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Abstract— In this paper, the projected-gradient-descent (PGD)
-based detector for massive MIMO system, which consists of
two basic operations — projection and gradient descent (GD),
is studied to achieve the performance improvement. Since the
projection and GD step have different loss functions, necessary
compromise has to be made to balance them during iterations.
For this reason, the generalized PGD (GPGD) method is pro-
posed with flexible choices of projection and GD. Different
from performing projection and GD alternatively, we show
that implementing projection after every multiple GD steps
is a better solution. Meanwhile, the step-size of GD is also
investigated for convergence efficiency. After that, by unfolding
this proposed GPGD method with deep neural networks (DNN),
the self-corrected auto-detector (SAD) is established to achieve
better decoding performance, where enhancement by attention
mechanism and extension by another iterative method are also
given for performance improvement and efficiency.

Index Terms— Massive MIMO detection, projected gradient
descent, denoising auto-encoder, attention mechanism.

I. INTRODUCTION

NOWADAYS, massive multiple-input multiple-output
(MIMO) technology acts as an enabler and facilitator for

the development of future 6G communication systems owing
to its advantages in spectrum and energy efficiency, robustness
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as well as link reliability [1], [2], [3]. Besides, the uplink
signal detection problem plays an important role in the massive
MIMO systems, and there exist various traditional detectors to
solve this problem [4], [5], [6], [7]. Recently, the deep learning
(DL) technology, which has brought unprecedented boosting
in various fields [8], [9], [10], [11], has been introduced to
massive MIMO detection and drawn the increasing attention.
Technically, these DL-based MIMO detection networks can
be divided into two types, namely, the data-driven and the
model-driven networks.

Requiring a large amount of data to train, the data-driven
networks normally involve standard neural networks like
feed-forward network. A representative instance of these
data-driven networks is DetNet [12], [13], which is established
by unfolding the projected gradient descent (PGD) method
and capable of achieving better performance than minimum
mean square error (MMSE) detector. Besides, in [14] and [15],
ScNet and FS-Net introduce sparse connectivity by substi-
tuting the Hadamard product for the matrix multiplication in
DetNet to alleviate the complexity. BD-Net in [16] employs
distinct bidirectional long short-term memory (LSTM) units in
DetNet to enhance the performance. WeSNet in [17] adopts
profile weight coefficients onto DetNet, resulting in a more
complexity-scalable network. Except these works to do with
DetNet, LISA in [18] utilizes LSTM units to mimic the proce-
dure of successive interference cancellation (SIC) and achieves
the near-optimal performance. Reference [19] combines a
feed-forward network into sphere decoding (SD) algorithm
to predict the best searching radius. RE-MIMO in [20] is
built around recurrent inference machine (RIM) in solving
inverse problems and adopts self-attention mechanism in its
encoder modular. MRIDA-Net [21] implements the modified
randomized iterative detection algorithm (MRIDA) by deep
neural networks for a better detection performance.

As for the model-driven networks relying on certain detec-
tion models that are relatively mature, a general treatment is to
make some specific parameters in the corresponding detection
models trainable. For example, [22] establishes the LcgNet
by setting the two step-sizes in conjugate gradient descent
(CGD) method as trainable, so that the original exact compu-
tation is eliminated. OAMP-Net [23] incorporates DL into the
orthogonal approximate message passing (OAMP) algorithm
by adding trainable scalar variables. Both [24] and [25] involve
learning the damping factors in massage passing algorithm.
Furthermore, [26] develops a trainable optimizer with respect
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to the updating of damping factors in expectation propagation
algorithm, providing a new perspective on the designs of
model-driven network by this hyper-network way.

Ever since the PGD method has been successfully unfolded
by DetNet [12], numerous works have discussed and utilized
it to construct the detection networks. The RIM in [20]
comes from the gradient-based inference method for solving
the inverse problems, which also provides a perspective to
view the PGD-based detector from an inference problem.
Reference [27] derives PGD method from the alternating direc-
tion method of multiplier (ADMM) in optimization problem.
However, the relationship between the projection and gradient
descent (GD) step in it has not been clearly studied. In regard
to this problem, we carry out a detailed investigation in this
paper. The contributions are outlined as follows:

• The relationship of the projection and GD step is revealed
from the perspective of their corresponding loss func-
tions. We develop that these two operations iterate in
PGD method, until a balance between the two related
loss functions is achieved. To the authors’ knowledge, this
is the first time that the PGD-based detection is viewed
through the behaviors of projection and GD step.

• To fully exploit the potential of the above intrinsic
property, we generalize the PGD method to a more
overall framework, namely the generalized PGD (GPGD)
method, for performance improvement. With respect to
this GPGD method, the selection about the number of
GD steps is also studied in full detail for better decoding
performance. Meanwhile, we develop the optimal choice
of the step-size to improve the convergence efficiency.

• For the realization of GPGD method, the self-correction
auto-detector (SAD) is established by DNN, where two
modulars are involved. One is a well-trained denoising
auto-encoder (DAE) to implement the projection, while
the other is a self-correction modular executing GD step.
Then, two enhancement schemes, namely the attention
mechanism and the extension of GD steps, are explored
for further performance and efficiency improvement.

The rest of this paper is organized as follows. Section II
gives a brief introduction to uplink massive MIMO detection
problem and PGD-based detection. Besides, the architecture
of DAE is also introduced. In Section III, the relationship of
the two operations in PGD method, the projection and GD
step, is investigated. Based on this, we generalize the original
PGD method to a more overall framework, GPGD method.
Section IV further analyzes the proposed GPGD method and
discusses the choice of its parameters. By unfolding this
GPGD method, SAD is established in Section V, where two
enhancement schemes are also given, including combination
with attention mechanism and extension in regard to the self-
correction modular. After that, simulations of the proposed
SAD for uplink massive MIMO detection are presented in
Section VI, and Section VII concludes the paper.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the transpose, inverse,
Moore-Penrose inverse of a matrix B by BT , B−1, and B†,
respectively. ℜ(·) and ℑ(·) indicate the real and imaginary

components. I denotes an identity matrix and ln(·) denotes the
natural logarithm. N (x;µ, σ)

△
= 1√

2πσ
exp(− (x−µ)2

2σ2 ) denotes
a Gaussian distribution and U(a, b) represents a uniform dis-
tribution over the interval [a, b]. ⌊x⌉ gives the nearest integer
to x inside the feasible region.

