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Abstract—In this paper, an enhanced six-dimensional movable
antenna (6DMA) assisted over-the-air computation (AirComp)
system is proposed to minimize the computation mean square
error (CMSE) in internet of things (IoT) networks. Unlike
conventional 6DMA systems, our design not only enables each
surface to adjust its 3D position and rotation, but also allows
antennas to move within each surface. Specifically, we formu-
late a joint optimization problem for both enhanced 6DMA
configurations and transceiver design. To solve this complicated
non-convex problem, we propose a hierarchical alternating opti-
mization (HAO) algorithm which decouples the problem as the
subproblems of transceiver design and antennas configuration
optimization subproblems. Then, alternating optimization and
moth-flame optimization (MFO) are applied to solve them,
respectively. Numerical results demonstrate that the proposed
enhanced 6DMA scheme significantly outperforms existing ap-
proaches.

Index Terms—Six-dimensional movable antenna, over-the-air
computation, moth-flame optimization.

I. INTRODUCTION

Over-the-air computation (AirComp) has emerged as a
promising paradigm for efficient wireless data aggregation
in internet of things (IoT) networks [1]-[3]. Unlike tradi-
tional orthogonal access methods, AirComp enables multiple
devices to transmit concurrently over the same frequency,
achieving simultaneous data transmission and computation
with significantly reduced latency and improved spectrum
efficiency. However, the performance of AirComp systems
may be severely degraded by wireless channel impairments
including fading, noise, and signal misalignment.

To address these challenges, various approaches have
been explored. In particular, early works mainly focused on
transceiver design by optimizing transmit scaling coefficients
and receive combining vectors to achieve uniform signal
amplitude at the receiver [4], [5]. Recent studies have also in-
tegrated intelligent reflecting surfaces (IRS) and amplify-and-
forward (AF) relays to enhance the received signal power [6],
[7]. Very recently, the emergence of movable antenna (MA)
technology has opened new opportunities for dynamic channel
optimization, and the related studies have demonstrated the
significant performance improvement of both one-dimensional
(1D) and two-dimensional (2D) MA arrays [8], [9]. However,
these MA configurations are restricted to antenna movements
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Fig. 1. Enhanced 6DMA-assisted AirComp architecture.

within fixed lines or surfaces. To fully exploit the available
spatial degrees of freedom, the six-dimensional movable an-
tenna (6DMA) architecture has been proposed in [10], which
maximizes the spatial reconfigurability by enabling antennas
surfaces to adjust both three-dimensional positions and rota-
tion angles.

In this paper, we propose an enhanced 6DMA-assisted
AirComp system that fully exploits both surface-level and
antenna-level mobility. As illustrated in Fig. 1, different from
existing 6DMA systems that only adjust surface’s position and
rotation, our design enables each 6DMA surface to dynami-
cally adjust its 3D position and rotation through controllable
telescopic-rotating arms, while simultaneously incorporating
movable antennas within each surface. Specifically, the com-
putation mean square error (CMSE) minimization problem is
formulated as a unified optimization framework incorporating
both antenna configurations and transceiver design. To address
it, we propose a hierarchical alternating optimization (HAO)
algorithm that consists of two phases: the transceiver design
through alternating optimization of transmit coefficients and
receive combining vectors, and the antenna configuration up-
date using moth-flame optimization (MFO). Numerical results
demonstrate that our proposed approach achieves considerable
performance improvement compared to existing schemes.

II. SYSTEM MODEL

We focus on the uplink transmission of an AirComp system
consisting of K single-antenna users and a BS equipped with



B enhanced 6DMA surfaces. Let X = {1,2,..., K} and
B = {1,2,...,B} denote the sets of users and enhanced
6DMA surfaces, respectively. Each enhanced 6DMA surface is
a uniform planar array (UPA) comprising N movable antennas,
with N' = {1,2,..., N} denoting the antenna index set. The
position of the b-th enhanced 6DMA surface is represented
by ay = [z, 9p,25)7 € C C R? in the global Cartesian
coordinate system o-zryz, where C denotes the BS’s 3D
deployment region. The rotation of surface b is characterized
by w, = [ap, B, W) where oy, € [0,27), By € [0,27), and
v € [0,27) denote the rotation angles about the z-axis, y-axis
and z-axis, respectively. Within each surface b € B, the n-th
antenna, n € N, can move in a local A x A square region C,
centered at qp, with position Ty, = [Zp.n, Jo.n]’ € Cp-

