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Abstract—In this paper, we propose the decentralized likeli-
hood ascent search (DLAS)-aided detection for the distributed
large-scale multiple-input multiple-output (MIMO) systems to
achieve more remarkable performance gains. With the help
of DLAS, traditional distributed iterative methods are able to
achieve better performance than the linear detection schemes
such as ZF and MMSE. According to analysis, we derive the
equivalent noise and the post-processing SNR for DLAS. More
importantly, based on them, we demonstrate that the proposed
DLAS-aided detection achieves the full received diversity. To
further facilitate its implementation in practice, we design the
decentralized effective ring (DER) architecture with significantly
reduced bandwidth requirement and better parallel computation.
Finally, simulation results demonstrate that the proposed DLAS-
aided detection attains the same received diversity as ML
detection while surpassing state-of-the-art decentralized schemes
in terms of BER performance, with reduced complexity and
bandwidth costs.

Index Terms—Large-scale MIMO, distributed MIMO detec-
tion, decentralized signal detection, likelihood ascent search.

I. INTRODUCTION

THE large-scale multiple-input multiple-output (MIMO)
system has become a core technology for enabling be-

yond fifth-generation (5G) and sixth-generation (6G) wireless
communications, due to its promising capacity, ultra-fast data
rate, and high energy efficiency [1]–[3]. The fundamental
concept of large-scale MIMO involves equipping base station
(BS) with hundreds or even thousands of antennas, which
provides an effective approach to simultaneously serve a large
number of users within the same time-frequency resource [4].
However, the rapid increase in the number of antennas also
introduces some pressing challenges in transferring extensive
volumes of raw data for signal processing, despite state-of-
the-art hardware capabilities [5]. For instance, a large-scale
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MIMO system with 256 antennas, an 80MHz sampling rate,
and a 12-bit analog-to-digital converter (ADC) generates raw
baseband data rates in excess of 1Tbit/s, which surpasses
the bandwidth capabilities of the existing high-speed inter-
connects like the common public radio interface (CPRI) [6].
Additionally, escalating computational complexity and storage
requirements further strain single computing fabrics, making
them inadequate for practical deployment. To address these
challenges, numerous of distributed detection schemes for
large-scale MIMO systems have been proposed [6]–[18].

In particular, the decentralized baseband processing (DBP)
architecture was firstly introduced in [6] to alleviate the bottle-
necks in centralized detection. DBP divides the BS antennas
into C individual distributed units (DUs), where each DU
contains B antennas and is equipped with an independent
computing fabric. Based on DBP, techniques such as conjugate
gradient (CG) [6] and alternating direction method of multi-
pliers (ADMM) [7] are applicable for distributed detection in
large-scale MIMO systems. Along iterations, these methods
gradually approach the performance of centralized minimum
mean square error (MMSE) detection with reduced bandwidth
overhead. For complexity reduction, the decentralized Newton
(DN) [8] and coordinate descent (CD) [9] algorithms have
been proposed. Compared to the parallel implementation in
DBP, daisy-chain architecture provides an alternative solution
for the distributed detection with a pipelined design [10]–
[12]. Based on it, the stochastic gradient descent (SGD)
[10], averaged stochastic gradient descent (ASGD) [11], and
general recursive least square (GRLS) [12] algorithms can
be implemented in a distributed manner. However, all these
algorithms only achieve performance comparable to that of
centralized MMSE detection and are therefore limited by its
performance constraints [12]. In fact, it is well known that
the optimal maximum likelihood (ML) detection performance
can only be approximated by MMSE when the number of
antennas at a BS is sufficiently greater than that at the
transmitter side, i.e., Nr � Nt. Unfortunately, such a scenario
is not always met in practice, resulting in a considerable
performance gap in distributed detection [13], [14]. For better
performance, decentralized nonlinear detection schemes such
as large-MIMO approximate message passing (LAMA) [15],
Gaussian message passing (GMP) [16], and expectation propa-
gation algorithm (EPA) [17] have been proposed at the expense
of computational complexity. However, the comprehensive
performance analysis with respect to these schemes is not
given, which is important to evaluate their performance gains.

On the other hand, the neighborhood search algorithms have
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TABLE I
A BRIEF COMPARISONS OF THE RELATED LITERATURE OF DECENTRALIZED ALGORITHMS

Decentralized Algorithms Architecture Computational Complexity Data Bandwidth Nonlinear Performance Diversity Order

CG [6] DBP O(K2Tmax) O(KTmax)

ADMM [7] DBP O(K2Tmax) O(KTmax)

DN [8] DBP and Ring1 O(K2Tmax) O(KTmax)

CD [9] DBP O(K2Imax) O(K)

SGD [10] Daisy-chain O(KN) O(K)

ASGD [11] Daisy-chain O(KN) O(K)

GRLS [12] Daisy-chain O(KN) O(K)

LAMA [15] FD2 O(KNOImax) O(K) X

GMP [16] FD O(KNOImax) O(K) X

EPA [17] DBP O(KNOImaxTmax) O(KTmax) X

DLAS (This work) DER O(K2) O(K) X X
1 The Ring architecture extends the daisy-chain structure by connecting the last DU back to the first, forming a closed loop.
2 The fully decentralized (FD) architecture builds on DBP but maintains only an unidirectional link from DUs to the CPU.

emerged as an effective way to provide significant gains over
the linear MMSE detection with low complexity cost [20]–
[30]. Among these, likelihood ascent search (LAS) [20] is the
first reported algorithm that starts with an initial estimate and
then searches for the optimal solution in the neighboring set
by minimizing the ML cost. The one symbol LAS (1-LAS)
in [21] identifies the optimal vector in a neighborhood set
that differs from the previous solution by only one symbol.
For better BER performance, methods such as multistage
LAS (MLAS) [21], reactive tabu search (RTS) [22], layered
tabu search (LTS) [23], multiple initial vectors LAS (MIV-
LAS) [24], grouped genetic algorithm LAS (GGA-LAS) [25],
and unconstrained LAS (ULAS) [26] have been proposed to
avoid the obstacles of local minimum. To further reduce the
complexity, channel hardening [27], hopfield neural network
(HNN) [28], and reduced neighborhood [29], [30] techniques
have also been incorporated into LAS. However, all of these
neighborhood search algorithms persist in their search until the
ML cost is no longer reduced, making it difficult to measure
the number of iterations and thus to perform the convergence
analysis. In addition, all these neighborhood search algorithms
are inherently limited to centralized detection without further
decentralized implementations.

To address the related issues, the novel contributions of this
paper are as follows:

• For distributed detection and parallel execution, we pro-
pose the decentralized likelihood ascent search (DLAS)
mechanism. We then introduce it into the traditional
distributed iterative algorithms, such as CG, ADMM,
and DN, resulting in the proposed DLAS-aided detection
scheme, which surpasses the linear MMSE performance
with reduced complexity and bandwidth costs.