II. PRELIMINARIES

In this section, the massive MIMO system model and some
preliminaries about the PGD-based detection as well as the
denoising auto-encoder are introduced.

A. System Model

Considering the standard massive linear MIMO system
with Nt transmit and Nr receive antennas, let ẍ ∈ XNt

denote the complex-valued transmitted signal vector, and the
corresponding received signal vector ÿ ∈ CNr is given by

ÿ = Ḧẍ + n̈. (1)

Here, XNt ⊂ {ZNt + jZNt} is the set for all possible
transmitted M -QAM symbols, Ḧ ∈ CNr×Nt is the channel
matrix, n̈ ∈ CNr is the additive white Gaussian noise (AWGN)
vector with zero mean and variance σ2

n. This accounts for a
real-valued 2Nr × 2Nt system[

ℜ(ÿ)
ℑ(ÿ)

]
=
[
ℜ(Ḧ) −ℑ(Ḧ)
ℑ(Ḧ) ℜ(Ḧ)

][
ℜ(ẍ)
ℑ(ẍ)

]
+
[
ℜ(n̈)
ℑ(n̈)

]
, (2)

which can be further expressed as

y = Hx + n. (3)

For notation simplicity, from now on N and K are utilized
to denote 2Nr and 2Nt, respectively. Then, channel matrix
H ∈ RN×K is considered and the problem of massive MIMO
detection becomes

x̂ = arg min
x∈AK

∥y −Hx∥2, (4)

where A = {±1,±3, . . . ,±
√
M − 1} with

√
M represent-

ing the modulation index of the corresponding real-valued
amplitude-shift keying (ASK).

B. Massive MIMO Detection Based on PGD Method

The detection in (4) can be equivalently reformulated as an
optimization problem

min
x∈RK

ιAK (x) + g(x). (5)

Here ιAK represents an indicator function of the nonempty set
AK ⊂ RK

ιAK (x) : x →

{
0, if x ∈ AK ;

+∞, if x /∈ AK ,

and g(x) is a smooth convex loss function

g(x) = ∥y −Hx∥2. (6)
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In order to solve (5), there are many existing linear methods
focusing on g(x), such as zero forcing (ZF) and MMSE
detectors

x̃ZF = H†y, x̃MMSE = H†y, (7)

where H and y are the augmented channel matrix and received
signal

H =
[

H
σnIK

]
, y =

[
y
0K

]
. (8)

Then, by a simple rounding to constellation AK , an estimate
that lies inside AK would be the final result

x̂ZF = ⌊x̃ZF⌉ ∈ AK , x̂MMSE = ⌊x̃MMSE⌉ ∈ AK , (9)

so that the constraint related to the term ιAK (x) is satisfied.
For lower complexity, various iterative methods that avoid
inverse operation are adopted to approximate ZF or MMSE
detector. For instance, the GD method updates according to
the current gradient ∇g(x̃n)

x̃n+1 = x̃n − δn∇g(x̃n), n = 0, 1, . . . , L− 1, (10)

where n is the iteration index, δn is the step-size, L is the
total iterations. Also a rounding operator is required here to
satisfy the indicator function ιAK

x̂GD = ⌊x̃L⌉. (11)

Similarly, the projected gradient descent (PGD)
method [28], which combines the projection operator
and GD step, can be utilized as an optimization algorithm
superior to GD method. By defining a loss function measuring
the distance to the transmitted signal xt

fxt
(x) = ∥xt − x∥2, (12)

the projection P that minimizes it:

arg min
P

fxt
(P(x)), (13)

is considered as a well-chosen projection. It can be seen
that the transmitted signal xt is involved here to do with
the decision about this projection. This would introduce the
prior information about the transmitted signal at the very
beginning of detection, providing the possibilities for perfor-
mance improvement. Owing to this, the PGD method is likely
to outperform the pure GD method, and thus the MMSE
detector as well. After a satisfying projection P has been
found, following the traditional setup, the PGD-based detector
iterates this projection and GD step alternatively to update the
detection estimate

x̃n+1 = P(x̃n − δn∇g(x̃n)) ∈ RK , n = 0, 1, . . . , L− 1.
(14)

Finally, x̃L is rounded to the constellation AK to obtain the
final estimation

x̂ = ⌊x̃L⌉ ∈ AK . (15)

However, finding such an optimal projection is difficult,
and a poor-quality projection that does not contribute to
detection would reduce PGD method to a pure GD method.

Fig. 1. Architecture of the denoising auto-encoder.

Fortunately, [13] manages to establish a projection operator
with deep neural networks (DNN), where by invoking back-
propagation (BP) algorithm, the projection can be gradually
refined to satisfy the criterion in (13).

C. Denoising Auto-Encoder

After receiving a corrupted data point as input, the denoising
autoencoder (DAE) is designed to predict the original, uncor-
rupted one [29]. In Fig.1 we visualize the structure of a DAE,
where qD represents a disturbance procedure performing on
x and produces a corrupted point x̄. For instance, a Gaussian
corruption with noise variance σ2 has the following form

qD(x̄|x) ∼ N (x̄;x, σ2I). (16)

This auto-encoder provides a scheme to recover the signal
x from a disturbed one. Specifically, with respect to the
corrupted x̄, an encoder fθ, characterized by the learned
parameter θ, first works on it and outputs a hidden vector
z

z = fθ(x̄). (17)

Then, a decoder gθ′ acts on this hidden vector

x = gθ′(z), (18)

where θ′ is another set of trainable parameter and a recon-
struction about the original signal x has been accomplished.