Meanwhile, we consider a multipath propagation environ-
ment between each user and the BS. The channel from user
k to all antennas on the b-th enhanced 6DMA surface is
expressed as:

Ly,
hb,k(%,ub,{fb,n}):Zuk,l\/gl,k(ub)ab,l,k(Qb,ub,{fb,n})- (D
=1

Here, L; denotes the number of propagation paths, p
represents the complex path coefficient, and /g; 1 (up) is the
effective antenna gain depending on the surface rotation and
the direction of arrival (DoA) of the signal [10], [11]. The
array response vector ay; j is given by:

T
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where A is the carrier wavelength and f; 5, is the unit-norm
direction of arrival vector:

fi 1 = [cos(6, k) cos(¢y k), cos(6 k) sin((bl,k),sin(el,k)]T 3)

with azimuth angle ¢; € [—m, 7] and elevation angle 0, €
[—7/2,7/2]. Besides, the global position of the n-th antenna
on the b-th surface is:

ap k=

To,n (v, Up, Ton) = v + R(wy) [T, 0], )

where R(u;) € R3*3 is the rotation matrix determined by the
rotation angles u; [10].

In the AirComp framework, each user k holds normalized
data sj, satisfying E[sy] = 0, E[[s¢|*] = 1 and E[s;s7] = 0
for Vi # j. Users simultaneously transmit scaled versions of
their data, resulting in the aggregate of received signal:

K
y= thbksk +n. )]
k=1
Here hy, = [thy,€7 . ,hgk]T € CNBx1 s the overall channel

vector from user k£ to all B enhanced 6DMA surfaces based
on (1), by € C represents user k’s transmit coefficient and
n ~ CN(0,0%Iyp) is the additive white Gaussian noise
(AWGN) vector. Consequently the BS processes the received
signal using a combining vector w € CVZ*1 to produce an
estimate:

K
F=wly = ZWHhkkak +win. (6)
k=1

III. PROBLEM FORMULATION

To enhance AirComp performance, our objective is to
minimize the distortion between target and estimated function
variables which is measured by the CMSE. In particular, based
on (6) the CMSE is defined as:

K 2
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The first term represents the signal distortion caused by im-
perfect channel compensation, while the second term accounts
for noise amplification.

To minimize the CMSE in (7), we need to jointly optimize
the enhanced 6DMA configurations and transceiver design,
leading to the following optimization problem:

K
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CMSE=E
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llas — qjll2 > dmin, Vb #j € B, (8d)
n(w)’ (q; —qp) <0, Vb#j€B, (8e)
n(u)’q, >0, VbeB, (8f)

Ty, €C, YbeBneN, (8g)

||fb,n — fb’m”Q >D,Vbe B, Vn#m € N. (8h)

Here, P, denotes the maximum transmit power, dpi, is the
minimum inter-surface distance to avoid mechanical collision,
D is the minimum inter-antenna distance to prevent mutual
coupling, and n(u;) = R(up)n represents the normal vector
of surface b with i1 = [1,0,0]7 being the initial normal vector.

More specifically, as for the constrains from (8b) to (8h),
(8b) limits each user’s transmit power to P.. (8c) ensures
that each enhanced 6DMA surface remains within the BS
deployment region C. (8d) maintains a minimum distance
dmin between surfaces to avoid mechanical collisions. (8e)
and (8f) prevent mutual signal blockage between surfaces and
ensure that surfaces face outward from the BS [10]. (8g) and
(8h) ensure proper antenna placement within each surface’s
movement region while maintaining sufficient inter-antenna
spacing to avoid mutual coupling.