• We derive the equivalent noise, the post-processing
signal-to-noise ratio (SNR), and the diversity order for D-
LAS. Our analysis demonstrates that the proposed DLAS-
aided detection is able to achieve the same received

diversity as ML detection, which implies the remarkable
performance gain compared to the traditional linear de-
tection. To the authors’ knowledge, this is the first com-
prehensive performance evaluation of the neighborhood
search algorithms.

• For better implementation in practice, we design the
decentralized effective ring (DER) architecture that al-
lows parallel processing with the significant reduction in
bandwidth overhead.

To sum up, we present a clear comparison of our novel
contributions to the existing literature in Table I. Here, Imax
and Tmax represent the maximum numbers of inner and outer
iterations, respectively. O refers to the constellation set. K =
2Nt and N = 2Nr, where Nt and Nr denote the number of
antennas at the user side and BS side, respectively.

In the context of signal detection for distributed large-
scale MIMO systems, the exploration of efficient methods
in diverse channel environments is critically important [5].
Among various channel models, the Rayleigh fading channel
is widely adopted in related research for its ability to effec-
tively capture the complex fading phenomena encountered in
practical communication environments [6]–[19]. Therefore, it
serves as a fundamental basis for the in-depth investigation of
detection methods presented in this paper.

The rest of this paper is organized as follows. Section II
briefly introduces the traditional detection for uplink large-
scale MIMO systems in both centralized and decentralized
architectures. In Section III, the proposed DLAS mechanism
is described, and its complexity as well as bandwidth analysis
is also given. Section IV derives the equivalent noise, the post-
processing SNR, and the diversity order of DLAS to guarantee
its performance gain. In Section V, the DER architecture is
proposed for reduced bandwidth cost and parallel computation.
After that, Section VI presents simulations of the proposed
DLAS-aided detection for uplink large-scale MIMO systems.
Finally, Section VII concludes the paper.
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Fig. 1. Illustration of the decentralized baseband processing (DBP) architec-
ture with C DUs. Each DU is equipped with B = Nr/C antennas and an
independent computing fabric for channel estimation (CHEST) and detection
(DET), while the CPU performs signal detection and finally quantizes (Q)
the outputs.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the transpose, inverse of
a matrix B by BT and B−1, respectively. We use bi for the
i-th column of the matrix B, bi,j for the entry in the i-th
row and j-th column of the matrix B. The vector inverse
b−1 is computed by taking the reciprocal of each individ-
ual element, and � represent the Hadamard product, which
performs element-wise multiplication between two vectors.
Additionally, Tr(·) and E [·] denote the trace of the matrix
and expectation, respectively. diag(B) extracts the diagonal
elements of the square matrix B, and d·c rounds to the closest
integer. Finally, <(·) and =(·) indicate the real and imaginary
components, respectively.

II. PRELIMINARY

This section introduces the signal detection in both cen-
tralized and decentralized uplink large-scale MIMO systems,
along with the ADMM serving as an example of the distributed
iterative detection schemes.

A. Uplink Signal Detection

Considering a large-scale MIMO system with Nr receive
antennas at a BS, serving different Nt single antenna users
(Nr ≥ Nt), the input-output relationship of the system can be
represented as

ȳ = H̄x̄ + n̄. (1)

Here, ȳ ∈ CNr denotes the received vector, and x̄ ∈ ONt
represents the transmitted vector from the discrete complex
M -quadrature amplitude modulation (QAM) constellation set
ONt . H̄ ∈ CNr×Nt represents the Rayleigh fading channel
matrix whose entries follow CN (0, 1) and n̄ ∈ CNr denotes

Algorithm 1: Decentralized ADMM Algorithm

Input : yc, Hc, c = 1, 2, . . . C, ρ, γ, σ2
n

Output : estimated transmit signal x̂
1: Pre-processing: Wc = Gc + ρIK , Gc = HT

c Hc,
yMRC
c = W−1

c yMF
c , yMF

c = HT
c yc

2: Initialization: θ1
c = yMRC

c , λ1
c = 0,

x1 = ρ
σ2
n+Cρ

∑C
c=1 θ

1
c

3: for t = 2, · · · , Tmax do
4: // Decentralized processing in each DU:
5: θtc = yMRC

c + ρW−1
c (xt−1 − λt−1

c )
6: λtc = λt−1

c − γ
(
xt−1 − θtc

)
7: ptc = θtc + λtc
8: // Centralized processing in CPU:
9: xt = ρ

σ2
n+Cρ

∑C
c=1 ptc

10: end for
11: output x̂ = dxTmaxcQ ∈ XK

the addictive white Gaussian noise (AWGN) with zero mean
and covariance matrix σ2

n̄INr .
The complex-valued model in (1) can be equivalently trans-

lated into a real-valued system of dimensions 2Nr × 2Nt as
follows:[

<(ȳ)
=(ȳ)

]
=

[
<(H̄) −=(H̄)
=(H̄) <(H̄)

] [
<(x̄)
=(x̄)

]
+

[
<(n̄)
=(n̄)

]
, (2)

which can be succinctly expressed by

y = Hx + n. (3)

For simplicity of notation, from this point onward, let N
and K denote 2Nr and 2Nt, respectively. In this way, the
complex constellation ONt is transformed into a real-valued√
M -amplitude-shift keying (ASK) constellation set XK , de-

fined as X = {±1,±3, . . . ,±(
√
M − 1)}. Considering the

equivalent channel matrix H ∈ RN×K with entries distributed
as N

(
0, 1

2

)
, the optimal maximum likelihood (ML) detection

aims to recover the transmitted signal vector x from the
received vector y by

x̂ML = arg min
x∈XK

1

2
‖y −Hx‖22, (4)

which is an NP-hard problem in principle [31], [32]. As the
suboptimal detection schemes, with σ2

n = 1
2σ

2
n̄, the traditional

linear detection methods, i.e., ZF and MMSE, follow

xZF =
(
HTH

)−1
HTy, (5)

xMMSE =
(
HTH + σ2

nIK
)−1

HTy, (6)

where the final detection output x̂ is obtained by quantizing to
the nearest constellation point, resulting in x̂ZF = dxZFcQ ∈
XK or x̂MMSE = dxMMSEcQ ∈ XK .

However, all these methods aggregate data from BS anten-
nas to the central processing unit (CPU) for signal detection,
where scaling to hundreds or even thousands of antennas
challenges the hardware with increased complexity and band-
width demands [5]. Therefore, a number of decentralized
architectures and corresponding distributed detection schemes
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1-LAS︷ ︸︸ ︷ DLAS︷ ︸︸ ︷
x0

1 x0
1 x0

1 → x1
1 x1

1 · · · x̂1 x0
1 → x̂1

x0
2 x0

2 x0
2 x0

2 x0
2 · · · x̂2 x0

2 → x̂2

x0
3 → x1

3 x1
3 x1

3 x1
3 · · · x̂3 x0

3 → x̂3

x0
4 x0

4 → x1
4 x1

4 x1
4 ⇒ · · · ⇒ x̂4 x0

4 → x̂4

...
...