III. GENERALIZED PGD METHOD

The success of PGD-based detection depends not only on
the projection in (13), but also on the GD step as well.
Therefore, we reveal the role of these two operations by
dividing the process of PGD method into two stages:

Stage I Before the PGD method reaches the performance
of a ZF detector, both the projection and the GD step
can benefit each other towards a ZF performance.

Stage II After the PGD method outperforms ZF detector,
the projection continues finding solutions closer to
ML detection, while the GD step attracts solutions
to a ZF point.

There are two loss functions involved in PGD method:
fxt(x) and g(x) to do with projection and GD step, respec-
tively. We can show their relationship by noticing√

g(x) = ∥Hxt + n−Hx∥
= ∥H(xt − x) + n∥
≤ ∥H(xt − x)∥+ ∥n∥
≤ ∥H∥fxt

(x) + ∥n∥, (19)
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Fig. 2. Illustration of the two cases. Case A: xZF lies outside the success
region; Case B: xZF lies inside the success region.

where ∥H∥ can be any arbitrary matrix norm of H. Hence
the decrease of fxt

(x) would lower an upper bound for g(x),
encouraging it to decrease, which explains why the projection
can accelerate the convergence of GD step at stage I. On the
other hand, since GD step acts as a promising iterative method
leading to a ZF solution, its positive influence on the projection
at stage I is obvious. However at stage II, the minimum of g(x̃)

min
x∈RK

g(x̃) = g(x̃ZF)
△
= g∗ (20)

serves as an absolute lower bound for g(x). This minimum
value g∗ corresponds to the limitation that GD steps can
achieve. Also considering that reaching the minimum of
g(x) is not equivalent to finding the minimum of fxt

(x),
an adversarial behavior between these two processes should
be expected once this minimum g∗ has been reached, which
can be formulated as

fxt(P(x̃)) < fxt(x̃) < fxt(GD[x̃]), (21a)
g(P(x̃)) > g(x̃) > g(GD[x̃]). (21b)

Here GD[·] denotes a single GD step as (10). This implies that
at stage II, a GD step decreases g(x̃) while it would increase
fxt(x̃), and the situation is opposite for a projection.

At this point, a natural solution to this adversarial behavior
should be just eliminating the GD step at stage II if it
keeps pulling the points backward to the ZF point. However,
we point out that the pure projection at stage II is not an
ideal answer, because the projection itself introduces mistakes
into the system. In other words, only decreasing fxt(x̃) is
not necessarily equivalent to the improvement of detection
performance. This can also be seen from the later numerical
results in Fig.8, where after each projection, even though
the fxt

(x̃) value does decrease, the detection performance
deteriorates. To formulate this statement, we assume that a
detector D1 is more powerful in reducing fxt value than
another one D2 and use g(⌊x̃⌉) to estimate the detection
performance since the ML criterion is considered.1

Pr(g(⌊x̃1⌉) > g(⌊x̃2⌉)|fxt(x̃1) < fxt(x̃2)) > 0, (22)

1For an estimate x̃ ∈ RK , from the ML criterion in (4), after rounding
it to the constraint set AK , a smaller g(⌊x̃⌉) value corresponds to a final
solution ⌊x̃⌉ that has higher possibility in turning out to be a ML solution.
Then there is still possibility that D2 outperforms D1 in terms of detection.

where x̃1 = D1(x̃) and x̃2 = D2(x̃) are estimates of
the two detectors before the final rounding to constellation.
To explain this limitation of projection, with each particular
xt, we define its corresponding success region, depicted by the
green dash-lined square in Fig.2. Once an estimated solution
x̃ is located inside this region, rounding it to the constellation
definitely gives the transmitted signal and leads to a successful
detection. If a point x̃ is already a correct result (inside the
success region), then further decrease in fxt(x̃) would attract
x̃ to xt further, while for this particular point, being placed
nearer to xt would not contribute to any performance gain
since it is already able to be detected correctly. However, as the
adversarial property of the two loss functions implies, decrease
in fxt(x̃) results in the increase of g(x̃), making it possible
for detection to deteriorate.

These possible mistakes introduced by projection can be
further specified as illustrated in Fig.2, where those points
located on an ellipse2 enjoy the same value of g(x̃). Let
△g(x̃) = g(x̃) − g∗ measures the difference between g(x̃)
value of these points and the minimum g∗. When x̃ZF locates
outside the success region (Case A, depicted as a star),
a nonzero △g(x̃) makes it possible for x̃ to relocate inside
the success region. This means that for an estimate given by
PGD method x̃PGD, once △g(x̃PGD) > ϵA, where ϵA is a
small-valued threshold, a positive probability defined by

P positive = Pr(⌊x̃PGD⌉ = xt|⌊x̃ZF⌉ ≠ xt) (23)

would not be zero anymore, implying the potential that a
received signal y would get detected correctly even it could
have been mis-detected by the pure GD method or the MMSE
detector. This is where the possible performance gain of PGD
method compared to the pure GD comes from. The other case
is when x̃ZF already locates inside the success region (Case
B, depicted as a triangular). Clearly, △g(x̃PGD) > ϵB results
in a non-zero negative probability

P negative = Pr(⌊x̃PGD⌉ ≠ xt|⌊x̃ZF⌉ = xt), (24)

where ϵB is another certain disturbance. In this case, a received
signal y that could have been correctly detected by simple
GD iterations is mistaken by PGD, which is signified as the
aforementioned mistakes introduced by projection. What is
more, these mistakes made by a projection may still be a
burden for a single GD step to correct.

Remark 1: Both projection and GD step are indispensable
in PGD-based detection, and it is unnecessary to implement
only a single GD step right after each projection.

