

Paper ID: 502

Energy Efficiency Optimization In Cell-free Massive MIMO With Normalized Conjugate Beamforming

Bin Yan, Ningxin Zhou, Zheng Wang Southeast university bin_yan@seu.edu.cn

Contents

02

Power Allocation Scheme for NCB Precodingbased EE Optimization Problem

Further Improved By AP Selection

Simulation Results

1. Background

Fig. 1. Illustration of the cell free massive MIMO downlink systems.

Cell free massive MIMO

- Embrace the user-centric idea
- Eliminate the concept of cell boundaries
- Coverage enhancement
- Increased flexibility

Energy efficiency optimization problem

Percentage of power consumed by different components Growing de

Growing demand for mobile traffic

Precoding

- ➤ Conjugate beamforming ⇒ high interference
- ➤ Zero forcing ⇒ complex matrix inversion
- Normalized conjugate beamforming

Conjugate beamforming: directional transmission of signals for users

AP selection

- Reduce extra energy consumption
- > Suitable for the practical implementation
- Avoid substantial pilot contamination

Cell free massive MIMO systems with AP selection

(1) Partial approximation of the objective function

$$SINR_{k}(\{\eta_{mk}\}) = \frac{\rho_{d}\Gamma_{N}^{2} \left(\sum_{m=1}^{M} \sqrt{\eta_{mk}\alpha_{mk}}\right)^{2}}{1 + \rho_{d}\sum_{k'=1}^{K} \sum_{m=1}^{M} \eta_{mk'}\beta_{mk} + (N - 1 - \Gamma_{N}^{2})\rho_{d}\sum_{m=1}^{M} \eta_{mk}\alpha_{mk} + \rho_{d}\sum_{k'\neq k}^{K} \underline{\gamma_{kk'}}} \psi_{k}^{H} \psi_{k'}|^{2}$$

user interference caused by the pilot contamination

Dual summation: complex and intractable.

 $\gamma_{kk'} \approx (N-1) \sum_{m=1}^{M} \eta_{mk'} \alpha_{mk'} \frac{\beta_{mk}^2}{\beta_{mk'}^2} + \Gamma_N^2 \left(\sum_{m=1}^{M} \sqrt{\eta_{mk'} \alpha_{mk'}} \frac{\beta_{mk}}{\beta_{mk'}} \right)^2$

First-order approximation:

- High approximate accuracy.
- The objective function achieves a more tractable form.

ter the second second

(2) Transforming optimization variables and functions

Power allocation coefficients $\{\eta_{mk}\}$ \longrightarrow Denote $\{c_{mk}\} = \{\sqrt{\eta_{mk}}\}$: promote the quadratic convex transformation

Second-order cone (SOC) constraint: $(\boldsymbol{\alpha}_{k}^{T}\mathbf{c}_{k})^{2} \ge (2^{S_{ok}}-1)\left(\frac{1}{\rho_{d}\Gamma_{N}^{2}}+\frac{\sum_{k'=1}^{K}\|\boldsymbol{\beta}_{k}\mathbf{c}_{k'}\|_{2}^{2}}{\Gamma_{N}^{2}}+\frac{(N-1-\Gamma_{N}^{2})}{\Gamma_{N}^{2}}\|\boldsymbol{\alpha}_{k}\cdot\mathbf{c}_{k}\|_{2}^{2}+\sum_{k'\neq k}^{K}\left(\boldsymbol{\xi}_{kk'}^{T}\mathbf{c}_{k'}\right)^{2}\zeta_{kk'}+\frac{(N-1)}{\Gamma_{N}^{2}}\sum_{k'\neq k}^{K}\|\boldsymbol{\xi}_{kk'}\cdot\mathbf{c}_{k'}\|_{2}^{2}\zeta_{kk'}\right),\forall k.$

