

(t−1)H
mi ,

x
(t)
mi = g

(t)
2 (x

(t−1)
mi ,M

(1)
mi ,M

(2)
mi ,M

(3)
mi )

= [γ
(t−1)
mi ,y

(t−1)
mi ,w

(t−1)
mi , δmi, σmi,hmi].

This completes the proof of the FP-based algorithm (without
selection matrix S) being a DMP.
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