Considering that the essential change behind these two
operations is the evolution of the two loss functions, we gen-
eralize the PGD method to a GPGD one, as shown in Fig.3.
Specifically, GD would be performed up to m times before
the upcoming projection and this iteration is repeated up to P

2The points on the ellipse indicate those enjoying the same value of g(x̃) =
||y −Hx̃||2. In the lattice region, the candidates points Hx̃’ s should lie on
a circle centered at y if x̃’ s have equal g(x̃). Then, by applying the inverse
transformation of H on the coordinate, this circle would be stretched to an
ellipse.
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Algorithm 1 Proposed GPGD Method
Input H, y, m, P , δ
Output x̂: estimated transmit signal

1: Initialize: set x̃<n>
j as a random point in AK ; j = 0;

n = 0.
2: for n = 0, 1, . . . , P do
3: for j = 0, 1, . . . ,m− 1 do
4: x̃<n>

j+1 = GDδ[x̃<n>
j ]

5: end for
6: x̃<n+1>

0 = P(x̃<n>
m )

7: end for
8: x̂ = ⌊x̃<P>

0 ⌉

Fig. 3. PGD (upper) and proposed GPGD method (bottom).

times. This updated scheme can be expressed as follows

x̃<n>
j+1 = GDδ[x̃<n>

j ], j = 0, 1, . . . ,m− 1; (25a)

x̃<n+1>
0 = P(x̃<n>

m ), n = 0, 1, . . . , P − 1, (25b)

where GDδ[·] specifies a GD step with step-size δ. x̃<n>
j

represents the point output by the j-th GD step that follows the
n-th projection. To summarize, this proposed GPGD method
is outlined in Algorithm 1. With respect to the original PGD
framework, one iteration is composed of a GD step and a pro-
jection, while in the proposed GPGD framework, the one-time
GD step has been extended to a m-times one. For one single
iteration, the complexity has indeed been increased due to this
modification. However, notice that in most cases, a projection
operation is far more time-consuming than a GD step. In other
words, the complexity of the PGD method is dominated by the
projection operation. At the same time, as would be shown in
simulations, the total number of the projections is significantly
reduced by this proposed GPGD framework. Therefore, beside
the advantages in detection efficiency that the GPGD method
brings, the optimization in terms of complexity can also be
seen.

IV. PERFORMANCE ANALYSIS AND OPTIMIZATION

In the proposed GPGD, the steps m and step-size δ relate to
the efficiency and convergence of the detection. With respect
to these two predefined parameters, we examine their roles by
further analysis and develop the suitable choices for them.

A. The Choice of m

As discussed in Sec.III, an ideal relaxation on g(x̃) lies
between ϵA and ϵB,

ϵA < △g(x̃) ≤ ϵB. (26)

In fact, with respect to this upper bound ϵB, a lower bound
on m can be derived. To fully exploit the characteristics of

massive MIMO channels, we introduce the quadratic form of
g(x) during the upcoming analysis:

h(x) =
1
2
xTAx− xTb, (27)

where A = HTH is positive definite [30], b = HTy.
A simple calculation shows that g(x) and h(x) have the
same first-order and second-order derivatives with respect to
x, indicating the equivalence between these two objective
functions in terms of updating equation and global minimizer
x∗. Then, the GD step can be rewritten in terms of h(x)

xj+1 = xj − δ∇h(xj). (28)

By defining a weighted norm [31] of x with respect to the
definite positive matrix A

∥x∥2A = xTAx, (29)

it can be shown that

∥xj − x∗∥2A − ∥xj+1 − x∗∥2A
(a)
= 2δ∇h(xj)T A(xj−x∗)−δ2∇h(xj)T A∇h(xj). (30)

Here (a) holds due to (28), and also notice that

∥xj − x∗∥2A = (xj − x∗)T A(xj − x∗)

= (xj − x∗)T AT A−1A(xj − x∗)
(b)
= ∇h(xj)T A−1∇h(xj), (31)

where (b) comes from

A(xj − x∗) = Axj − b = ∇h(xj). (32)

Combining (30) and (31), we get

∥xj+1−x∗∥2A=

(
1−

2δ∇T
j ∇j+δ2∇T

j A∇j

∇T
j A−1∇j

)
∥xj−x∗∥2A,

(33)

where we use (32) again and denote ∇j = ∇h(xj) for
simplicity.

Lemma 1: For a positive definite symmetric K ×K matrix
A, there holds at every step j

∥xj+1−x∗∥2A ≤ [2− (Λ + 1)2]∥xj−x∗∥2A, (34)

where Λ = δλ1, and λ1 is the smallest eigenvalue of A.
Proof: Let the eigenvalues λ1, λ2, . . . λn of A satisfy

0 < λ1 ≤ λ2 . . . ≤ λn. (35)

With respect to the term inside the bracket of (33), the
following equation holds for any arbitrary non-zero vector s:

2δsT s+δ2sT As
sT A−1s

=
2δ
∑K

i=1 s2
i + δ2

∑K
i=1 λis2

i∑K
i=1(s

2
i /λi)

=
2δ + δ2(

∑K
i=1 λis2

i /
∑K

i=1 s2
i )

(
∑K

i=1 s2
i /λi)/

∑K
i=1 s2

i

(c)
=

2δ + δ2
∑K

i=1 λiηi∑K
i=1 ηi/λi

△
=

2δ + δ2ϕ(η)
ψ(η)

, (36)
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Fig. 4. Values of δ2λ + 2δ and 1
λ

.

where we denote ηi = s2
i /
∑K

i=1 s2
i at the equality (c).

Specifically, ϕ(η) =
∑K

i=1 λiηi represents a point between
λ1 and λn, and thus the numerator characterizes a point at the
curve δ2λ + 2δ. On the other hand, ψ(η) =

∑K
i=1 ηi/λi is

a convex combination of 1
λi

. Therefore, as depicted in Fig.4,
its value is represented by points in the shaded region. Also,
with the same η, λi in these two functions are weighted in
the same way, corresponding to a certain vertical line in the
plot. Clearly the minimum of (36) is reached when it takes
the smallest eigenvalue λ1. Therefore, an appropriate bound
for (36) is

2δ + δ2ϕ(η)
ψ(η)

≥ 2δ + δ2λ1

1/λ1
= Λ2 + 2Λ. (37)

To this end, it is straightforward to get (34).
Theorem 1: A lower bound on m in regard to ϵB is

m ≥ logβGD

r

ϵB
, (38)

where βGD = 1
2−(Λ+1)2 .