...
...

...
...

...
...

...
x0
K−1 x0

K−1 x0
K−1 x0

K−1 → x1
K−1 · · · x̂K−1 x0

K−1 → x̂K−1

x0
K x0

K x0
K x0

K x0
K · · · x̂K x0

K → x̂K

x0 ⇒ x̂1 ⇒ x̂2 ⇒ x̂3 ⇒ x̂4 ⇒ · · · ⇒ x̂1-LAS x0 ⇒ x̂DLAS

Fig. 2. Comparison of the 1-LAS and DLAS update processes. On the left, in 1-LAS, only one symbol is updated in each iteration, namely the one that
leads to the largest reduction in FML(ρi). This process continues until convergence. Typically, the number of iterations required is several times greater than
K. On the right, the proposed DLAS mechanism sequentially updates all elements in x0, reaching the final solution within a single iteration.

have been proposed [6]–[18].

B. Decentralized System Model

The DBP architecture was introduced in [6], [7] as a
solution to reduce both the computational complexity and
data bandwidth costs of centralized detection. As illustrated
in Fig.1, DBP divides the BS antennas into C individual
DUs, each having Bc antennas and an independent computing
fabric for the c-th DU to perform local processing tasks. For
simplicity, we assume DUs of equal size and set B = Bc.
As a result, the uplink received vector y ∈ RN and channel
matrix H ∈ RN×K are divided into

y =
[
yT1 ,y

T
2 , . . . ,y

T
C

]T
, (7)

H =
[
HT

1 ,H
T
2 , . . . ,H

T
C

]T
, (8)

where yc ∈ RQ and Hc ∈ RQ×K with Q = 2B represent the
local received vector and corresponding channel matrix of the
c-th DU, respectively. The noise vector is also divided into
n =

[
nT1 ,n

T
2 , . . . ,n

T
C

]T
, allowing the following model for

each DU
yc = Hcx + nc, c = 1, 2, . . . , C. (9)

In other distributed architectures such as ring [8], daisy-
chain [10]–[12], and fully decentralized (FD) [13]–[16], DUs
employ the same model as in (9), together with the CPU to
accomplish signal detection. Based on this, distributed iterative
methods such as CG [6], ADMM [7], and DN [8] have been
proposed to solve the problem in (6) in a decentralized manner.
Their general form can be expressed as the following two
equations. Specifically, each DU updates the local information
ptc as follows:

ptc = f
(
pt−1
c ,xt−1; yc,Hc

)
. (10)

Then, the global estimated vector xt+1 is updated by

xt = g
(
xt−1,pt1,p

t
2, . . . ,p

t
C

)
. (11)

Here, f(·) and g(·) signify series of operations that vary
depending on the specific algorithm used. Attributed to its
flexibility and capability for distributed computation, ADMM

is widely regarded as a classical and efficient approach for
decentralized signal detection [5]. To this end, we take the
ADMM approach based on the DBP architecture in [7] as an
example. Specifically, each DU updates its local information
in parallel as follows:

θtc = yMRC
c + ρW−1

c (xt−1 − λt−1
c ), (12)

λtc = λt−1
c − γ

(
xt−1 − θtc

)
, (13)

ptc = θtc + λtc, (14)

based on the initial set up θ1
c = yMRC

c , λ1
c = 0, and

x1 = ρ
σ2
n+Cρ

∑C
c=1 θ

1
c . After that, the CPU updates the global

estimated vector by

xt =
ρ

σ2
n + Cρ

C∑
c=1

ptc, (15)

and then pass it back to each DU for the next iteration. Here
Wc = Gc + ρIK , Gc = HT

c Hc, yMRC
c = W−1

c yMF
c , and

yMF
c = HT

c yc correspond to the local regularized Gram matrix,
Gram matrix, maximum-ratio combining (MRC) output, and
match filter (MF) output, respectively. ρ and γ denote the fixed
penalty parameter and step size, respectively. Through Tmax
times iterations, the global estimated vector xTmax is obtained
by the CPU to produce the final detection output. More
specifically, the decentralized ADMM detection algorithm is
summarized in Algorithm 1.

III. THE PROPOSED DISTRIBUTED DETECTION SCHEME

In this section, we first introduce the decentralized likeli-
hood ascent search (DLAS) mechanism over the traditional
distributed iterative algorithms, which leads to the proposed
DLAS-aided detection. Then, we analyze the computational
complexity and data bandwidth to demonstrate the superiority
of DLAS compared to other distributed detection schemes.

A. The Proposed DLAS Mechanism

We now upgrade the one symbol likelihood ascent search
(1-LAS) algorithm in [21] to a distributed version with less
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complexity cost, and introduce it to the distributed iterative
algorithms for more satisfactory performance.

Typically, the objective of DLAS is to minimize the value
of ML cost function as follows:

FML = ‖y −Hx‖22, (16)

which serves a metric to evaluate the estimated vector x. Given
that the ML detection in (4) achieves the minimum FML, a
lower ML cost function value corresponds to a more accurate
estimated vector x. Meanwhile, the final output derived from
distributed iterative algorithms such as CG, ADMM, and
DN is used as an initial solution for the subsequent DLAS
mechanism, namely, x0 = dxTmaxcQ ∈ XK .

Given x0, we update one symbol at a time (specifically,
the i-th element for the i-th update, i = 1, 2, . . . ,K), and the
update rule can be expressed as

x̃ = x0 + ρiui, (17)

where ui ∈ RK represents the unit vector with only i-th
element set to one, and all other elements set to zero. Since
both x̃ and x0 must reside within the constellation space XK ,
the value of ρi is restricted to integers that are multiples of
2. For instance, in 16-QAM modulation with the constellation
space X = {−3,−1, 1, 3}, the value of ρi is limited to the
neighboring set A = {−6,−4,−2, 0, 2, 4, 6}.

To determine the best value for ρi, which minimizes the ML
cost in (16), we consider the following ML cost difference

4FML(ρi) = ‖y −Hx̃‖22 − ‖y −Hx0‖22
= ρ2

iu
T
i HTHui+ρiu

T
i HTHx0 +ρix

0HTHui−2ρiy
THui

= ρ2
i

(
HTH

)
i,i

+ 2ρi
(
HTHx0

)
i
− 2ρi

(
HTy

)
i

= ρ2
i gi,i − 2ρi

(
HTy −HTHx0

)
i

= ρ2
i gi,i − 2ρiei, (18)

where

G = HTH =

C∑
c=1

Gc (19)

and

e = HT
(
y −Hx0

)
=

C∑
c=1

yMF
c −

C∑
c=1

Gcx
0 (20)

denote the global Gram matrix in RK×K and residual vector
in RK , respectively.

