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Lattice-Reduction-Aided Gibbs Algorithm for Lattice
Gaussian Sampling: Convergence Enhancement

and Decoding Optimization
Zheng Wang , Member, IEEE, Yang Huang, Member, IEEE, and Shanxiang Lyu

Abstract—Sampling from the lattice Gaussian distribution has
emerged as an important problem in coding, decoding, and cryp-
tography. In this paper, lattice reduction technique is adopted
to Gibbs sampler for lattice Gaussian sampling. First, with re-
spect to lattice Gaussian distribution, we show the convergence
rate of systematic scan Gibbs sampling is characterized by the
Hirschfeld-Gebelein-Rényi maximal correlation among the mul-
tivariate of being sampled. Then, Lattice-reduction-aided Gibbs
algorithm is proposed to sample from an equivalent lattice Gaus-
sian distribution but with less correlated multivariate, thus leading
to a better Markov mixing. After that, we extend the proposed
lattice-reduction-aided Gibbs sampling to lattice decoding, where
the choice of the standard deviation for the sampling is fully
investigated. A customized solution that suits for each specific
decoding case by Euclidean distance is given, which results in a
better tradeoff between Markov mixing and sampler decoding.
Based on it, a startup mechanism is also proposed for Gibbs sam-
pler decoding, where decoding complexity can be reduced without
performance loss. Moreover, the recycling Gibbs sampling that
exploits the potential of samples is also considered to improve the
decoding performance in lattice decoding. Simulation results based
on large-scale uncoded multiple-input multiple-output detection
are presented to confirm the performance gain and complexity
reduction.

Index Terms—Lattice Gaussian sampling, Markov chain Monte
Carlo, Gibbs sampling, lattice decoding, large-scale MIMO
detection.

I. INTRODUCTION

NOWADAYS, lattice Gaussian sampling has drawn a lot
of attention in various research fields. In mathematics,

Banaszczyk was the first to apply it to prove the transference
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theorems for lattices [1]. In coding, lattice Gaussian distribution
was employed to obtain the full shaping gain for lattice coding
[2]–[4], and to achieve the capacity of the Gaussian channel [5].
It was also used to achieve information-theoretic security in the
Gaussian wiretap channel [6]–[8] and in the bidirectional relay
channel [9], respectively. In cryptography, the lattice Gaussian
distribution has become a central tool in the construction of many
primitives [10]–[12]. Specifically, lattice Gaussian sampling lies
at the core of signature schemes in the Gentry, Peikert and
Vaikuntanathan (GPV) paradigm [13].

In decoding, lattice Gaussian sampling with a suitable vari-
ance allows to solve the closest vector problem (CVP) and the
shortest vector problem (SVP) [14], [15]. In fact, the classic
detection problem in multiple-input multiple-output (MIMO)
systems can be viewed as a CVP problem, and the dramatically
increased system size of MIMO in 5G has placed a quite pressing
challenge on it [16].

However, in sharp contrast to the continuous Gaussian density,
it is by no means trivial even to sample from a low-dimensional
discrete Gaussian distribution. Efficient sampling schemes do
exist but they only work for a few special lattices [5], [17].
Meanwhile, as the default sampling algorithm for general lat-
tices, Klein’s algorithm only works when the standard deviation
is sufficiently large [13]. Therefore, in order to sample from a
target lattice Gaussian distribution, Markov chain Monte Carlo
(MCMC) methods were introduced [18], [19]. In principle, it
randomly generates the next Markov state conditioned on the
previous one; after the burn-in time, the Markov chain will step
into a stationary distribution, where samples from the target
distribution can be obtained thereafter [20]. As a basic MCMC
method, the Gibbs algorithm, which employs univariate condi-
tional sampling to build the Markov chain, has been introduced
to lattice Gaussian sampling by showing its ergodicity [21]. In
[22], the symmetric Metropolis-within-Gibbs (SMWG) algo-
rithm was proposed for lattice Gaussian sampling to achieve the
exponential convergence. Moreover, the Markov chain induced
by random scan Gibbs sampling was shown to be geometric
ergodicity [23], which means it converges exponentially fast.
Besides Gibbs algorithm, other MCMC methods for lattice
Gaussian sampling also exist, and the independent Metropolis-
Hastings-Klein (IMHK) algorithm is not only uniformly ergodic
but also enjoys an accessible convergence rate [18], [19].

On the other hand, thanks to the convergence theorem of
MCMC, Gibbs sampling with a finite state space naturally
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experiences the geometric ergodicity so that the Gibbs-based
discrete Gaussian sampling decoder has already been adapted
to MIMO detection to solve the CVP [24]–[28]. Moreover,
the Gibbs sampling has also been introduced into soft-output
decoding in MIMO systems, where the extrinsic information
calculated by a priori probability (APP) detector is used to
produce soft outputs [29], [30]. In [31], an investigation of
Gibbs-based MCMC receivers in different communication chan-
nels is given as well. However, given those works, the choice
of the standard deviation σ (also referred to as “temperature”)
for Gibbs sampling decoding has not been fully investigated.
A common choice comes from statistics by letting σ2 be the
variance of noises, which severely suffers from the stalling
problem in high signal-to-noise ratio (SNR) regime. Although
Hassibi et al. suggested σ should instead be scaling at least
as Ω(

√
SNR), it fails to exploit the decoding potential for each

specific case [24]. Meanwhile, another very important point was
ignored for years. Specifically, as an advanced decoder, Gibbs
sampler decoding, however, is not necessary for all the decoding
cases, where the optimal solution may be directly obtained by
suboptimal decoding schemes especially in high SNRs. This
indicates substantial computational complexity can be saved
without any performance loss. In [25], [32], two stopping crite-
rions were given for mixed-Gibbs sampler decoding schemes,
but they only work for the proposed multiple restart strategies
by simply terminating those trapped Markov chains.

In this paper, we advance the state of the art of the Gibbs-based
lattice Gaussian sampling and lattice decoding in several fronts.
First of all, in order to enhance the convergence performance
of Gibbs sampling, the lattice-reduction-aided Gibbs sampling
algorithm is proposed for lattice Gaussian sampling. In particu-
lar, a comprehensive analysis regarding to the convergence rate
of the Markov chain induced by systematic scan Gibbs sam-
pling is presented, and we show the convergence is essentially
dominated by the Hirschfeld-Gebelein-Rényi (HGR) maximal
correlation between the multiple random variables. Hence, by
lattice reduction, an equivalent lattice Gaussian distribution can
be established with significantly reduced HGR maximal corre-
lation, thus leading to a boosting convergence performance.