Proof: According to Lemma 1, an induction on (34) gives

∥xm−x∗∥2A ≤ [2− (Λ + 1)2]m∥x0−x∗∥2A. (39)

Considering that the weighted norm measures the difference
between the current objective value and the optimal value

1
2
∥x−x∗∥2A = h(x)− h(x∗), (40)

combining it with the upper bound ϵB gives

h(xm)− h(x∗) ≤ [2− (Λ + 1)2]mr ≤ ϵB, (41)

where we use a constant r = h(x0)− h(x∗) to represent the
residual loss value after the previous projection. Therefore, the
number of GD steps m can be lower-bounded by

m ≥
ln r

ϵ

ln 1
2−(Λ+1)2

= logβGD

r

ϵB
, (42)

where βGD = 1
2−(Λ+1)2 depends on the step-size δ as well as

the smallest eigenvalue of A and would be a number greater
than 1, βGD > 1, if the step-size δ is chosen according to the
condition we propose in Sec.IV-B.

The upper bound on m is difficult to develop based on ϵA.
However, suppose △g(x̃) be extremely small, then the result
x̃ would be fixed on x̃ZF. Accordingly, its fxt value would
be limited close to fxt(x̃ZF), leading to a constrained fxt(x̃).
Therefore, to assure not performing GD steps too much to

maintain the decrease of fxt value, we bound this value after
m GD steps by the value of its ancestor iteration as in the first
inequality of the following principle of selecting m

fxt(x
<t>
m ) < fxt(x

<t−1>
m ), (43a)

△g(x<t>
m ) ≤ ϵB, (43b)

where the second inequality is in accordance with Theorem 1.
(43a) gives a criterion on the decision of the largest m that
could be adopted. This one is easy to fulfill since in practice m
would not be chosen to be too large due to the consideration
for complexity. While (43b) shows that the lower bound of
m depends on the residual loss r and the GD base βGD.
On one hand, as the detection goes on, it is safe to use a
smaller m since the residual loss would decrease accordingly.
Moreover, in the next chapter, some extension of GD step has
been discussed and at this point the suitable m would change
as the GD base βGD has changed.

B. The Choice of Step-Size δ

GD steps play an important role in GPGD method, while
the success of GD depends on the effective choice of δ.

Theorem 2: For a massive MIMO system, to ensure the
convergence of GPGD method, the suitable step-size δ lies
in the following range:

0 < δ < min(
1

Nr(1 + 1/
√
α)2

,

√
2− 1

Nr(1− 1/
√
α)2

), (44)

where α = Nr/Nt is the antenna ratio.
Proof: In order to develop a reasonable choice of δ,

we first explicate the role of it by induction over j in a GD
updating step:

xj = (I− 2δA)xj−1 + 2δb

= (I− 2δA)jx0 +
j−1∑
i=0

(I− 2δA)i(2δb). (45)

Now we consider G = I − 2δA. According to the theory
of matrix power series [30], for a Nt × Nt matrix G, Gt

converges to 0Nt when the spectral radius of G, denoted by
ρ(G), is less than 1, which means the following inequality
needs to be held:

ρ(G) = ρ(I− 2δA) < 1. (46)

In this case, (45) gives a simple form: xj = A−1b = xZF.
Moreover, satisfying (46) is equivalent to bound the absolute
value of every eigenvalue of G, λ(G), under 1. Then (46)
changes to

|1− 2δλ(A)| < 1 =⇒ 0 < δλ(A) < 1. (47)

Since A is positive definite with positive eigenvalues, (47)
requires

0 < δ <
1
λn
, (48)

where, again, λn is the largest eigenvalue of A.
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Fig. 5. Structure of the proposed SAD.

Meanwhile, recall that in Lemma 1, the residual of h(x)
shrinks obeying (34). Hence, to guarantee the stability of GD
steps, it is necessary to satisfy 2− (Λ + 1)2 > 0, which gives

−
√

2− 1
λ1

< δ <

√
2− 1
λ1

. (49)

Combining this with (48), we obtain

0 < δ < min(
1
λn
,

√
2− 1
λ1

), (50)

where a threshold for min( 1
λn
,
√

2−1
λ1

) occurs when the two
elements are equal, giving

κ =
√
λn

λ1
=

1√
2− 1

. (51)

Here κ is the condition number of the complex Wishart matrix
A, and as Nr grows, according to [32], the largest and smallest
eigenvalue of A converge in probability to

λ1
p−→ Nr(1− 1/

√
α)2; λn

p−→ Nr(1 + 1/
√
α)2. (52)

Therefore, it is straightforward to arrive at (44).
It is worth noticing that the threshold in (51) accounts for
an antenna ratio α ≈ 22, which is rarely occurred in
practical application. Therefore, bounding δ by 0 < δ <
1/
[
Nr(1 + 1/

√
α)2
]

would be enough for most cases. Fur-
thermore, we point out that in GPGD method, those GD
procedures separated by the projection can be treated inde-
pendently without considering the projection part as we do.

V. PROPOSED SELF-CORRECTED AUTO-DETECTOR

As for the realization of the proposed GPGD method,
we draw inspiration from DAE and establish a self-corrected
auto-detector (SAD), which consists of a DAE and a self-
correction modular. Its complexity is affordable under the
context of massive MIMO system. What is more, we manage
to augment its DAE by adopting attention mechanism and
extend its self-correction modular for a faster realization.

A. Self-Corrected Auto-Detector

The whole architecture of SAD is pictured in Fig.5, where
the SAD has been independently divided into two parts:
a self-correction modular and a DAE, with the following
updating equations at n-th iteration

qn = GDm
δ [x̃n−1], (53a)

zn = k-winners(T S
z ([qn, zn−1])), (53b)

x̃n = T S
x (zn). (53c)

Fig. 6. The inner operations in SAD for one iteration.