To reduce the ML cost function in (16) for a better estimate,
the ML cost difference 4FML(ρi) in (18) should be negative,
i.e. 4FML(ρi) < 0. For the case of one symbol update, the
maximum reduction in 4FML(ρi) can be achieved by forcing
the gradient of (18) with respect to ρi to zero, which leads to
a closed-form expression for the optimal ρi as follows

ρi = P
(
ei
gi,i

)
, (21)

where P (a) = 2da/2c represents the projection of a onto
the neighboring set A. Notice that, ρi in (21) forces the
minimum value of 4FML(ρi), which is no more than zero
[21]. If 4FML(ρi) < 0, ρi in (21) indeed reduces the ML

Algorithm 2: Decentralized Likelihood Ascent Search
(DLAS)-Aided Detection for Distributed MIMO Systems

Input : yMF
c , Gc, c = 1, 2, . . . C, Tmax

Output : estimated transmit signal x̂
1: Use distributed iterative algorithms to get xTmax

2: Let initial solution x0 = dxTmaxcQ ∈ XK
3: // Decentralized processing in each DU:
4: Dc = diag(Gc)

5: ec = yMF
c −Gcx

0

6: // Centralized processing in CPU:
7: D =

∑C
c=1 Dc

8: e =
∑C
c=1 ec

9: xDLAS = x0 + D−1 � e
10: output x̂DLAS = dxDLAScQ ∈ XK

cost function and thus improve the performance, otherwise it
keeps the original result with no degradation. To facilitate the
parallel processing and decentralized design, the entire update
process is simplified by updating all elements sequentially just
once, i.e., by performing (21) simply from 1 to K in sequence.
To be more specific, by defining D = diag(G) ∈ RK , the
entire update process can be represented as

x̃ = x0 + P
(
D−1 � e

)
. (22)

Given the possibility for x̃i to exceed
√
M − 1 or to fall

below −
√
M + 1, it is necessary to adjust x̃i to the nearest

constellation point, which can be expressed as follows

x̂i =


√
M − 1, if x̃i >

√
M − 1,

−(
√
M − 1), if x̃i < −

√
M + 1,

x̃i, otherwise.
(23)

Therefore, we can reformulate the update process represented
from (21) to (23) into the following two steps

xDLAS = x0 + D−1 � e (24)

and
x̂DLAS = dxDLAScQ ∈ XK . (25)

Finally, the detected signal in (25) is outputted as the detection
solution of DLAS. To summarize, the proposed DLAS-aided
detection for distributed uplink large-scale MIMO systems, is
outlined in Algorithm 2.

DLAS is a distributed and simplified version of 1-LAS
in [21], whose update processes are illustrated in Fig. 2
for clarity. In comparison to 1-LAS, the DLAS mechanism
exhibits several distinct differences:

1) DLAS updates all elements in x0 sequentially in a
single iteration, which effectively eliminates the need to
compute the ML cost difference. In contrast, 1-LAS may
require multiple iterations (usually several times than K)
to reach stability, where only one symbol chosen for the
largest decrease in FML(ρi) is updated in each iteration.

2) DLAS is designed for distributed detection and supports
parallel execution, while 1-LAS only operates in a cen-
tralized and sequential manner.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2025.3541209

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southeast University. Downloaded on February 23,2025 at 10:27:48 UTC from IEEE Xplore.  Restrictions apply. 



6

3) DLAS can be succinctly expressed through vector mul-
tiplications, making it more suitable for theoretical anal-
ysis. Conversely, the ambiguous number of iterations for
convergence renders 1-LAS a heuristic scheme.

Clearly, the proposed DLAS mechanism can be implement-
ed in a decentralized and parallel manner with significantly
reduced complexity. Moreover, its performance gain compared
to MMSE detection will be guaranteed, which is discussed in
Section IV.

B. Complexity and Bandwidth Analysis

Here, the computational complexity is evaluated in terms
of the required number of real multiplications, where one
complex multiplication is counted as four real multiplications
[12]. For example, the complexity required to invert a matrix
of dimensions K ×K is quantified as 0.5K3 [33].

Specifically, with ADMM initialization as an example, the
overall complexity of the proposed DLAS-aided detection
consists of the following three stages. During the first stage,
namely pre-processing in ADMM, the computational complex-
ity for Gc, yMF

c within each DU is K2Q and KQ, respectively.
Moreover, the calculation of yMRC

c involves a K ×K matrix
inversion and a multiplication between W−1

c and yMF
c , result-

ing in a complexity of 0.5K3 +K2. In the second stage, the
ADMM iterations, the complexity of initialization is marginal.
Subsequently, the computational burdens for determining θtc,
λtc and xt in each iteration are noted as K2, K, and K,
respectively. As for the final stage, the DLAS mechanism,
computing local residual vector ec demands a complexity
of K2 in each DU. Subsequently, the calculation of xDLAS,
which involves a vector inversion and multiplication, requires
a complexity of 2K. To summarize, the overall computational
complexity for the proposed DLAS mechanism as well as
DLAS-aided detection is illustrated in Table II.

On the other hand, as delineated in Table II, the data
bandwidth required for interconnection of these distributed
large-scale MIMO detection schemes is determined by the
total real values transferred on links, where one complex
value counts for two real values [8]. Specifically, in the pre-
processing stage of ADMM, initializing x1 involves summing
θ1
c for each DU, equating to a bandwidth of KC. At every

iteration, it is necessary for each DU to obtain the global
estimated vector xt−1 from the CPU and then send the local
information ptc back to the CPU, leading to the bandwidth of
2KC. Subsequently, during the DLAS mechanism, each DU
obtains the initial vector x0 from the CPU and then transmits
the diagonal elements of local Gram matrix Dc along with
the residual vector ec back to the CPU for obtaining the final
solution, requiring a bandwidth of 3KC.

Throughout the context, Tmax denotes the number of outer
iterations for the CG, ADMM, and DN algorithms. From
Table II, the proposed DLAS mechanism exhibits much lower
complexity and required bandwidth than other distributed de-
tection schemes. More precisely, the complexity and required
bandwidth of the DLAS-aided detection are comparable to the
traditional distributed iterative algorithms, making it a better
choice for practical hardware implementation.

IV. DETECTION PERFORMANCE ANALYSIS OF DLAS

Unlike the traditional 1-LAS [21], M-LAS [21], RTS [22],
and other neighborhood search algorithms [23]–[30], the pro-
posed DLAS mechanism simplifies the update process by
modifying all elements sequentially within a single iteration,
making it possible to be analyzed theoretically. By leveraging
the properties of the Rayleigh channels, we establish a robust
theoretical foundation for the analysis of DLAS. Specifically,
our performance analysis shows that the proposed DLAS-
aided detection achieves the same received diversity as ML
detection. To the best of the authors’ knowledge, the forth-
coming analysis presents the first comprehensive performance
evaluation of the neighborhood search algorithms.