Secondly, given the convergence gain, we then extend the
lattice-reduction-aided Gibbs sampling algorithm to lattice
decoding, where considerable decoding performance can be
achieved compared to the conventional Gibbs sampling. After
that, the investigation about optimizing the sampling probability
of the target decoding point is carried out, which leads to a
better trade-off between Markov mixing and sampling decoding.
Specifically, we show that the choice of the standard deviation
σ heavily depends on the Euclidean distance from the query
point to lattice. This not only effectively avoids the stalling
problem, but also provides a preferable choice of σ for each
specific decoding case. Hence, for a better approximation of σ,
the initial starting point of the Markov chain is strongly desired to
be well chosen, which is in accordance with geometric ergodicity
as the initial starting point has an indispensable impact on the
convergence.

Thirdly, based on the well chosen initial starting point, we
adopt the correct decoding radius from bounded distance de-
coding (BDD) to build a startup mechanism, which decides

whether to invoke Gibbs sampler or not. Meanwhile, the demand
of the high quality initial starting point can also be guaranteed
through the usage of lattice reduction. In a word, our proposed
Gibbs sampler decoding advances with better decoding perfor-
mance and less complexity cost. Additionally, the mechanism
of recycling Gibbs sampling is also applied to further improve
the decoding performance, which not only works well in lattice
decoding but also in hard-output detection of MIMO systems.

It should be noticed that compared to the lattice Gaussian
distribution, the discrete Gaussian distribution designed for
MIMO detection entails a finite state space (i.e., x ∈ Xn based
on the QAM constellation). After the nonlinear transformation
z = U−1x of lattice reduction (U ∈ Zn×n is a unimodular
matrix with det(U) = ±1), the state space of z turns out to
be computationally expensive to get. For non-Gibbs sampling
based detectors [33], suboptimal remedies can be carried out
to restrict x̂ = Uz to the original set Xn in the end. However,
for Gibbs sampler decoding, the Markov chain along with an
unbounded or approximate state space of z tends to be unreason-
ably wild, which most likely results in an invalid Markov mixing.
Such a problem does not exist in lattice decoding paradigm since
x and z share the same state space Zn. To this end, lattice reduc-
tion is not recommended to be directly applied in the Markov
mixing of Gibbs sampling for MIMO detection. Nevertheless,
the aforementioned analysis results from lattice decoding are
still applicable to MIMO detection, by simply removing lattice
reduction from the Markov mixing. Additionally, besides MIMO
detection, the sampler decoding strategy can also be extended
to signal processing as a useful signal estimator or detector
[34]–[38].

The rest of this paper is organized as follows. Section II
introduces the background of lattice Gaussian distribution and
briefly reviews the basics of Gibbs sampling as well as lattice
reduction. In Section III, the convergence rate of systematic scan
Gibbs sampling is demonstrated to be determined by the HGR
maximal correlation among the multivariate. Based on it, the
lattice-reduction-aided Gibbs sampling algorithm is proposed
for a better Markov mixing performance. Section IV extends
the lattice-reduction-aided Gibbs sampling to lattice decoding.
Simulation results for large-scale uncoded MIMO detection are
presented in Section V. Finally, Section VI concludes the paper.

Notation: Matrices and column vectors are denoted by up-
per and lowercase boldface letters, and the transpose, inverse,
pseudoinverse of a matrix B by BT ,B−1, and B†, respectively.
We use bi for the ith column of the matrix B, ̂bi for the ith
Gram-Schmidt vector of the matrixB, bi,j for the entry in the ith
row and jth column of the matrix B. In addition, in this paper,
the computational complexity is measured by the number of
arithmetic operations (additions, multiplications, comparisons,
etc.). Finally, h ∈ L2

0(π) and L2
0(π) denote the set of all mean

zero and finite variance functions with respect to the target
distribution π, i.e., Eπ[h(x)] = 0 and varπ[h(x)] = v < ∞.

II. PRELIMINARIES

In this section, we introduce the background and mathe-
matical tools needed to describe and analyze the following
lattice-reduction-aided Gibbs sampling.
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Fig. 1. Illustration of a two-dimensional lattice Gaussian distribution with
B = [b1b2], where the red dot and blue dots respectively correspond to the
query point c and sampling probabilities of candidate lattice points DΛ,σ,c(x).
For simplicity, only the closest lattice point Bxcvp (black dot) with the largest
sampling probability is depicted.

A. Lattice Gaussian Distribution

LetB = [b1, . . . ,bn] ⊂ Rn consist ofn linearly independent
vectors. The n-dimensional lattice Λ generated by B is defined
by

Λ = L(B) = {Bx : x ∈ Zn}, (1)

where B is called the lattice basis. We define the Gaussian
function centered at c ∈ Rn for standard deviation σ > 0 as

ρσ,c(z) = e−
‖z−c‖2
2σ2 , (2)

for all z ∈ Rn. When c or σ are not specified, we assume
that they are 0 and 1 respectively. Then, the discrete Gaussian
distribution over Λ is defined as

DΛ,σ,c(x) =
ρσ,c(Bx)

ρσ,c(Λ)
=

e−
1

2σ2 ‖Bx−c‖2

∑

x∈Zn e−
1

2σ2 ‖Bx−c‖2 (3)

for all x ∈ Zn, where ρσ,c(Λ) �
∑

Bx∈Λ ρσ,c(Bx) is just a
scaling to obtain a probability distribution. We remark that this
definition differs slightly from the one in [10], where σ is scaled
by a constant factor

√
2π (i.e., s =

√
2πσ).

Fig. 1 illustrates the discrete Gaussian distribution over Z2.
As can be seen clearly, it resembles a continuous Gaussian distri-
bution, but is defined over a Z2 lattice. It has been demonstrated
in [7] that only if the flatness factor is small enough,1 discrete
and continuous Gaussian distributions could share similar prop-
erties. Otherwise, these two distributions behave quite different
in the sense of entropy rate while the difference in terms of
accuracy between them is straightforward even in 1-dimensional
distribution. Therefore, sampling from these two should be
treated respectively in most of cases of interest especially when
multi-dimensional distribution and random lattice (i.e.,B ∈ Rn)
are considered.

1This corresponds to a sufficiently large standard deviationσ, rendering many
cases of interest inapplicable.

B. Sampler Decoding

Consider the decoding of an n× n real-valued system. The
extension to the complex-valued system is straightforward [39],
[40]. Let x ∈ Zn denote the transmitted signal. The correspond-
ing received signal c is given by

c = Bx+w (4)

where w is the noise vector with zero mean and variance σ2
w,

B is an n× n full column-rank matrix of channel coefficients.
Typically, the conventional maximum likelihood (ML) reads

x̂ = argmin
x∈Xn

‖Bx− c‖2 (5)

where ‖ · ‖ denotes the Euclidean norm. Clearly, the ML decod-
ing in above uncoded MIMO systems corresponds to the CVP
[41]. If the received signal c is the origin, then ML decoding
reduces to SVP.