Here GDm
δ in (53a) represents m successive GD steps with a

predefined step-size δ, and serves as a self-correction modular
to correct the mistakes made by DAE. (53b) and (53c) are
treated as the encoder fθ and decoder gθ′ respectively of a
DAE, as in (17) and (18), except that the input of encoder
becomes the concatenation to the previous hidden vector zn−1,
[qn, zn−1]. Meanwhile, the k-winners activation function and
the sparse layers, T S

z and T S
x , as in [33] and [34] are adopted

here, where the same sparsity S is assumed. By doing so,
a sparsity representation proposed in [33] is introduced, which
reduces the connections required to train, and thus helps
avoiding over-fitting during training.

The total trainable parameters of our proposed SAD are
those constituting T S

z : RK+νK → RνK as well as T S
x :

RνK → RK and denoted as

θSAD = {Wz,bz,Wx,bx} . (54)

It can be noticed that the parameter sharing structure [35]
is adopted, which reduces the storage complexity but poses a
threat of vanishing gradient [36]. However, since the projection
times have been significantly reduced due to the adoption of
GPGD method, this risk is under control. Moreover, as the
robustness to noise is expected here, this auto-encoder is
chosen to be overcomplete [29], in which the hidden vector
has the dimension greater than the input. This means that the
coefficient ν is an integer greater than one, ν > 1. The detailed
operations in SAD for one iteration is illustrated in Fig.6.

B. Complexity Analysis

In the sequel we present the space complexity, of SAD and
its time complexity analysis. The trainable parameters in SAD
stem from

|θ| = SνK × (K + νK)︸ ︷︷ ︸
Wz

+ νK︸︷︷︸
bz

+SνK ×K︸ ︷︷ ︸
Wx

+ K︸︷︷︸
bx

= O(Sν2K2). (55)

It conveys that in SAD, owing to the parameter sharing struc-
ture, the amount of trainable weights is independent of the total
iterations, P , so that the training burden is significantly eased.
For comparison, we present the corresponding total parameters
required to train in DetNet and SAD in Table I, where the
setting for DetNet is in accordance with the 15-layers one in
Fig.16. From it, we can see that the trainable parameters of
the SAD are much less than those of the DetNet.
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TABLE I
SPACE COMPLEXITY COMPARISON

The time complexity of SAD is as follows. The complexity
of the self-correction modular in (53a) is of order O(mαK2)
for m GD steps, while for the DAE, the complexity of the
encoder and decoder in (53b) and (53c) are of order O(ν2K2)
and O(νK2), respectively. Then, when mα < ν2, which is
a common setting for most cases, the total complexity of
SAD is dominated by that of the encoder in DAE, namely
O(ν2K2). This is acceptable under the background of massive
MIMO, where the influence of hidden-size-coefficient ν is less
significant compared to the massive amount of antennas.

C. Enhanced DAE by Attention Mechanism

Improving the ability to reduce fxt can help make the
detection more efficient. Therefore we include the attention
mechanism in SAD and explain the gain from this augmen-
tation. First we rewrite the fxt loss to get an equivalent loss
fequi. By defining a likelihood value vector of i-th component

li = [exp(−(x̃i−s)2)]T s ∈ A, (56)

its estimated probability of i-th component is given by

qi = softmax(li) =
exp(li)∑

s∈A exp(li(s))
. (57)

Then the equivalent loss fequi can be expressed as

fequi =
2Nt∑
i=1

log qi(s = st), (58)

where qi(s = st) is the estimated probability that the i-th
component of the signal si equals to its label st. Here (58) is
derived from the multi-class cross-entropy loss

Lcrossentropy =
2Nt∑
i=1

∑
s∈A

pi(s) log qi(s) (59)

where pi(s) is the label distribution for si, which can be
represented by a one-hot vector. For instance, in the case of
M = 16, the label probability of sending si = −3 is

pi = [1, 0, 0, 0]T , (60)

or equivalently

pi(s = −3) = 1. (61)

Treating xSAD as a corruption of xt, [37] has derived that
the mutual information between Xt and Z, I(Xt;Z), has a
lower bound and maximizing this lower bound accounts for
minimizing the expected reconstruction error

max
θ

I(Xt;Z) ≥ max
θ,θ′

Eq(Xt,Z)[log p(Xt|Z)] (62)

= min
θ,θ′

Eq(Xt,XSAD)[fequi]. (63)

Fig. 7. An illustration of global attention mechanism.

This states the equivalence between the increase of I(Xt;Z)
and the decrease of fxt

(x), which implies that any approach
boosting the mutual information I(Xt;Z) benefits the mini-
mization of the loss function fxt(x). Following this intuition,
a natural strategy to improve this information maintenance at
t-th projection is to collect the information of the previous
hidden vectors.

For this purpose, we adopt the attention mechanism, the
main idea of which is to take into account all the previous
hidden vectors h̄s, namely source vectors. Then the similarity
between the current hidden vector hn and those source vectors
h̄s is measured by a specific scoring function, such as

score(h̄s,hn) = hT
n ·Wa · h̄s, (64)

where Wa is the attention weight matrix that needs to quantify
during training. Based on the score, the attention coefficients
with respect to these source vectors h̄s are computed

as = softmax(score(h̄s,hn)) (65)

and determine the weights of each source vector when calcu-
lating the context vector

cn =
D∑

s=1

as · h̄s. (66)

Here D is the window length and in this global case it equals
to the total number of the existed source vectors and changes
at each iteration. To this end, together with the current hidden
vector hn, an estimated hidden vector h̃n is computed

h̃n = tanh(Wc[cn,hn]), (67)

and the upcoming calculation at this iteration relies on this
final estimated hidden vector h̃n. This procedure is illustrated
in Fig.7.
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D. Extension of Self-Correction Modular by Steepest Descent

The convergence of SAD partially depends on its self-
correction modular, which is realized by GD method.
Henceforth, by extending it to other iterative methods that
converge faster, an improved convergence of SAD can be
achieved. Here we select the steepest descent (STD) method,
which is a special case of GD, as an instance here to verify
the benefit of predefined step-sizes in SAD.