(3) Approximate non-convex constraint

> Step 3

$$\frac{|\mathbf{n}(1+SINR_k)|}{|\mathbf{P}_{abs}|} \ge t_k, \forall k, \qquad SINR_k(\{c_{mk}\}) = \frac{\Gamma_N^2(\mathbf{\alpha}_k^T \mathbf{c}_k)^2}{\frac{1}{\mu_d} + \sum_{k'=1}^K ||\beta_k \mathbf{c}_{k'}||_2^2 + (N-1-\Gamma_N^2)||\mathbf{\alpha}_k \cdot \mathbf{c}_k||_2^2 + \sum_{k'\neq k}^K ((N-1)||\xi_{kk'} \cdot \mathbf{c}_{k'}||_2^2 + \Gamma_N^2(\xi_{kk'}^T \mathbf{c}_{k'})^2) \zeta_{kk'}} \\ \approx Step 1 \qquad \frac{|\mathbf{n}(1+s)|\mathbf{R}_k|}{t} \ge a_k^n - d_k^n P_{abs} - \frac{b_k^n}{\rho_d \Gamma_N^2(\mathbf{\alpha}_k^T \mathbf{c}_k)^2} - \frac{\sum_{k'=1}^K ||\beta_k \mathbf{c}_{k'}||_2^2 + (N-1-\Gamma_N^2)||\mathbf{\alpha}_k \cdot \mathbf{c}_k||_2^2}{\Gamma_N^2(\mathbf{\alpha}_k^T \mathbf{c}_k)^2} - \frac{\sum_{k'=1}^K ||\beta_k \mathbf{c}_{k'}||_2^2 + (N-1-\Gamma_N^2)||\mathbf{\alpha}_k \cdot \mathbf{c}_k||_2^2}{\Gamma_N^2(\mathbf{\alpha}_k^T \mathbf{c}_k)^2} - \frac{\sum_{k'=1}^K ||\beta_k \mathbf{c}_{k'}||_2^2 + (N-1-\Gamma_N^2)||\mathbf{\alpha}_k \cdot \mathbf{c}_k||_2^2}{\Gamma_N^2(\mathbf{\alpha}_k^T \mathbf{c}_k)^2} - \frac{\sum_{k'=1}^K ||\beta_k \mathbf{c}_{k'}||_2^2 + (N-1-\Gamma_N^2)||\mathbf{\alpha}_k \cdot \mathbf{c}_k||_2^2}{\Gamma_N^2(\mathbf{\alpha}_k^T \mathbf{c}_k)^2} - \frac{\sum_{k'\neq k}^K ((N-1)||\xi_{kk'} \cdot \mathbf{c}_{k'}||_2^2 + \Gamma_N^2(\xi_{kk'}^T \mathbf{c}_{k'})^2)}{\Gamma_N^2(\mathbf{\alpha}_k^T \mathbf{c}_k)^2} \int \zeta_{kk'} + Separate fractions containing logarithmic and quadratic term + The right-hand-side (RHS) is still a non-convex function + The right-hand-side (RHS) is still a non-convex function + The right-hand-side (RHS) is still a non-convex function + The quadratic term become the first-order term.$$

+ Transform denominator term with quadratic optimization variables.

 $\begin{aligned} \mathbf{\alpha}_{k}^{T}\mathbf{c}_{k})^{2} &\geq 2(\mathbf{\alpha}_{k}^{T}\mathbf{c}_{k}^{n})(\mathbf{\alpha}_{k}^{T}\mathbf{c}_{k}) - (\mathbf{\alpha}_{k}^{T}\mathbf{c}_{k}^{n})^{2}, \forall k, \\ x^{2} &\geq 2\hat{x}x - \hat{x}^{2}, \quad \forall x \geq 0, \hat{x} \geq 0, 2x \geq \hat{x} \\ &2c_{mk} \geq c_{mk}^{n}, \quad \forall m, \forall k. \end{aligned}$

+ more computationally efficient formulation.

CIOT

(4) Sequential convex approximation

Convex constraints after approximate transformation

Iterative solve a series of accessible SOCP problems.
The initial feasible solution is easy to obtain.

(5) Convergence analysis

4. Further Improved By AP Selection

Motivation

- Shortage of pilot resources
- Additional backhaul overhead
- More severe interference between

users with similar channels

Algorithm 1 The Proposed Power Allocation Scheme For EE Optimization With NCB

Input: S_{ok} , ρ_d , N, $\{\alpha_{mk}\}$, $\{\beta_{mk}\}$, N_I **Output**: power allocation coefficients $\{\eta_{mk}\} = \{c_{mk}^2\}$ Step 1: perform AP selection, go to Step 2; without AP selection, go to Step 4

Step 2: perform AP selection scheme based on the Kmeans++ to obtain the connectivity matrix \mathbf{X}

Step 3: if $\mathbf{X}_{mk} = 1$, let $\widehat{\alpha}_{mk} = \alpha_{mk}$; else $\widehat{\alpha}_{mk} = 0$, $\forall m, \forall k$. Replace $\{\alpha_{mk}\}$ with $\{\widehat{\alpha}_{mk}\}$ as Step 4 input, proceed to the next step

Step 4: obtain an initial feasible solution c^0 by solving (25), set n = 1

Step 5: perform the *n*-th iteration: solving problem (24) by using SOCP solver, obtain optimal solution c^*

Step 6: when $n = N_I$, terminate the algorithm; else go to Step 7

Step 7: update $\mathbf{c}^n = \mathbf{c}^*, n = n + 1$, go to Step 5

- > Initialization: set the number of clusters as $L = \left| \frac{k}{\tau_{\mu}} \right|$
- > User clustering: clustering based on the similarity of $\{\beta_{mk}\}$
- Centroid position update: whether the clustering result is stable
- > Modify cluster size: ensure the cluster use orthogonal pilots

> AP selection: services for clusters with the best channel quality

zero power

Pilot contamination:

+ Same cluster:
$$|\psi_k^H \psi_{k'}| = 0$$

+ Different clusters: $|\psi_k^H \psi_{k'}| \neq 0$ $\eta_{mk} \eta_{mk'} = 0 \rightarrow \gamma_{kk'} = 0$

Eliminate the interference caused by pilot contamination

11

Fig. 2. Illustration of the energy efficiency versus the number of iterations $(M = 100, N = 1, K = 20, \tau_u = 5, D = 1)$.

Converges with only a few iterations.

Significant improvement in energy efficiency compared to other power allocation schemes. Fig. 4. Illustration of the downlink energy efficiency versus the coherence interval (M = 100, N = 1, K = 40, D = 1).

Further improved by AP selection:

Reduce the backhaul power consumption

Eliminate the interference caused by pilot contamination.

THANK FOR YOUR WATCHING

Bin Yan, Ningxin Zhou, Zheng Wang Southeast university bin_yan@seu.edu.cn

世界物联网博览 WORLD INT EXPO