Intuitively, the CVP given in (5) can be solved by lattice
Gaussian sampling. Since the distribution is centered at the query
point c, the closest lattice pointBxcvp to c is assigned the largest
sampling probability. Therefore, by multiple samplings, xcvp is
most likely to be returned. It has been demonstrated that lattice
Gaussian sampling is equivalent to CVP via a polynomial-time
dimension-preserving reduction [42]. Compared to those ex-
isting decoding solutions by Euclidean distance, decoding by
sampling has promising advantages. Firstly, sampling has the
potential to be efficiently implemented, which is a charming
decoding solution especially for high-dimensional systems. Sec-
ondly, the standard deviation σ can be optimized to improve the
sampling probability of the target point, resulting in a better
decoding performance. Thirdly, by adjusting the sample size,
the sampler decoding enjoys a flexible trade-off between per-
formance and complexity. However, the problem of sampler
decoding chiefly lies on how to perform the sampling over the
target lattice Gaussian distribution.

C. Lattice Reduction Technique

Lattice reduction techniques have a long tradition in the field
of number theory. In 1982, the celebrated LLL algorithm was
proposed as a powerful and famous lattice reduction criterion
for arbitrary lattice. Specifically, a basis B is said to be LLL-
reduced,2 if it satisfies the following two conditions,
� |μi,j | ≤ 1

2 , for 1 ≤ j < i ≤ n;
� δ‖̂bi‖2 ≤ ‖μi+1,i

̂bi + ̂bi+1‖2, for 1 ≤ i < n.
The first clause is called size reduction condition with μi,j =

〈bi, ̂bj〉/〈̂bj , ̂bj〉, while the second is known as Lovász condi-
tion. If Lovász condition is violated, the basis vectors bi and
bi+1 are swapped; otherwise, size reduction is carried out. If
only size reduction condition is satisfied, then the basis is called
size-reduced. The parameter 1/4 < δ < 1 controls both the con-
vergence speed of the reduction and the degree of orthogonality
of the reduced basis.

2Other lattice reduction schemes like Korkin-Zolotarev (KZ) reduction and
Seysen reduction also exist, which are out of scope of this work. See [43], [44]
for more details.

Authorized licensed use limited to: Southeast University. Downloaded on August 27,2023 at 09:04:16 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: LATTICE-REDUCTION-AIDED GIBBS ALGORITHM FOR LATTICE GAUSSIAN SAMPLING 4345

After LLL reduced, the lattice basis consists of vectors that
are relatively short and orthogonal to each other. More precisely,
LLL reduction is able to yield a lattice vector within (2/

√
3)n of

the shortest vector in lattice by average polynomial complexity
O(n4logn) [45]. Inspired by it, the lattice-reduction-aided de-
coding has emerged as a powerful decoding strategy in various
research fields. In MIMO detection, it has been demonstrated
that the LLL reduction based minimum mean square error
(MMSE) detection not only attains the full receive diversity [46],
but also facilitates the diversity-multiplexing trade-off (DMT)
optimal decoding [47]. Meanwhile, LLL reduction can be ef-
ficiently realized by effective LLL reduction with polynomial
complexity O(n3logn) [48]. Nevertheless, the performance
gap between the optimal ML decoding and lattice-reduction-
aided decoding is still substantial especially in high-dimensional
systems.

Algorithm 1: LLL Reduction.

Input: B = [b1, . . . ,bn]
Output: B = BU

1: compute Gram-Schmidt orthogonality (GSO) ̂B
2: k = 2
3: while k ≤ n do
4: size-reduce bk against bk−1

5: if ‖̂bk‖2 < (δ − |μk,k−1|2)‖̂bk−1‖2 then
6: swap bk and bk−1 update GSO
7: k = max(k − 1, 2)
8: else
9: for l = k − 2, k − 3, . . . , 1do

10: size-reduce bk against bl

11: end for
12: k = k + 1
13: end if
14: end while
15: return B = B

D. MCMC Methods

By establishing a Markov chain that randomly generates the
next state, MCMC is capable of sampling from the target distri-
bution of interest. As an important parameter which measures
the time (i.e., number of Markov moves) required by a Markov
chain to get close to its stationary distribution, the mixing time
tmix(ε) is defined as [20]

tmix(ε) = min{t : max ‖P t(x, ·)− π(·)‖TV ≤ ε}, (6)

where the integer t ≥ 1 denotes the index of Markov moves,
‖ · ‖TV represents the total variation distance, π is the target
invariant distribution, P t(x; ·) indicates a row of the transition
matrix P after t Markov moves with the initial state x.3

Thanks to the celebrated coupling technique, for any Markov
chain with finite state space, exponentially fast convergence can

3The (i, j)-th entry P (i; j) of transition matrix P represents the probability
of transferring to state j from the previous state i

be achieved if the underlying Markov chain is irreducible and
aperiodic with an invariant distribution π.

Definition 1 ([20]): A Markov chain with stationary distri-
bution π is geometrically ergodic if there exists 0 < � < 1 and
0 < C(x) < ∞ such that

‖P t(x, ·)− π(·)‖TV ≤ C(x)�t (7)

for all x with t ≥ 1, where function C(x) is parameterized by
the initial state x.

Clearly, coefficient � is the convergence rate of the Markov
chain. In comparison, a Markov chain is said to be uniformly
ergodic if it is geometrically ergodic and C(x) is a constant
independent of x [49]. However, in the case of lattice Gaussian
sampling, the countably infinite state space thatx ∈ Zn imposes
a challenge.

III. LATTICE-REDUCTION-AIDED GIBBS ALGORITHM

In this section, the convergence analysis of systematic scan
Gibbs algorithm for lattice Gaussian sampling is presented,
where its convergence rate is derived by means of HGR maximal
correlation. Then, based on the derived convergence rate, lattice
reduction technique is adopted into Gibbs sampling for a better
convergence performance.