I'V. THE PROPOSED HAO ALGORITHM

Due to the coupled optimization variables and the complex
constraints, the formulated problem in (8a) is highly non-
convex. To efficiently solve this problem, we proposed a HAO
algorithm that decouples the optimization into two phases:

e Phase 1 (Transceiver Design): For fixed enhanced
6DMA configurations (q,u,{T}), we optimize the
transmit coefficients b and receive combining vector
w through alternating optimization with closed-form
solutions.

¢ Phase 2 (Enhanced 6DMA Configuration): Optimize en-
hanced 6DMA configurations (q, u, {T}) using MFO to



minimize the CMSE subject to constraints, where each
configuration’s fitness is evaluated through the optimized
transceiver design from Phase 1.

A. Transceiver Design

According to (8a), given the fixed enhanced 6DMA config-
urations, the optimizing problem of w and b reduces to:

K
. H 112 2 2
min ;lw hibr =17 +o%(wl? )
st. |pl>?<P., Vkek. (9b)

To solve it, we apply the alternating optimization between w
and b:

1) Optimizing w with fixed b: Given the transmit coeffi-
cients b, the optimization of w becomes an unconstrained
quadratic problem. Taking the derivative of the objective
function with respect to w* and setting it to zero, we have

ow*

P K
[Z lwhyby, — 17 + 02||w||2] =0, (10
which yields the closed-form solution:
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2) Optimizing b with fixed w: Given the fixed w, the
optimization problem with respect to b is given by

(1)

K
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Here, for notational simplicity, we define the effective channel
cx 2 wihy = |cg|e?®e for each user k. Since each term in
the summation involves only a single variable by, the problem
in (12) can be decomposed into K optimization subproblems,
which are then solved in a parallel manner. To be more
specific, the subproblem for user & is:

ngin|bkck —1* st | < P. (13)
k

Then, by letting by, = |bx|e’?*x, where |by.| and ¢y, denote
the magnitude and phase, respectively, the subproblem in (13)
can be rewritten as:

|bk0k — 1‘2 = |bkck|2 — 2Re{bkck} +1
= [b|?|ck|? — 2|br]|ck| cos(db, + Be) + 1
> [br|*|ex]* — 2[bg|[cx] + 1 (14)

for any fixed magnitude |by|. Clearly, the minimum of this
subproblem is attained when cos(¢s, + ¢.,) = 1, such that
the optimal phase of by is ¢f = —¢c,.

With the optimal phase, the subproblem in (13) reduces to
magnitude optimization:

ﬁ%illl(|bk||ck| —1)? st |bg|* <P. (15)
k

Note that when |c| > 1/y/P., one can always set |by|* =
1/|ex| to achieve zero distortion. On the other hand, when
|ck| < 1/+/P., the magnitude should be maximized to |b|* =
/P, to minimize CMSE. Combined with the optimal phase
—o.,., the optimal transmit coefficient turns out to be:

1 .
r = min{\/Pc, ||} e I%er
cr

Therefore, for the given antenna configuration, its correspond-
ing transmit coefficient vector and receive combining vector
can be alternately optimized in Phase 1 until convergence.
Subsequently, the CMSE can be expressed as a function of
the enhanced 6DMA configuration (q, u, {T}), i.e

*
b —

(16)

CMSE(q,u,{T}) Z\ ) hy(q,u {FYbi-1A0? w12 (17)

B. Enhanced 6DMA Configuration Optimization

In this phase, the objective is to optimize 6DMA configura-
tion to minimize the CMSE based on (17). Consequently, the
configuration optimization problem is formulated as:

mi{g CMSE(q, u, {T}) (18a)
qu,{F
s.t. (8c),(8d), (8e), (8f), (8g), (8h). (18b)

To efficiently solve this problem, the MFO algorithm is em-
ployed [12]. In MFO, we initialize Npon candidate solutions
(moths), where each moth M; represents a complete enhanced
6DMA configuration:

M; =[q", u”, vee({T})]"

Here, vec({T}) denotes the vectorized antenna positions within
all surfaces. For each candidate, its CMSE can be directly
evaluated in Phase 1, given by (17).