A. Equivalent Noise

The traditional distributed iterative algorithms, such as CG,
ADMM, and DN, obtain the estimated vector xTmax through
iterations. Subsequently, this solution is projected onto the
constellation set XK to serve as an initial input for the
following DLAS mechanism, expressed as follows:

x0 = dxTmaxcQ
= x + n0 + δ

= x + z. (26)

Here x0 ∈ RK represents the initial input for DLAS, while
n0 ∈ RK denotes the equivalent noise vector from the
distributed iterative algorithm. Additionally, z ∈ AK is the dis-
tance vector from the neighboring set, and δ = z− n0 ∈ RK
rounds the solution to the nearest constellation point. Clearly,
the elements in z are distributed as follows:

zi =


0, if |n0

i | ≤ 1,

2, if 1 < n0
i ≤ 3,

−2, if − 3 ≤ n0
i < −1,

· · · · · ·

(27)

for i = 1, 2, . . . ,K. Taking (26) into (20), the residual vector
can be reformulated as

e = HT (y −Hx0)

= HT (Hx + n−H(x + z))

= HTn−HTHz. (28)

Thus, DLAS mechanism updates the initial solution x0 by

xDLAS = x0 + D−1 � e

= x + z + D−1 � (HTn−HTHz)

= x + z + D−1 � (HTn)−D−1 � (HTHz), (29)

where xDLAS ∈ RK will be projected onto the constellation
set XK as the final detection output. We now investigate the
equivalent noise of the proposed DLAS-aided detection.

Lemma 1. Given the channel matrix H whose entries follow
N
(
0, 1

2

)
, the distance vector z follows that

z = D−1 � (HTHz) (30)
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TABLE II
COMPLEXITY AND BANDWIDTH COMPARISONS OF DECENTRALIZED ALGORITHMS

Algorithm Number of real multiplications Total real values transferred on links
DBP and Ring DER

CG [6]
(
K2Q+KQ

)
C + (K2 + 7K)CTmax 2KC(Tmax + 2) 2K(C − 1)(Tmax + 2)

ADMM [7]
(
K2Q+KQ+K2 + 0.5K3

)
C +

(
(K2 +K)C +K

)
(Tmax − 1) KC(2Tmax − 1) K(C − 1)(2Tmax − 1)

DN [8]
(
K2Q+KQ+ 2K

)
C + (K2C +K)Tmax 4KCTmax 4K(C − 1)Tmax

DLAS mechanism K2C + 2K 3KC 3K(C − 1)

DLAS-CG
(
K2Q+KQ+K2

)
C + (K2 + 7K)CTmax + 2K KC(2Tmax + 7) K(C − 1)(2Tmax + 7)

DLAS-ADMM
(
K2Q+KQ+ 2K2 + 0.5K3

)
C +

(
(K2 +K)C +K

)
(Tmax − 1) + 2K 2KC(Tmax + 1) 2K(C − 1)(Tmax + 1)

DLAS-DN
(
K2Q+KQ+K2 + 2K

)
C + (K2C +K)Tmax + 2K KC(4Tmax + 3) K(C − 1)(4Tmax + 3)

with the increment of SNR.

Proof. In the case of i = j, we can find that h2
i,j follows the

Gamma distribution with the shape parameter α = 1
2 and the

scale parameter β = 1 [34], namely h2
i,j ∼ Γ( 1

2 , 1). Building
upon it, gi,i, as the summation of h2

i,j , obeys the following
distribution

gi,i =

N∑
l=1

h2
l,i ∼ Γ

(
N

2
, 1

)
. (31)

Subsequently, in the case of i 6= j, hl,i and hl,j are indepen-
dent Gaussian variables with mean zero and variance 1

2 , which
leads to

gi,j =

N∑
l=1

hl,ihl,j ∼ N
(

0,
N

4

)
. (32)

Then we define

b = D−1 � (HHHz) = (diag (G))
−1 � (Gz) (33)

with the i-th element

bi =
1

gi,i
× (gi,1z1 + gi,2z2 + · · ·+ gi,KzK)

= zi +
1

gi,i

K∑
j 6=i

gi,jzj . (34)

It is worth noticing that bi is still a Gaussian variable with the
distribution as

bi ∼ N

zi, N

4g2
i,i

K∑
j 6=i

z2
j

 . (35)

Considering the fact that gi,i ∼ Γ
(
N
2 , 1

)
, its mean and

variance can be simply expressed by

E [gi,i] = V ar [gi,i] =
N

2
, (36)

which results in

E
[
g2
i,i

]
= E2 [gi,i] + V ar [gi,i] =

N2 + 2N

4
. (37)

Taking the expectation of g2
i,i in (35), the variance of bi can

be further approximated as

σ2
bi ≈

K − 1

N + 2
E
[
z2
j

]
< ε, (38)

where ε denotes an arbitrarily small positive number. This
inequality holds under the assumptions of N � K and high
SNR conditions, but its validity depends on specific system
settings and may not always be guaranteed. Therefore, (38)
should be interpreted as an approximation rather than an exact
result. Under these conditions, σ2

bi
becomes sufficiently small,

allowing bi to be treated as a constant equal to its mean value
(i.e., bi = zi for i = 1, 2, . . . ,K), thus completing the proof.

Based on Lemma 1, the estimated vector of the proposed
DLAS-aided detection in (29) can be further simplified, which
leads to the following result.

Theorem 1. Given the channel matrix H, the equivalent noise
of proposed DLAS-aided detection is

nDLAS = D−1 � (HTn). (39)

If the noise is independent over each element, the strategy
that decodes each component of x independently is optimal
[35]. However, the noise described in Theorem 1 is actually
correlated, which leads to a significant degradation in the
detection performance. The impact of this degradation on the
post-processing SNR of each element is characterized in the
following section.

B. The Full Received Diversity Order

In this subsection, we first derive the distribution of the
post-processing SNR on the i-th element of DLAS, which in
turn allows the characterization of the diversity order.

Lemma 2. Given the equivalent noise in (39), the post-
processing SNR γi on the i-th element of proposed DLAS-aided
detection is

γi = γ0gi,i, (40)

where γ0 = E[x2
i ]/σ

2
n denotes the average SNR on each

element.
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Fig. 3. Illustration of the data exchange approach within the DER architecture. Here, the BS comprises a total of C = 3 DUs, each holding three equal-sized
data blocks a, b and c to be aggregated. The blue arrows symbolize the data aggregation stage, where data blocks are accumulated, while green arrows
represent the data replacement stage, where data synchronization takes place.