Typically, with respect to Gibbs algorithm for lattice Gaussian
sampling, each coordinate of x is sampled from the following
1-dimensional conditional distribution

Pi(xi|x[−i]) = DΛ,σ,c(xi|x[−i]) =
e−

1
2σ2 ‖Bx−c‖2

∑

xi∈Z e−
1

2σ2 ‖Bx−c‖2

(8)
with σ > 0. Here 1 ≤ i ≤ n denotes the coordinate index of
x,x[−i] � [x1, . . . , xi−1, xi+1, . . . , xn]

T . During this univariate
sampling, the othern− 1variables contained inx[−i] are leaving
unchanged. By repeating such a procedure with a certain scan
scheme, a Markov chain {X0,X1, . . .} is established. Apart
from the random scan who randomly updates the component of
x, systematic scan proceeds the update in a sequential order from
xn to x1, thus completing a full iteration. Generally speaking,
systematic scan is more preferable in lattice decoding due to its
fixed update order. In fact, the mixing times of these two scan
schemes do not differ by more than a polynomial factor [50].

A. Simplified Systematic Scan Gibbs Sampling

For simplicity, in order to reveal the relationship between
convergence rate and correlation structure, the systematic scan
scheme is considered, where its transition probability of each
Markov move can be expressed as

P (Xt = x,Xt+1 = y) =

n
∏

i=1

Pn−i+1(x
t+1
n−i+1|xt

[−(n−i+1)]).

(9)
Clearly, for a given standard deviation σ > 0 and full rank lattice
basis B, it is easy to verify that each random variable xi is
sampled with variance

var[xi|x[−i]] = κi > 0. (10)
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Therefore, all the sampling candidates of xi are possible to
be sampled theoretically, indicating an irreducible chain. In
principle, the irreducible property prevents the random variables
to be totally dependent, where all the components of x for
Markov state Xt may be different with y of Xt+1.

For the sake of convergence analysis, we now formulate the
systematic scan Gibbs sampling to a simple version which only
consists of two nominal componentsx = [x1;x2],x1 ∈ Zm and
x2 ∈ Zn−m. In particular, similar to (8), during a Markov move,
x1 and x2 are iteratively generated by

xt+1
2 ∼ Px2

(x2|xt
1) =

e−
1

2σ2 ‖Bx−c‖2

∑

x2∈Zn−m e−
1

2σ2 ‖Bx−c‖2 (11)

and

xt+1
1 ∼ Px1

(x1|xt+1
2 ) =

e−
1

2σ2 ‖Bx−c‖2

∑

x1∈Zm e−
1

2σ2 ‖Bx−c‖2 . (12)

Through the simplification, the above Markov chain still at-
tains π = DΛ,σ,c as the invariant distribution while its transition
probability becomes

P (Xt = x,Xt+1 = y) = Px1
(xt+1

1 |xt
2) · Px2

(xt+1
2 |xt+1

1 ).
(13)

Insight into this simplified Gibbs sampler, the marginal chains
{x1

1,x
2
1, . . .} and {x1

2,x
2
2, . . .} with respect to x1 and x2

also function as valid Markov chains. Most importantly, these
marginal chains experience the same mixing performance as the
original chain with convergence rate [51], [52]

� = �1 = �2, (14)

which implies we can obtain the convergence rate of the joint
chain by only focusing on its marginal chain. Furthermore,
because xt

1 and xt+1
1 are conditionally independent for a given

xt+1
2 , the detailed balance condition is satisfied by

π′(xt
1)P (xt

1,x
t+1
1 ) = π′(xt+1

1 )P (xt+1
1 ,xt

1) (15)

indicating that the marginal chain turns out to be reversible.
Inspired by it, the following convergence analysis takes place in
the marginal Markov chain {x1

1,x
2
1, . . .} with target distribution

π′ for simplicity.4

B. Convergence Analysis Versus HGR Maximal Correlation

Typically, given the transition probability P (Xt,Xt+1), the
forward operator F of the Markov chain is defined as [53]

Fh(Xt) �
∑

Xt+1∈Ω
h(Xt+1)P (Xt,Xt+1) = E[h(Xt+1)|Xt]

(16)
with induced operator norm

‖F‖ = sup
h∈L2

0(π),var(h)=1

‖Fh‖. (17)

Here, L2(π) is the Hilbert space of square integrable func-
tions with respect to π so that L2

0(π) � {h(x) : E[h(x)] =
0, var[h(x)] < ∞} denotes the subspace of L2(π) consisting

4The same result can be obtained with respect to the marginal Markov chain
{x1

2,x
2
2, . . .}.

of functions with zero mean relative to π. More precisely, for
h(·), g(·) ∈ L2

0(π), the inner product defined by the space is

〈h(x), g(x)〉 = E[h(x)g(x)] (18)

with variance

varπ[h(x)] = 〈h(x), h(x)〉 = ‖h(x)‖2. (19)

Theorem 1: Given the invariant lattice Gaussian distribution
π = DΛ,σ,c, the Markov chain induced by systematic scan Gibbs
algorithm is geometrically ergodic

‖P t(x, ·)−DΛ,σ,c‖TV ≤ C(x)�t (20)

with convergence rate

� = γ2(x1,x2) < 1. (21)

Proof: First of all, regarding to the marginal Markov chain
{x1

1,x
2
1, . . .}, the spectral radius of F1 is closely related with its

norm as [53]

spec(F1) = lim
t→∞‖F

t
1‖1/t. (22)

Meanwhile, the reversibility of the marginal chain corre-
sponds to a self-adjoint operator F1 with [54]

‖Ft
1‖ = ‖F1‖t, (23)

then we have

spec(F1) = ‖F1‖. (24)

Subsequently, according to (17) and (24), the spectral radius of
the forward operator F1 is derived as

spec(F1) = ‖F1‖ = sup
h∈L2

0(π
′),var(h)=1

‖F1h‖

= sup
h∈L2

0(π
′),var(h)=1

{var[E[h(xt+1
1 )|xt

1]]}
1
2

= sup
h∈L2

0(π
′),var(h)=1

{E[E2[h(xt+1
1 )|xt

1]]

− [E[E[h(xt+1
1 )|xt

1]]]
2} 1

2

= sup
h∈L2

0(π
′),var(h)=1

{E[E2[h(xt+1
1 )|xt

1]]}
1
2

(a)
= γ(xt

1,x
t+1
1 ), (25)

where (a) comes from the definition of HGR maximal correla-
tion in [55] as

γ2(ξ, η) = sup
f(ξ):E(f)=0,var(f)=1

E[E2[f(ξ)|η]]. (26)

With respect to γ(xt
1,x

t+1
1 ), on one hand, it follows that

γ(xt
1,x

t+1
1 ) = sup

h∈L2
0(π

′),var(h)=1

var[E[E[h(xt+1
1 )|xt+1

2 ]|xt
1]]

≤ sup
h∈L2

0(π
′),var(h)=1

var[E[h(xt+1
1 )|xt+1

2 ]]

= sup
h∈L2

0(π
′),var(h)=1

E[E2[h(x1) | x2]]

= γ2(x1,x2). (27)
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On the other hand, we have

γ(xt
1,x

t+1
1 ) ≥ sup

h∈L2
0(π

′),var(h)=1

corr[h(xt
1), h(x

t+1
1 )]

= sup
h∈L2

0(π
′),var(h)=1

E[h(xt
1)h(x

t+1
1 )]

= sup
h∈L2

0(π
′),var(h)=1

E[E[h(xt
1)h(x

t+1
1 ) | xt+1

2 ]]

= sup
h∈L2

0(π
′),var(h)=1

E[E2[h(x1) | x2]]

= γ2(x1,x2). (28)

Therefore, according to (27) and (28), we get

spec(F1) = γ(xt
1,x

t+1
1 ) = γ2(x1,x2) < 1, (29)

where the inequality holds due to the fact that x1 and x2 are
random variables of each other by configuration.