Furthermore, in order to evaluate each candidate configura-
tion while ensuring constraint satisfaction, a fitness function
is introduced that augments the CMSE with a penalty term:

c RGBJr?NB' (19)

F(M;) = CMSE(M;) + 7 - |[V(M;)], (20)
where V(M;) denotes the set of constraint violations. Each
element in V(M;) represents a violated constraint:

V(M;) = {(av, q;)lllas = qjll2 < duin, Vb # j € B}

U {(ap, aj, wp)n(w)” (q; — ap) > 0,Vb # j € B}
U {(qp, up)|n(up) ' qp < 0,Vb € B}
U {(Fb,nyfb,m)mfb,n — fb,m”Q < D,¥n ?é m € N}

The penalty parameter 7 is set sufficiently large to ensure
feasible solutions are always preferred. Therefore, moths with
lower fitness values represent superior configurations that
achieve smaller CMSE and fewer constraint violations.

With the fitness function defined, MFO iteratively updates
the moth positions to minimize the fitness function F(M;).
MFO uses a moth-flame mechanism where moths represent
current candidate solutions, and flames represent the best
positions and serve as attractors. Based on their fitness values,
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moths with better performance become flames that guide the
movement of other moths. Each moth updates its position by
spiraling around its corresponding flame according to:

MZ.(HI) =D, - - cos(27l) + Fj, (22)

where D; = |Mi(t) — Fj| is the distance between the i-th
moth and j-th flame F}, b is a constant defining the spiral
shape, and [ = (a — 1)r + 1 with  ~ U/(0, 1) being a random
variable uniformly distributed over [0,1]. The parameter a
decreases linearly over iterations as a = —1 — ¢/Tu.
This adaptive parameter enables wider exploration initially
and closer convergence to flames in later stages. The spiral
trajectory contrasts with particle swarm optimization (PSO)
algorithm’s linear velocity updates, offering better coverage
of the search space.

After each moth update, boundary constraints are enforced
to ensure that all moths satisfy constraints (8c) and (8g):

max{—C/2, min{[M;]q4,C/2}}, 1<d<3B,
[M;]q=4{ max{—A/2, min{[M;]q4, A/2}}, 6B < d,
[Mi}dv

(23)

otherwise,

where C denotes the BS’s 3D deployment region for enhanced
6DMA surfaces and A denotes the local movement region for
antennas within each surface.

At each iteration, the flames are updated through a compet-
itive selection process. At iteration ¢, we combine the current
moth positions with the previous iteration’s flames and retain
only the best solutions, i.e.,

o sort({Mi(O)}), ift=1,
| besty, {Mi(t_l)} UF), otherwise,

moth (

(24)

where besty, , () selects the Npom solutions with lowest
fitness values from the combined set. If a moth in the current
iteration achieves better fitness than an existing flame, it will
replace that flame in the sorted list.

Besides, to balance exploration and exploitation, MFO
employs an adaptive flame number strategy:

N, moth — 1
Tmax '

In early iterations, this strategy allows each moth to follow its
own flame, which promotes diverse exploration of the solution
space. As iterations progress, more moths are guided by the
best flames, thus enhancing local search around promising
regions. This adaptive approach avoids the premature con-
vergence commonly observed in PSO, where all particles
continuously track the same global best position.

Finally, to summarize, the proposed HAO approach is
presented in Algorithm 1. Clearly, we can observe that Phase
2 spans from line 3 to line 18, which constitutes the main
MFO iteration loop. Within this loop, Phase 1 is incorporated
from lines 13 to 16. As for the complexity, the compu-
tational complexity of the MFO algorithm in Phase 2 is
O(Tinax Nmotn (M log M + M)) [12] where M = 6B+2N B is
the dimensionality of each moth. The alternating optimization

Nfame = round (Nmoth —t- (25)

Algorithm 1 Proposed Hierarchical Alternating (HAO) Opti-
mization Algorithm

1: Tnitialize {M "} Nm0 w, b
2: evaluate fitness F (MZ.(O)) for each moth via (20)
3: for t = 1 to T do

4:  update number of flames Ny, via (25)