Proof. First, we focus on the equivalent noise in (39), with
the i-th element

ni =
hTi n

gi,i
. (41)

In this way, the corresponding noise power can be expressed
as

σ2
i =

E
[(

hTi n
)2]

g2
i,i

=
E
[
Tr(hTi nnThi)

]
g2
i,i

=
Tr
(
hTi E

[
nnT

]
hi
)

g2
i,i

=
σ2
nTr(hTi hi)

g2
i,i

=
σ2
n

gi,i
. (42)

Therefore, we can obtain the post-processing SNR on the i-th
element as follows:

γi =
E[x2

i ]

σ2
i

= γ0gi,i, (43)

which completes the proof.

Theorem 2. The post-processing SNR on the i-th element
of proposed DLAS-aided detection is a weighed Chi-squared
variable distributed as

f (γi) =
e−

γi
γ0

γ0(Nr − 1)!

(
γi
γ0

)Nr−1

. (44)

Proof. Considering the result that gi,i follows the Gamma
distribution as shown in (31), we define a new variable v as
follows:

v = 2gi,i ∼ χ2(N), (45)

where χ2(N) denotes the Chi-square distribution with N

degrees of freedom. This leads to the following probability
density function (PDF) of v

f(v) =
e−

b
2

2Nr (Nr − 1)!
bNr−1. (46)

From (40) and (46), we can derive the exact PDF of the post-
processing SNR γi, whose value is equal to γ0v/2

f(γi) = f

(
2γi
γ0

)
× 2

γ0

=
e−

γi
γ0

2Nr (Nr − 1)!

(
2γi
γ0

)Nr−1

× 2

γ0

=
e−

γi
γ0

γ0(Nr − 1)!

(
γi
γ0

)Nr−1

. (47)

Clearly, the post-processing SNR γi is a weighted Chi-
square distribution with 2Nr degrees of freedom. Based
on this result, we can obtain the following theorem, which
explains that the proposed DLAS-aided detection can achieve
the full received diversity.

Theorem 3. The diversity order of the proposed DLAS-aided
detection is given by

dDLAS = lim
σ2
n→0

log
(
P̄e,i

)
log(σ2

n)
= Nr. (48)

Proof. Assuming independent ML decoding at the receiver,
the corresponding PER on the i-th element, namely Pe,i is
given by [36]

Pe,i ≈ NeQ
(√

2γi

)
≤ 1

2
Nee

−γi , (49)

where Ne is the average number of nearest neighbors of the
constellation on the i-th stream and the second step follows
from the Chernoff bound. The PER derived above corresponds
to a particular realization of the channel as it fades over time
due to the correlated Nr links. Therefore, the value of the
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diversity order can be analyzed by considering the average
PER (i.e., P̄e,i = E[Pe,i]) as follows

P̄e,i ≤
Ne

2 (1 + γ0)
Nr
, (50)

which is derived from [35]. The diversity order of the proposed
DLAS-aided detection is lower bounded according to

dDLAS = lim
σ2
n→0

log
(
P̄e,i

)
log(σ2

n)

≥ lim
σ2
n→0

log
(

1
2Ne

(
1 + E[x2

i ]/σ
2
n

)−Nr)
log(σ2

n)

≈ lim
σ2
n→0

log
(

1
2Ne

(
E[x2

i ]/σ
2
n

)−Nr)
log(σ2

n)

= lim
σ2
n→0

log
(

1
2Ne

)
−Nr log

(
E[x2

i ]
)

+Nr log(σ2
n)

log(σ2
n)

= Nr. (51)

Given that ML detection represents the optimal detector, the
received diversity of DLAS is upper bounded by

dDLAS ≤ dML = Nr, (52)

which coincides with the lower bound in (51), resulting in
dDLAS = Nr.

As can be seen clearly, after just a single iteration, the
proposed DLAS-aided detection achieves the diversity order
equivalent to that of ML detection, which demonstrates its
ability to asymptotically approach the optimal performance
with the increment of SNR.

V. DECENTRALIZED GENERALIZATION

In this section, a new distributed architecture, termed de-
centralized effective ring (DER), is proposed for better imple-
mentation of the DLAS-aided detection. Moreover, the DER
architecture supports traditional distributed iterative algorithms
applicable in DBP and ring architectures with reduced band-
width and parallel computation.

A. Proposed DER Architecture

As illustrated in Algorithm 2, the execution of proposed
DLAS-aided detection requires the summation of the local
residual vector ec along with the diagonal vector Dc in
the CPU to update the global estimate, which results in
considerable bandwidth requirements for the CPU interface.
To this end, we consider a novel data exchange approach to
obtain e =

∑C
c=1 ec and D =

∑C
c=1 Dc in all DUs.

For clarity, we employ a data exchange scenario of the
residual vector e in DLAS, as shown in Fig. 3, as an example
to explain this data exchange approach in detail. To begin with,
consider BS with a total of C = 3 DUs, each of which directly
connects to its two adjacent DUs through unidirectional links
and holds the local information ec to be aggregated. Assuming
that K is an integer multiple of C, we divide ec into C equal-
sized data blocks a, b and c, with each block containing K/C

Fig. 4. Illustration of the decentralized effective ring (DER) architecture with
C DUs. Each DU is equipped with B = Nr/C antennas and an independent
computing fabric for channel estimation (CHEST) and detection (DET) in
parallel, while the CPU is only responsible for quantization (Q).

elements. Subsequently, all DUs obtain the global information
e through the following two stages.

1. Data Aggregation: Each DU adds the received data block
to its own corresponding one and then transmits the summation
to the next DU in parallel for C − 1 times.

Specifically, as illustrated in Fig. 3, during the first pass,
DU1 transmits the first data block a1 to DU2, resulting in
the accumulation of a1 + a2 in DU2’s first data block. At the
same time, DU1 and DU3 obtain the accumulation of c1 + c3
and b2 + b3 in their third and second data blocks, respectively.
Then, in the second pass, DU1, DU2, and DU3 forward the
third, first, and second data blocks to the following DUs,
respectively. Therefore, the accumulations on DU1, DU2, and
DU3 are b1 + b2 + b3, c1 + c2 + c3, and a1 + a2 + a3 in that
order.

2. Data Replacement: Each DU replaces the received data
block with its own corresponding one, and then transmits it to
the next DU in parallel for C − 1 times.

Specifically, during the third and fourth passes, the aggre-
gated data blocks a1 + a2 + a3, b1 + b2 + b3, and c1 + c2 + c3
are sequentially transmitted twice until they are obtained by
all DUs.