Next, by invoking the following Lemma from [56], the
marginal chain {x1

1,x
2
1, . . .} turns out to be geometrically er-

godic with convergence rate

�1 = spec(F1). (30)

Lemma 1 ([56]): Given the invariant distribution π, a re-
versible, irreducible and aperiodic Markov chain with spectral
gap ϕ = 1− spec(F) > 0 converges exponentially as

‖P t(x, ·)− π(·)‖TV ≤ C(x)(1− ϕ)t. (31)

Hence, from (14) and (30), the original Markov chain {X1,
X2, . . .} is geometric ergodicity with exponential convergence
rate

� = γ2(x1,x2) < 1, (32)

completing the proof. �
From Theorem 1, the convergence rate � is determined by

the HGR maximal correlation among the multivariate of being
sampled, which provides a meaningful way for the convergence
enhancement. Theoretically, HGR maximal correlation is an
elegant generalization of the well-known Pearson correlation
coefficient, and serves as a normalized measure of the de-
pendence between two random variables. Apart from Pearson
correlation coefficient, γ(ξ, η) is defined whenever both ξ and η
are non-degenerate, which assumes values in the interval [0, 1]
and vanish if and only if ξ and η are independent. Clearly,
0 ≤ γ(x1,x2) < 1 measures the dependence between x1 and
x2, whereγ(x1,x2) = 0 if and only ifx1 andx2 are independent
of each other. On the other hand, the high correlation betweenx1

and x2 gives rise to a larger value of γ(x1,x2) approaching to 1.
It should be noticed that such a result can be easily generalized
as � = γ2(xi,x[−i]), where a less correlation amongxi andx[−i]

for 1 ≤ i ≤ n is also the sufficient condition for a small value
of γ(x1,x2).

Remark 1: The convergence rate of systematic scan Gibbs
sampling for the lattice Gaussian distribution DΛ,σ,c is dom-
inated by the HGR maximal correlation γ(xi,x[−i]) among
random variables xi’s, where the optimal convergence � = 0
happens when xi’s are independent of each other.

C. Lattice-Reduction-Aided Gibbs Sampling Algorithm

From the convergence analysis, in order to achieve an efficient
Markov mixing, a smaller γ(xi,x[−i]), 1 ≤ i ≤ n is strongly
desired. However, it is hard to explicitly calculate γ in practice.
Regarding to the lattice Gaussian distribution shown in (3), it
is clear that the correlation over elements of x is decided by
matrix B, i.e., the more orthogonal of B, the less correlation
of components in x. For this reason, we attempt to use the
orthogonality defect of B to partially characterize γ(xi,x[−i]).

Specifically, the orthogonality defect of a matrix B is defined
as [45]

ξ(B) =

∏n
i=1 ‖bi‖

| det(B)| , (33)

where det(·) represent the determinant of the square matrix.
According to Hadamard inequality, the orthogonality defect is
lower bounded by ξ(B) ≥ 1, where the equality holds if and
only if vectors in B are mutually orthogonal. Consequently, we
can easily arrive at the following Lemma, whose proof is omitted
here due to simplicity.

Lemma 2: If the full rank matrix B ∈ Rn×n is an orthogonal
matrix with ξ(B) = 1, then γ(xi,x[−i]) = 0 for 1 ≤ i ≤ n,
and samples from lattice Gaussian distribution DΛ,σ,c can be
immediately obtained by systematic scan Gibbs sampling with
convergence rate

� = 0. (34)

Clearly, a smaller value of ξ(B) is in high demand for the
fast mixing. However, for a given lattice basis B, any attempt
to reduce ξ(B) directly for a small γ(xi,x[−i]) is impossible.
Nevertheless, an alternative way can still be carried out by
resorting to lattice reduction technique [45], which transfers the
lattice Gaussian distribution in (3) to an equivalent one:

π(z) =
e−

1
2σ2 ‖Bz−c‖2

∑

z∈Zn e−
1

2σ2 ‖Bz−c‖2 , (35)

where B = BU, z = U−1x ∈ Zn and U ∈ Zn×n is a unimod-
ular matrix with det(U) = ±1.

Undoubtedly, Bz and Bx describe the same lattice point
in the space. Therefore, the target distribution π = DΛ,σ,c es-
sentially maintains unchanged during this transformation but is
parameterized by z, where there is a one-to-one correspondence
between x and z. Then, with respect to the Gibbs sampling, the
conditional sampling probability of Gibbs sampling shown in
(12) becomes

Pz1
(z1|z2) = e−

1
2σ2 ‖Bz−c‖2

∑

z1∈Zm e−
1

2σ2 ‖Bz−c‖2 (36)

with z1∈Zm and z2∈Zn−m, and can be further generalized to

Pi(zi|z[−i]) =
e−

1
2σ2 ‖Bz−c‖2

∑

zi∈Z e−
1

2σ2 ‖Bz−c‖2 . (37)
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Fig. 2. Illustration of the lattice-reduction-aided Gibbs sampler for lattice Gaussian sampling.

In particular, as shown in Fig. 2, given the target distribution
π(x) = DΛ,σ,c(x), the proposed lattice-reduction-aided Gibbs
sampling consists of the following three steps:

1) Generate the equivalent lattice Gaussian distribution
DL(B),σ,c(z) by LLL reduction.

2) Perform the Gibbs sampling over DL(B),σ,c(z).
3) Collect samples of z after the Markov mixing and output

samples of x by x̂ = Uẑ.
On the other hand, similarly, it is straightforward to verify the

Gibbs sampling with respect to the converted lattice Gaussian
distribution is also geometrically ergodic.