Considering the objective function h(x) in (27), by setting
its derivative with respect to the step size δ to zero, δj that
minimizes the updated value h(xj − δ∇h(xj)) at j-th step is
given by

δj =
∇h(xj)T∇h(xj)
∇h(xj)T A∇h(xj)

. (68)

Substituting this step-size δj into the updating equation in (28)
gives the STD method. Following the same definition of the
weighted norm in (29), it has been derived in [38] that STD
converges obeying

∥xj+1 − x∗∥2A ≤
(
λn − λ1

λn + λ1

)2

∥xj − x∗∥2A. (69)

Hence, similar to our previous derivation, a lower bound of
the number of STD steps is given by

m ≥
1
2 ln ϵ

r

ln λn−λ1
λn+λ1

= logβSTD

r

ϵ
, (70)

where βSTD = (λn+λ1
λn−λ1

)2 > 1 is the base with respect to
STD method. Again, owing to (52), it is easy to arrived at
the result that the STD base βSTD here is exactly the antenna
ratio, βSTD = α. For most cases, the STD base is much greater
than the GD base, βSTD > βGD. Therefore, in GPGD method,
the lower bound of mSTD for a SAD using STD steps in the
self-correction modular is smaller than that of SAD using GD
steps, mGD, leading to a faster convergence. On the other
hand, in DetNet, instead of using the trainable step-size δ, the
determinant step-size can be calculated by this STD iteration.
It would be shown in our simulation that the latter STD version
of DetNet shows a better performance than its original one.
This verifies that setting the step-size δ as trainable parameters
is not an optimal choice. Therefore our attempt to predefine δ
rather than training it makes sense.

VI. NUMERICAL RESULTS

During the training phase, in accordance with the analysis
under back-propagation through time (BPTT) in [39], we adopt
the weighted loss function

min
n=P∑
n=1

log(n)fxt
(x̃n) (71)

to involve each iteration in BP process as much as possible and
make the vanishing gradient problem less likely to occur. The
training procedure works on the DL library PyTorch. We draw
on 150,000 to train SAD with Adam Optimizer [40] using a
batch size of 100. The noise variance is randomly generated
within Eb/N0 ∼ U([Eb/N0]min − 1, [Eb/N0]max + 1), where

Fig. 8. Monitored fxt (x) and g(x) value in DetNet, as well as the BER
after each projection and GD step.

[·]min and [·]max take the minimal and maximal values used
in detection. The learning rate is set as 0.001 and would
decay by 0.97 after each epoch. We point out that in the
previous analysis we focus on the comparison to the ZF
detector for simplicity consideration, but in the following
experiments, the augmented H and y are utilized in all
detectors for a fair comparison. The source code is available
at https://github.com/LanxinHe/SAD.

The bit error rate (BER) performance is presented with
all the experiments conducted assuming i.i.d Rayleigh MIMO
channels. In Fig.8 and Fig.9, we present the monitored loss
value in DetNet and SAD respectively, where the adversarial
behavior of fxt(x) and g(x) at the stage II of PGD can
be observed. Notice that in DetNet (Fig.8), the BER would
increase after each projection, which means that the detection
deteriorates after the projection in original PGD-detection.
This is in accordance with our analysis about the mistakes
introduced by projection, and it is clear that one single GD
iteration is not enough for correcting these mistakes, leading
to the computation waste by projection. However, for SAD,
this waste of computing resource has been solved thanks to
the adoption of GPGD method. Also recall the principle of
selecting m we proposed in Sec.IV-A. Both of these two con-
ditions can be interpreted as in Fig.9, where the dashed blue
line shows an expected trend of fxt indicated by (43a), and
(43b) implies a narrow distance between the purple squares at
each GD stage and the dashed purple line. By cooperating the
projection with multiple times GD, the potential of both these
two operations can be exploited.

Fig.10 verifies our step-size condition in (44). With respect
to the 16× 16, QPSK scheme in the left of picture, according
to the condition (44), the suitable step-size lies between 0 and
0.0156. As the result shows, utilizing the two step-sizes
(0.012 and 0.014) that obey this condition, the GD method
performs in an ideal way with the tendency converging to
MMSE detection. However, if a step-size that locates even
a little bit outside the range (0.016) is adopted, GD method
begins to deteriorate. Meanwhile, an extreme case with α =
30 is shown in the right picture, where the two terms in the
condition (44) are 0.006 and 0.0052 respectively. It can be seen
that using δ = 0.005, the GD method satisfyingly converges
to MMSE detection, while once this step-size increases to
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Fig. 9. Monitored fxt (x) and g(x) value in SAD, as well as the BER after
each projection and GD step.

Fig. 10. Verification of the condition (44), where the left picture shows
the performance under 16× 16, QPSK, and the right shows the performance
under 120× 4, 64-QAM. All the GD methods iterate 50 times.

Fig. 11. The performance of GD iterations by varying step-sizes δ, with
the SNR fixed at Eb/N0 = 10dB. The left picture corresponds to the case
N = K = 16, where the theoretic bound computed according to the condition
(44) is 0.0156, and the right refers to the case N = K = 32 with the related
theoretic bound δ < 0.0078.

δ = 0.006, it deteriorates again. Even this situation rarely
happens in practice, it demonstrates our proposed step-size
condition.

Furthermore, we also explore the performance of GD iter-
ations with varying step-sizes δ and fixed SNR in Fig.11.
We can see that the theoretic bound derived in (44) does
give a near-optimal upper bound on the selection of step-
size. When the GD algorithm iterates within the small number

Fig. 12. Replacing the trainable step-sizes in DetNet by those calculated
using STD method: under 16× 16, QPSK.

Fig. 13. Performance comparison among STD-SADs with different m (left);
SADs taking different line search methods in self-correction modular (right).

of iterations (like 30 and 50 in Fig.11), which is often the
case taking place in the PGD method, either choosing a δ
too small or too large fails to achieve the potential of GD
method. Hence it is necessary to bound the step-size inside
the proposed condition. Otherwise, the iteration of GD would
become quite ineffective. Besides, as the number of antennas
goes larger, the upper bound given in (44) becomes a more
accurate one. This is owing to the fact that the approximation
in (52) performs more precisely when N goes larger.