Following that, the local diagonal vector Dc can also
be summed through these two stages, which completes the
DLAS data exchange process. In addition, traditional dis-
tributed iterative detection schemes applicable in DBP and
ring architectures such as CG [6], ADMM [7], DN [8], and
EPA [17] can also aggregate the local information in the
same way. Therefore, we summarize it as the decentralized
effective ring (DER) architecture in Fig. 4, which shares the
same topological structure as the ring architecture [8], but with
different data exchange approach.
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TABLE III
SIMULATION SCENARIOS FOR EACH FIGURE

Figure Channel Model Modulation Schemes Number of BS Antennas Number of Users Number of DUs

Fig. 5 Rayleigh 16-QAM 128 32 4

Fig. 6 Rayleigh 16-QAM 256 32 8

Fig. 7 Rayleigh with imperfect CSI 16-QAM 256 32 8

Fig. 8 Rician 16-QAM 128 32 4

Fig. 9 Rayleigh 4-QAM, 16-QAM 64 16 4

Fig. 10 Rayleigh 4-QAM, 16-QAM 128 16 8

Fig. 11, 12 Rayleigh 16-QAM 128 64 2, 4, 8
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Fig. 5. Bit error rate performance comparison of different methods for the
uncoded 128× 32 large-scale MIMO system with C = 4 and 16-QAM.

B. Reduced Bandwidth and Parallel Computation of DER

For clarity, the bandwidth cost of the proposed DER archi-
tecture is also illustrated in Table II. Intuitively, compared to
the same bandwidth achieved in both DBP and ring architec-
tures, DER reduces the data bandwidth by 25% and 12.5% for
the cases of C = 4 and C = 8, respectively. In addition, since
each DU is directly connected to its two adjacent DUs through
unidirectional links in DER, the entire bandwidth concentrated
on CPU is distributed to each DU, significantly relieving the
pressure on the interface of CPU in the DBP architecture.
On the other hand, compared to the sequential manner in the
ring architecture, the unique approach to data exchange in
DER enables parallel computation among DUs, which greatly
reduces latency and thus improves computation efficiency.

In summary, the proposed DER architecture involves par-
allel operations of all DUs and completely bypasses CPU
involvement, which is more in line with the original principle
of distributed systems design.

VI. SIMULATION

In this section, we perform a comprehensive simulation
study to evaluate the performance of the proposed DLAS-
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3.5 4 4.5

Fig. 6. Bit error rate performance comparison of different methods for the
uncoded 256× 32 large-scale MIMO system with C = 8 and 16-QAM.

aided detection in uplink large-scale MIMO systems. We begin
by comparing the BER performance of DLAS-aided detection
with other distributed detection schemes across Rayleigh and
Rician channels. Then, we contrast DLAS-aided detection
schemes with the ML detection to demonstrate the full diver-
sity gain as established in Theorem 3. Finally, we examine the
impact of different C settings and compare the bandwidth cost
between DBP and proposed DER architecture. A summary of
the simulation scenarios for each figure is presented in Table
III. All simulations are performed on uncoded systems with
10,000 Monte Carlo trials.

Fig. 5 presents a comparison of detection performance
between the proposed DLAS-aided detection and other dis-
tributed detection schemes in a 128 × 32 uncoded large-
scale MIMO system operating over a Rayleigh channel with
C = 4 and 16-QAM. The centralized MMSE detection and
distributed schemes such as CG [6], ADMM [7], DN [8], CD
[9], SGD [10], ASGD [11], GRLS [12], LAMA [15], GMP
[16], and EPA [17] are employed for comparison. Throughout
the context, the number of DUs of the SGD, and ASGD
algorithms is set to C = Nr due to the constraint B = 1, and
the CG, ADMM, DN, CD, LAMA, GMP, and EPA algorithms
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Fig. 7. Bit error rate performance comparison of different methods for the
uncoded 256×32 large-scale MIMO system with imperfect CSI using C = 8
and 16-QAM.

are applied with C = 4 as the comparison, corresponding to
B = Nr/4 in each DU. As in [10], the step-size of SGD
is set to 0.025 and the averaging procedure in ASGD starts
at k0 = Nr/2. ADMM is applied with ρ = 3 and γ = 2.
Moreover, GRLS employs configurations of C = 64 and
C0 = 12 as recommended in [12]. The number of inner
iterations for CD, LAMA, GMP, and EPA schemes is set to
Imax = 4. Meanwhile, the numbers of outer iterations Tmax
for ADMM, CG, and EPA schemes are set to 4 and for
DN to 8. Specifically, the DLAS mechanism is integrated
into distributed iterative algorithms such as ADMM, CG,
and DN, initialized with x0 = xTmax , leading to the DLAS-
ADMM, DLAS-CG, and DLAS-DN algorithm, respectively.
Due to the high scattering at BS antennas, the local estimation
results obtained by CD, LAMA, GMP, and DN algorithms
are inaccurate, leading to significant performance loss. In
addition, although SGD, ASGD, and GRLS algorithms require
lower complexity and bandwidth, they all suffer significant
performance degradation compared to MMSE detection. De-
spite its high complexity and bandwidth requirements, the
state-of-the-art EPA scheme achieves a 1.2dB gain over the
MMSE detection at BER = 1 × 10−4. It is evident that the
traditional CG algorithm suffers from an SNR loss of nearly
3 dB at a BER of 2 × 10−3 when compared to MMSE
detection. However, with the assistance of DLAS, DLAS-CG
not only outperforms MMSE detection but also achieves a gain
exceeding 3 dB at the same BER level. Moreover, the BER
performance of DLAS-ADMM gradually approaches that of
EPA, but with considerably lower complexity overhead.

Fig. 6 extends the BER performance comparison to a
256 × 32 uncoded large-scale MIMO system with C = 8
and 16-QAM, employed with the same parameters as in
Fig. 5. While the convergence performance of CD, SGD,
ASGD, GRLS, LAMA, and GMP algorithms improves, their
BER performance in uplink large-scale MIMO systems still
remains unsatisfactory. In addition, the ADMM, CG, and DN
detection schemes narrow the gap to MMSE detection over
iterations, incurring minor performance degradation. Besides,
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Fig. 8. Bit error rate performance comparison of different methods for the
uncoded 128 × 32 large-scale MIMO system over Rician channels using
C = 4 and 16-QAM.

EPA outperforms other decentralized algorithms with higher
complexity cost. Clearly, with the help of DLAS, all of the
DLAS-aided detection schemes exceeds the linear MMSE
performance threshold. For example, the proposed DLAS-
ADMM and DLAS-DN detection algorithms achieve gains of
nearly 0.7 dB and 0.4 dB, respectively, over MMSE detection
at the BER of 10−4. Moreover, the detection performance of
the DLAS-CG algorithm gradually surpasses the EPA scheme,
but with significantly reduced complexity and bandwidth re-
quirements.

Conversely, Fig. 7 complements Fig. 6 by evaluating the
BER performance of the proposed DLAS-aided detection
under imperfect channel state information (CSI) in a 256×32
uncoded large-scale MIMO system using 16-QAM. Specifi-
cally, we model the imperfect CSI at the receiver as

Ĥ = H +4H, (53)

where4H ∈ CN (0, σ2
eINr ) represents the channel estimation

errors, with σ2
e = K

npEp
[37]. Here, np and Ep denote the

number and power of pilot symbols, respectively, and we set
npEp = 160 (i.e., σ2

e = 0.1) for the simulation. Compared
to the perfect CSI results shown in Fig. 6, the performance
of all detection schemes in Fig. 7 degrades under imperfect
CSI conditions. Nonetheless, the performance gains achieved
by the proposed DLAS mechanism remain evident. With
the assistance of DLAS, all DLAS-aided detection schemes
not only surpass the centralized MMSE detection, but also
demonstrate substantial performance improvements over their
respective counterparts.