Theorem 2: Given DL(B),σ,c(z), the Markov chain induced
by Gibbs sampling converges exponentially fast:

‖P t(z, ·)−DL(B),σ,c(·)‖TV ≤ C ′(z)(�′)t, (38)

where DL(B),σ,c(z) � DΛ,σ,c(x).
Remarkably, such a slight change by replacing x with z intro-

duces a significant benefit: compared to B, the orthogonality
of matrix B is greatly improved by lattice reduction. More
specifically, it has been demonstrated that after LLL reduction,
the orthogonality defect of the reduced basisB is upper bounded
by [45]

ξ(B) ≤ β
n(n−1)

4 (39)

with β = (δ − 1
4 )

−1, indicating a guaranteed reduction from
ξ(B) to ξ(B). Therefore, a smaller HGR maximal correlation
over components within z is most likely to be achieved, i.e.,
γ(z1, z2) ≤ γ(x1,x2), thus leading to a better convergence rate
by Theorem 2.

Remark 2: With respect to sampling from the lattice Gaus-
sian distribution DΛ,σ,c, the usage of lattice reduction is capable
of achieving less correlated random variable zi’s thanxi’s, which
leads to a more efficient Markov mixing.

To summarize, the proposed lattice-reduced-aided Gibbs sam-
pling algorithm is presented in Algorithm 2. Since the operation
of LLL reduction with polynomial complexity O(n3 log n) can
be performed as a preprocessing stage, the complexity of Gibbs
sampling in each single Markov move is easily accepted with
O(n2). Because of this, in MCMC the complexity of each
Markov move is often insignificant, whereas the number of
Markov moves is more critical.

IV. LATTICE-REDUCTION-AIDED GIBBS SAMPLING

ALGORITHM FOR LATTICE DECODING

In this section, we extend the proposed lattice-reduction-aided
Gibbs sampling to lattice decoding. Theoretically, when MCMC

Algorithm 2: Lattice-Reduction-Aided Gibbs Algorithm for
Lattice Gaussian Sampling.

Input: B, σ, c,X0, tmix(ε)
Output: x ∼ DΛ,σ,c

1: let x0 denote the intial state of X0

2: obtain B = BU and z0 = U−1x0 via LLL reduction
3: for t = 1, 2, ... do
4: for i = n, . . . , 1 do
5: sample zti from P (zi|z[−i]) shown in (37)
6: end for
7: update z with the sampled zi and let Zt = z
8: if t ≥ tmix(ε) then
9: output the state of Xt = UZt

10: end if
11: end for

method is applied for sampler decoding, its decoding perfor-
mance can be evaluated by CVP decoding complexity (i.e., the
number of Markov move t), which is defined by [19]

Ccvp � tmix

DΛ,σ,c(xcvp)
. (40)

Here, the mixing time tmix serves as a pick-up gap to guarantee
i.i.d. samples because samples from the stationary distribution
tend to be correlated with each other. Besides, DΛ,σ,c(xcvp)
denotes the sampling probability of the target CVP point. There-
fore, in order to strengthen the decoding performance, one can
either reduce the mixing time tmix (e.g., use LLL reduction to
boost the convergence), or improve the sampling probability
DΛ,σ,c(xcvp), which will be studied in the following.

A. Choice of the Sampling Deviation σ

From the point of view of simulated annealing in statistics,
σ functions as “temperature” to guide the Markov mixing,
which also has an impact upon tmix as well. Given the lattice
Gaussian distributionπ(z) shown in (35), although a small sizeσ
corresponds to a relatively large decoding sampling probability
DΛ,σ,c(zcvp), it also incurs a “cold” Markov chain which tends
to be trapped by the frozen status, and vice versa [57].5 However,
since tmix for Gibbs sampling is hard to get at the current stage,
to balance this inherent trade-off for a better decoding perfor-
mance, a feasible compromise is to ensure a reliable sampling
probability given moderate σ.

5Actually, this is in accordance with the result of independent MHK sampling
algorithm for lattice Gaussian distribution, where the exact convergence rate as
well as the mixing time tmix can be estimated [18], [19].
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In particular, with respect to any z ∈ Zn to be sampled, we
firstly extract σ from the denominator of π(z) as

π(z) =
e−

1
2σ2 ‖Bz−c‖2

∑

z∈Zn e−
1

2σ2 ‖Bz−c‖2

(a)

≥ e−
1

2σ2 ‖Bz−c‖2

∑

z∈Zn e−
1

2σ2 ‖Bz‖2

(b)

≥ e−
1

2σ2 ‖Bz−c‖2

(
√
2πσ)n

∑

z∈Zn e−π‖Bz‖2

= f(σ) · c for
√
2πσ ≥ 1 (41)

where

c � 1

/

∑

z∈Zn

e−π‖Bz‖2 (42)

is a constant and

f(σ) � e−
1

2σ2 ‖Bz−c‖2

(
√
2πσ)n

(43)

is parameterized by σ. Here, (a) and (b) respectively obey the
facts from lattice theory ([1, Lemma 1.4]) that

∑

v∈Λ
e−

1
2σ2 ‖v−c‖2 ≤

∑

v∈Λ
e−

1
2σ2 ‖v‖2 (44)

and
∑

v∈Λ
e−πs−1‖v‖2 ≤ s

n
2 ·

∑

v∈Λ
e−π‖v‖2 , for s ≥ 1. (45)

From (41), it is natural to see that the sampling probability
for any specific z is lower bounded by the function f(σ).
Furthermore, the derivative of function f(σ) with respect to
σ ≥ 1/

√
2π is derived as follows

∂f(σ)

∂σ
=

(

nσ2 − ∥

∥B̄z− c
∥

∥

2
)

exp

(

−‖B̄z−c‖2

2σ2

)

σn+3
(√

2π
)n . (46)

Subsequently, let the above derivative be zero, the optimized
σ that maximizes f(σ) is obtained as

σ = max

{‖ Bz− c ‖√
n

,
1√
2π

}

, (47)

which implies that σ should vary with ‖ Bz− c ‖ for a large
lower bound of π(z).

Clearly, the existence of the lower bound for π(z) guarantees
a reliable sampling probability of z, which could be further
optimized by the careful selection of σ. Meanwhile, the require-
ment of σ ≥ 1/

√
2π serves as a baseline to ensure the Markov

chain evolves dynamically, even though the sampling probability
below σ = 1/

√
2π seems rather attractive.

Hence, as for the target point zcvp for lattice decoding, the
choice of σ due to (47) turns out to be

σcvp = max

{‖ Bzcvp − c ‖√
n

,
1√
2π

}

. (48)

Generally speaking, regarding to different configurations of B
and w, such a flexible setting of σcvp is more beneficial to the
sampler decoding by providing a specific rather than statistic
choice. For small value of ‖Bzcvp − c‖, σcvp tends to get smaller
since c appears close to the lattice and vice versa, thus adaptively
guiding the choice of σ for each zcvp.