5 update flames F' via (24)

6 for : =1 to Nyom do

7: if i < Ngame then

8 update Mi(t) around F; via (22)

9: else

10: update Mi(t) around Fy via (22)

11: end if

12: apply boundary constraints via (23)

13: repeat

14: update receive combining vector w via (11)
15: update transmit coefficients b via (16)

16: until the decrement on CMSE is smaller than ¢

17: evaluate fitness F (Mi(t)) via (20)
18:  end for

19: end for

20: obtain [qT,u”, vec({t})T]" = Fy

21: return q, u, {T}, w, b =0

of transceiver design in Phase 1 requires O(J((NB)? +
KNB)) operations, where J is the number of iterations
until convergence. Since Phase 1 is embedded within Phase
2 and executed for each moth at every iteration, the overall
complexity of the HAO algorithm is O(Tjax Nmow (J (N B)3+
KNB)+ Mlog(M) + M)).

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
enhanced 6DMA-assisted AirComp system through numerical
simulations. We consider a BS deployment region C as a cube
with side length C' = 1 m, equipped with B = 3 enhanced
6DMA surfaces, each containing N = 4 movable antennas.
The local antenna movement region is set to A = 4\ with
wavelength A = 0.125 m. To avoid mutual coupling, we set
the minimum inter-surface distance dp,;, = %)\ + % and the
minimum inter-antenna distance D = A/2. The noise power
is 02 = —80 dBm.

For the channel model, we set Ly = 4 paths for each
user k, with path coefficients 5, ~ CA(0,4 x 107°). The
elevation and azimuth angles of arrival, 6, and ¢, are
uniformly distributed in [—7/2, 7/2] and [—, 7], respectively.
For the MFO algorithm, we use Nyon = 50 moths, maximum
iterations T, = 500, spiral parameter b = 1, penalty
parameter 7 = 20, and convergence threshold € = 104,

We compare our proposed scheme to the following bench-
marks: 1) FPA: A conventional three-sector BS where each
sector spans 120° with fixed antenna positions and orien-
tations; 2) 2DMA: The 2D movable antenna array scheme
from [9], where antennas can move within each surface but
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surface positions and rotations remain fixed; 3) 6DMA-PSO:
The PSO-based 6DMA optimization adapted from [13], where
both surface positions and rotations are optimized but individ-
ual antenna positions within surfaces are fixed; 4) 6DMA-
MFO: The MFO-based standard 6DMA optimization where
only surface configurations are optimized without intra-surface
antenna mobility.

Fig. 2 illustrates the CMSE performance versus the maxi-
mum transmit power P. with K = 50. The proposed enhanced
6DMA-MFO achieves the lowest CMSE, with substantial
improvements over the standard 6DMA-MFO (without intra-
surface mobility) and 6DMA-PSO schemes. The performance
gap is particularly pronounced at lower transmit power lev-
els, where the additional degrees of freedom from antenna-
level optimization effectively compensate for limited power
resources. Moreover, the MFO-based approaches consistently
outperform PSO-based optimization, validating the superior
exploration capability of the moth-flame mechanism in the
high-dimensional configuration space.

Fig. 3 depicts the CMSE versus the number of users K

with P, = 10 dBm. As expected, the CMSE increases with
K due to the increased interference and computation load.
However, our proposed enhanced 6DMA-MFO scheme main-
tains superior performance across all user densities, with the
performance gap widening as K increases. This demonstrates
the scalability of our approach in dense AirComp networks.

VI. CONCLUSION

In this paper, we propose an enhanced 6DMA-assisted Air-
Comp system that exploits both surface-level and antenna-level
mobility. The developed HAO algorithm, which integrates
alternating optimization for transceiver design and MFO for
antenna configuration, effectively addresses the non-convex
optimization challenge. Numerical results validate the substan-
tial performance gains of the proposed enhanced 6DMA archi-
tecture over conventional FPA, 2DMA, and standard 6DMA
systems. Future work will explore practical implementation
considerations including hardware constraints and extend the
framework to multi-cell cooperative scenarios.
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