In addition to Rayleigh channels, we also examine the
impact of Rician channels on large-scale MIMO systems to
assess the convergence performance of the proposed DLAS-
aided detection schemes in Fig. 8. Following the Rician
channel setup in [38], the channel matrix is configured as

Ĥ = HLOS[Ω(Ω+IK)−1]1/2+HNLOS[(Ω+IK)−1]1/2, (54)

where Ω is a K × K diagonal matrix with Ωk,k = Kk,

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2025.3541209

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southeast University. Downloaded on February 23,2025 at 10:27:48 UTC from IEEE Xplore.  Restrictions apply. 



12

0 1 2 3 4 5 6 7 8

SNR (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

Centralized MMSE, 4-QAM

Centralized ML, 4-QAM

ADMM, 4-QAM

DLAS-ADMM, 4-QAM

Centralized MMSE, 16-QAM

Centralized ML, 16-QAM

ADMM, 16-QAM

DLAS-ADMM, 16-QAM

16-QAM

4-QAM

Fig. 9. Bit error rate versus average SNR per bit for the uncoded 64 × 16
large-scale MIMO system with C = 4.

representing the K-factor for k-th user, which determines
the ratio of power gains between the line-of-sight (LoS) and
non-line-of-sight (NLoS) components. The LoS component is
defined as HLOSn,k = e−j(n−1)π sin(θk), where θk denotes the
angle of arrival (AoA) for k-th user, uniformly distributed
over [0, 2π). The NLoS component, HNLOSn,k , follows an
i.i.d CN (0, 1) distribution. Consistent with [39], we assume
the same K-factor for all users, setting K = 5 and Tmax = 6
to simulate a highly LoS-dominant environment. Compared to
the Rayleigh channel results in Fig. 5, all detection schemes
exhibit significant performance degradation under the Rician
channel conditions, as shown in Fig. 8. This is expected,
as the detection schemes were originally designed for large-
scale MIMO systems with Rayleigh fading channels. Notably,
DN, DLAS-DN and EPA fail to converge due to poor local
estimation in this scenario. However, the DLAS mechanism
effectively enhances both DLAS-ADMM and DLAS-CG, with
significantly low complexity and bandwidth costs. Specifical-
ly, the proposed DLAS-ADMM achieves superior BER per-
formance compared to state-of-the-art decentralized schemes
under Rician channel conditions.

Fig. 9 evaluates the performance of DLAS-ADMM across
4-QAM and 16-QAM modulation schemes in a 64 × 16
uncoded large-scale MIMO system with C = 4. For a com-
prehensive comparison, we also present the BER performance
of centralized MMSE, ML detection (implemented through
classic sphere decoding [40]), and decentralized ADMM with
Tmax = 5. It is evident that both ADMM and MMSE detectors
suffer from significant performance degradation relative to
ML detection due to their inability to fully exploit antenna
diversity. In this case, the proposed DLAS mechanism is
recommended for better performance. Clearly, DLAS-ADMM
achieves asymptotic ML performance in both 4-QAM and
16-QAM modulation schemes, since it exploits full received
diversity as the ML detector, which is in line with the result
derived in Theorem 3.

Fig. 10 extends the BER performance comparison to a
128 × 16 uncoded large-scale MIMO system under 4-QAM
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Fig. 10. Bit error rate versus average SNR per bit for the uncoded 128× 16
large-scale MIMO system with C = 8.
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Fig. 11. Bit error rate versus average SNR per bit for the uncoded 128× 64
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and 16-QAM modulation with C = 8. Benefiting from full
received diversity, the performance curve of the proposed
DLAS-ADMM detection closely matches that of ML detector
in both 4-QAM and 16-QAM scenarios, indicating its ability
to achieve the quasi-ML performance.

Fig. 11 illustrates the impact of varying C on the BER
performance in an uncoded 128 × 64 large-scale MIMO
system. The selection of C depends on factors like BS
coverage, user density, and channel characteristics, typically
set to C = 2, 4, or 8 for DBP and FD [7]–[9], [14].
While a higher C reduces raw data for signal processing and
lowers computation and storage demands per unit, it may also
lead to overall performance degradation and increased system
complexity and bandwidth costs. Specifically, the number of
outer iteration Tmax is set to 3, 5, and 7 for C = 2, 4,
and 8, respectively. Notably, despite the additional iterations,
decentralized ADMM detection schemes experience greater
performance losses compared to MMSE as C increases. This is
primarily due to the challenges of managing local information
with a larger number of DUs. However, the performance gains
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offered by the DLAS mechanism are significant. Regardless of
the value of C, the proposed DLAS-ADMM detection schemes
consistently outperform centralized MMSE detection while
also reducing complexity and bandwidth costs.

Fig. 12 compares the bandwidth cost of the DER and
DBP architectures under the same configuration as in Fig. 12.
The proposed DER architecture effectively eliminates CPU
involvement, resulting in a reduction of bandwidth from C
to C − 1, as outlined in Table II. Specifically, the ADMM
and DLAS-ADMM schemes based on the DER architecture
achieve reductions in bandwidth of 50%, 25%, and 12.5%
compared to their DBP-based counterparts for C = 2, 4, and
8, respectively. More precisely, when C = 4 and Tmax = 4,
DLAS-ADMM in DER attains the same bandwidth cost as
ADMM in DBP, yet provides significant performance enhance-
ments, as shown in Fig. 11, achieving a gain of nearly 3.7 dB
at BER = 1× 10−3.

VII. CONCLUSION

In this paper, we proposed a novel near-ML scheme, termed
DLAS, by modifying and decentralizing the traditional 1-
LAS algorithm for distributed large-scale MIMO detection.
The DLAS mechanism achieves low computational complexity
and significantly reduces data bandwidth requirements. Lever-
aging the properties of Rayleigh channels, we analyzed the
equivalent noise, post-processing SNR, and diversity order for
the proposed DLAS-aided detection, which indicates that it
achieves the same diversity as the ML detection and matches
the optimal performance with the increment of SNR. More-
over, we designed a novel DER architecture to minimize band-
width requirements and enable parallel processing, making the
proposed DLAS-aided detection highly suitable for distributed
large-scale MIMO systems.

The high data rate potential of millimeter-wave (mmWave)
technology necessitates advanced signal processing and anten-
na design strategies to mitigate severe path loss and complex
channel characteristics, ensuring its benefits are fully realized.
Additionally, exploring the error propagation in DUs presents
a promising direction for further research.
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