Unfortunately, it is impossible to get zcvp for σcvp. There-
fore, in practice, the initial starting point z0 can be applied as
an approximation. Clearly, the closer of z0 to zcvp, the more
accurate of the selected σ. This essentially poses a stringent
request for the selection of z0. Fortunately, thanks to the lattice
reduction, the required high quality initial starting point in
lattice-reduction-aided Gibbs sampling can be guaranteed. In
this paper, the classic Babai’s nearest plane algorithm (also
known as successive interference cancelation (SIC) in MIMO
detection) is utilized by

z0 = zlll-sic, (49)

where the decoding of zlll-sic can be executed during the trans-
formation from DL(B),σ,c(x) to DL(B),σ,c(z). To summarize,
we reformat the proposed standard deviation as

σdistance = max

{‖ Bzlll-sic − c ‖√
n

,
1√
2π

}

. (50)

Again, we emphasize that other decoding schemes are also ap-
plicable to output z0 while the decoding performance improves
with the accuracy of the approximation.

Besides the sampling probability, the initial starting point also
plays an important role in the Markov mixing. More specifically,
for the small set C = {x : V (x) = π(x)−c ≤ d, c > 0} and
d > 2b/(1− λ), the geometric ergodicity Markov chains will
converge exponentially to the stationary distribution π(x) as
[58]

‖Pn(x0, ·)− π(·)‖TV ≤ (1− δ)rn +

(

Ur

α1−r

)n

×
(

1 +
b

1− λ
+ V (x0)

)

, (51)

where 0 < r < 1, 0 < λ < 1, U = 1 + 2(d+ b) and α =
1+d

1+2b+λd . From (51), starting the Markov chain with z0 as close
to the center of the lattice Gaussian distribution (i.e., the query
point c) as possible would be a judicious choice for the efficient
tmix, which is accordance with our suggestion.

On the other hand, since w in (5) entails the additive white
Gaussian noise (AWGN) with zero mean and variance σ2

w, it
follows that

‖Bz− c‖2 = ‖Bx− c‖2 ≈ nσ2
w (52)

by the law of large numbers. Then, by simply substituting (52)
into (47), the choice of σ can be obtained in a statistic way, that
is,

σstatistic = max

{

σw,
1√
2π

}

. (53)

Interestingly, we point out that σ = σw is just the conventional
wisdom that is widely accepted by related works. However,
compared toσstatistic, it severely suffers from the stalling problem
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as σ2
w shrinks intensively with the increase of SNR. Therefore,

the lower bound σ ≥ 1/
√
2π serves as a necessary complement

to active the sampling away from the frozen status. Note that
the consistency behind choices of σstatistic and σw suggests our
analysis based on the sampling probability is tight enough, and
we then advance it to more specific cases.

B. Startup Mechanism Based on Correct Decoding Radius R

The application of the initial starting point arises a natural
question: whether Gibbs sampling is necessary to every decod-
ing case? In what follows, we try to answer this question from
the perspective of correct decoding radius of BDD.

Theoretically, BDD targets at solving the decoding problem
when the query point is close to the lattice within a certain
distance, which corresponds to a restricted variant of CVP. In
BDD, the concept of correct decoding radius R was proposed to
serve as a benchmark for evaluating the decoding performance
[59]. More specifically, CVP is guaranteed to be solved if the
distance between the query pointc and the latticeΛ (i.e.,d(Λ, c))
is less than R. As for Babai’s nearest plane algorithm, its correct
decoding radius is given by [59]

Rlll-sic =
1

2
min
1≤i≤n

‖̂bi‖. (54)

Here, we highlight the significance of LLL reduction again as

it greatly increases mini ‖̂bi‖ compared to mini ‖̂bi‖. Further-
more, it has been shown in [59] that Rlll-sic is lower bounded
as

Rlll-sic ≥ 1

2
√
nβ

n−1
4

λ1(B), (55)

where β = 1/(δ − 1/4) and λ1 denotes the minimum distance
of the lattice L(B). Therefore, for the consideration of decoding
efficiency, the correct decoding radius Rlll-sic can be applied as
a theoretical judgement to make the decision whether invoke
Gibbs sampling or not. This means substantial decoding com-
plexity will be saved without performance loss.

In particular, let z0 = zlll-sic, the startup mechanism works
based on the thresholdRlll-sic. If ‖Bz0 − c‖ ≤ Rlll-sic, then there
is no need to recall Gibbs sampler as zcvp = zlll-sic for sure.
Otherwise, Gibbs sampler is activated for a better decoding
performance. Moreover, such a judgement can be further relaxed
with a constant α ≥ 1

‖Bz0 − c‖ ≤ α

2
min
1≤i≤n

‖̂bi‖, (56)

which leads to a flexible trade-off between decoding perfor-
mance and efficiency.

From the perspective of efficient sampler decoding, the need
for the high quality initial starting point z0 is also in strong
demand for providing a large size of correct decoding radius R.
In essence, those demands actually reveal a salient feature of
geometric ergodicity: the selection of the initial starting point is
an indispensable part of the Markov mixing, which is worth to
be well studied. Here, we use it to work for the choice of σ, the
pursuit of convergence as well as the startup mechanism, and we
believe our work is just the tip of the iceberg. Meanwhile, the

proposed startup mechanism based on the correct decoding ra-
dius also provides an adaptive strategy for other lattice decoding
schemes especially in tackling with high-dimensional scenarios.

C. Performance Improvement by Recycling Gibbs Sampling

In standard Gibbs sampling, the state of the next Markov
move is obtained when all the components of x are updated
(i.e., systematic scan) or n times component of x are randomly
picked up to update (i.e., random scan). However, in [60], the
conception of recycling was proposed, which takes the samples
with only one updated component into account, i.e.,

xrecycle−i = [x1, . . . , xi−1, xupdate−i, xi+1, . . . , xn]
T . (57)

In other words, with t-times Markov moves, there are eventually
t · n samples ofx, and the t samples outputted by standard Gibbs
sampling is just a subset of it. Typically, this scheme is named
as trivial recycling Gibbs (TRG) sampling.