A big difference between SAD and other detection networks
is that we do not set the step-size δ as trainable. This may
cause some confusions, so we here make use of STD method
to verify our proposition. For DetNet, instead of training its
step-sizes, we manage to calculate the related STD step-sizes
and plot the performance of these two trained models in
Fig.12. From it, we can see that without training the step-
sizes, DetNet even shows a better performance. Note that
when choosing to train step-sizes, what is paid is more than
just the computation resource used to learn step-sizes. It is
the sacrificed attention that could have been put on other
learnable parameters. Hence, in SAD, we argue to predefine
the step-sizes rather than training them, and its optimal choice
discussed in Sec.IV-B shows a great importance.
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Fig. 14. Performance gain after adopting attention mechanism in SAD.

Fig. 15. Comparison of BER performance for 30× 20 MIMO system using
16-QAM, all related step sizes δ are set as 0.008.

In Fig.13 we train the SAD and its STD-extended version
with different m (in the left), and compare the performance of
SADs taking different line search methods in self-correction
modular (in the right). For each SAD, either a smaller or a
greater m may influence the final performance, implying that
there is a suitable m lying between the principle of selecting
m in Sec.IV-A. In the right the CGD method is included as
well. As a nonlinear method, CGD has the fastest convergence
rate among these three presented methods. Accordingly, the
corresponding suitable self-correction iterations m of these
three detectors decrease as their self-correction modulars
converge faster, mGD > mSTD > mCGD. Even βCGD is
difficult to develop, we can see from βSTD > βGD that the
STD-version SAD owns a smaller lower bound on m, thus just
requiring a smaller m to reach its best performance. Besides,
it is interesting to see that using a faster-converging iterative
method in self-correction modular helps the SAD to resist the
performance deterioration in higher Eb/N0 range.

Fig.14 demonstrates the performance gain of the adoption
of attention mechanism. We train the attention-mechanism-
augmented SAD under two different loss functions, fxt(x)
and the converted cross-entropy loss fequi, respectively. The
SAD trained with both of these two loss functions outper-
form the standard SAD, demonstrating that maintaining the
mutual information between estimates and hidden vectors does

Fig. 16. Comparison of BER performance for 16× 16 MIMO system using
QPSK, all related step sizes δ are set as 0.012.

Fig. 17. (a): Running time comparison between DetNet and SAD. (b) and
(c): Training loss of SAD, DetNet, FS-Net and ScNet.

boost the decrease of loss, so that the detection become
more efficient. Here we adopt the scoring function in (64)
and there are other alternative forms such as inner product
and multilayer perception (MLP). Meanwhile, the two SADs
trained under these two different loss functions show little
difference, verifying the equivalence between fxt(x) and fequi

as we discussed in Sec.V-C.
In Fig.15 we present the performance of SADs with differ-

ent coefficient ν and sparsity S under 30×20 16-QAM system,
where νS can be viewed as a metric of the space complexity
of each SAD. For example, since S = 0.3 means only 30% of
the weights are nonzero and all others are zero-valued, νS =
8×0.3 = 2.4 conveys that the original dense size of SAD has
been reduced from 8K to 2.4K. It can be concluded that BER
drops rapidly as the underlying dimensionality νK increases
or as the model turns more sparse, but this improvement would
saturate. Therefore, even the training burden is affordable,
we do not need to set the dimension of hidden vector too high
just in order to improve performance. For instance, an ideal
set under this case would be ν = 12 rather than ν = 16 for
complexity consideration.

Fig.16 compares the SAD with other PGD-based detectors
where a 15-layers DetNet, a 15-layers FS-Net and a 40-layers
ScNet are involved. The latter two focus on reducing their
complexity by applying only element-wise product. It can be
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seen that among these four detectors, the pure SAD achieves
the best performance, and it is worth pointing out that the
DetNet, which even requires the largest amount of trainable
parameters, performs less competitively than SAD. What is
more, during detection, the SAD performs the projection
with least times (4-times projection compared to 15-times in
DetNet, 15-times in FS-Net and 40-times in ScNet). There-
fore, we can conclude that by unfolding GPGD method, the
SAD works more efficient and achieves a better trade-off
between complexity and detection performance. Besides, the
performance of another DL-based MIMO detector, RE-MIMO,
which is established based on the RIM and adopts the
transformer, is presented as well. It can be seen that the
SAD performing projection 4 times shows the comparable
performance with a 12-layers RE-MIMO detector.

In Fig.17, the running time and real-time training loss
versus epochs are presented. The DetNet and SAD in Fig.17(a)
perform detection with the same batch size of 20. From this
it can be seen that even GPGD method would execute more
GD steps in total than the original PGD method does, the
former can achieve better performance with less complexity.
The training loss comparisons between SAD and other three
DNN-based detector are presented in Fig.17(b) and Fig.17(c),
where all the detectors are trained with the same number
of training set, 150000, per epoch. Note that due to the
loss function that are utilized by each detector are distinct,
comparing their absolute value is not a wise option. However,
the convergence during training can be told by the tendency of
their related loss versus epochs. Both SAD and FS-Net reach
their loss floor within 30 epochs while DetNet and ScNet still
show a decreasing tendency, and the proposed SAD converges
even faster than the FS-Net. This reflects that the SAD is easy
to train and shows a faster convergence during training.

VII. CONCLUSION

In this paper, the PGD-based detector has been studied
to achieve the performance improvement in massive MIMO
systems. By adjusting the projection and GD steps in a more
flexible way, their corresponding loss functions manage to
strike a balance, leading to the proposed GPGD method,
so that the potential of PGD method can be exploited. Specifi-
cally, after analyzing the behaviour of projection and GD step,
we develop the suitable choice for the steps m and the step-
size δ, thus resulting in a more promising and stable detection.
Furthermore, as one realization of GPGD method, the SAD,
has been proposed under the help of DNN to achieve a better
decoding performance. Meanwhile, we integrate the attention
mechanism into SAD and extend it by STD for performance
improvement and efficiency. Finally, simulation results based
on the massive MIMO detection demonstrate the advantage of
GPGD method and the system gain in terms of performance.
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