It is shown that with the extra t · (n− 1) samples, there are no
apparent advantages of TRG over standard Gibbs in terms of the
approximation of the marginal densities, and multiple recycling
Gibbs (MRG) was further proposed thereafter [60]. However, in
lattice decoding, those extra t · (n− 1) samples greatly expand
the candidate list without extra computational cost. This is sim-
ilar to list decoding, where the decoding performance gradually
improves with the valid list size [61]. Note that the large number
of samples of recycling Gibbs naturally suits a more dynamic
searching over the state space while a conservative choice of
σ will limit its sample diversity. Therefore, a reasonably large
σ is recommended in lattice decoding for a better decoding
performance. Clearly, such a recycling operation can be easily
adopted to the proposed lattice-reduction-aided Gibbs sampling
algorithm by

zrecycle−i = [z1, . . . , zi−1, zupdate−i, zi+1, . . . , zn]
T . (58)

Besides recycling Gibbs, the adaptive Gibbs sampling, which
dynamically updates the transition probability of the Markov
chain by learning from the collected samples, also has great
potential in lattice Gaussian sampling and lattice decoding [62],
[63]. However, because the adaptive algorithm has the risk to
be no longer a valid Markov chain, the design as well as the
related analysis is challenging. Although feasible methods for
the convergence guarantee was given in [64], care must be
taken in tacking with lattice Gaussian sampling. For this reason,
we leave the research of adaptive Gibbs-based sampling as a
future work. Note that lattice-reduction-aided recycling Gibbs
sampling seems well suited for the soft-output detection in
MIMO bit-interleaved coded modulation iterative detection and
decoding (BICM-IDD) systems by contributing more qualified
candidates, where further study with respect to coded MIMO
systems by using MCMC will be one of our research works in
future [65]–[68].

D. Adoption for Large-Scale MIMO Detection

In lattice decoding, bothx and z have the same state space Zn.
However, as for MIMO systems, the transmitted signal x ∈ Xn

normally belongs to a finite M -QAM constellation. Therefore,
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Fig. 3. Illustration of the defective Markov moves along with the unbounded state space z = U−1x. The original symbols x ∈ X 2 with X = {−1, 0, 1, 2} and
U = [0 1; 1− 1], and the index 1, 2, 3, 4 along the arrows stand for the possible defective Markov moves.

an inherent disadvantage associated with lattice reduction does
exist since the state space of z = U−1x after the nonlinear trans-
formation is computationally expensive to get [69]. Generally, in
lattice-reduction-aided detection for MIMO systems, there are
two suboptimal remedies to alleviate this problem. The first one
directly discards those out-of-region points, which is referred
to as naive lattice decoding (NLD) [70]. Another remedy is
to restrict x̂ = Uz to the original set Xn, which is commonly
accepted [43].

Unfortunately, both of these two remedies are not compatible
with lattice-reduction-aided Gibbs sampling for MIMO detec-
tion as they only focus on the restriction of x at the final decision
stage. In sharp contrast to them, after the transformation by
lattice reduction, the Markov mixing along z requires a clear
state space, otherwise the Markov chain is going to be invalid
due to the wild mixing. Although approximation for the state
space of z can be roughly made, it does not exactly correspond
to the original state space of x, leading to a defective Markov
mixing. For a better understanding, Fig. 3 is presented as an
illustration.

The essential reason behind such a problem is due to the
acceptance mechanism of univariate sampling, i.e., every sam-
pling candidate is accepted without any extra judgement or
restriction. This actually raises a stringent requirement about
the state space of Gibbs sampling since even a tiny disorder at
the beginning would lead to a terrible error propagation along
the mixing. As a comparison, the MCMC based independent
Metropolis-Hastings-Klein (MHK) algorithm utilizes an accep-
tance ratio to decide whether to admit the sample candidate
or not,6 and LLL reduction has been well adopted to it for a
better decoding performance in MIMO detection [19]. To this

6In principle, Gibbs sampling can be viewed as a special case of Metropolis-
Hastings algorithm with acceptance ratio p ≡ 1.

end, in MIMO detection, lattice reduction without clear state
space of z = U−1x is not recommended to participate in the
Markov mixing. This is in line with the observations from [30],
but it attributes the incompatibility to the increment of local
minima by lattice reduction, which actually also exists in the
lattice-reduction-aided detection.

Nevertheless, lattice reduction still works for Gibbs sampling
in MIMO detection as a preprocessing stage to output the
required initial starting point x0 = xlll-sic. Meanwhile, it is also
easy to verify that our analysis about the choice ofσ as well as the
startup mechanism for cases of z suit well for cases of x (simple
scaling and shifting with respect to x are necessary to make it
continuous integer). Therefore, given x0 = xlll-sic, considerable
performance gain and complexity reduction can be achieved.

V. SIMULATION

In this section, the performance of the proposed Gibbs sam-
pling is evaluated in the large-scale uncoded MIMO detection.
Specifically, the ith entry of the transmitted signal x, denoted
as xi, is a modulation symbol taken independently from an
M -QAM constellation X with Gray mapping. Meanwhile, we
assume a flat fading environment, where the square channel
matrix H contains uncorrelated complex Gaussian fading gains
with unit variance and remains constant over each frame dura-
tion. Let Eb represents the average power per bit at the receiver,
then the signal-to-noise ratio (SNR) Eb/N0 = n/(log2(M)σ2

w)
where M is the modulation level and σ2

w is the noise variance.
Then, we can express the system model as

c = Hx+w. (59)

Clearly, this decoding problem of x̂ = argminx∈Xn ‖Hx−
c‖2 can be solved by sampling over the discrete Gaussian
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Fig. 4. Bit error rate versus average SNR per bit for the uncoded 16× 16
MIMO system using 4-QAM.

distribution

PL(H),σ,c(x) =
e−

1
2σ2 ‖Hx−c‖2

∑

x∈Xn e−
1

2σ2 ‖Hx−c‖2 . (60)

Fig. 4 shows the bit error rate (BER) of lattice-reduction-aided
Gibbs sampling detectors in a 16× 16 uncoded MIMO system
with 4-QAM. This corresponds to a lattice decoding scenario
with restricted state space in dimension n = 32. The system-
atic scan Gibbs algorithm performs 1-dimensional conditional
sampling in a backward order, thus completing a Markov move
by a full iteration. As a fair comparison, the number of Markov
moves is set as t = 50. Meanwhile, the standard deviation σ
applies σstatistic in (53) for all the Gibbs samplers, which is
able to avoid the stalling problem in high SNR region. As
can be seen clearly, under the help of LLL reduction, sig-
nificant performance gain can be achieved by the proposed
lattice-reduction-aided Gibbs sampling algorithm. Moreover, if
the state space of z = U−1x is known, then the decoding will
achieve the optimal performance. However, finding the state
space of z is unaffordable in practice due to the exhausted
search, which makes the suboptimal solution with the initial
starting point outputted by the lattice-reduction-aided decoder
as an alternative. Nevertheless, its performance gain compared
to the standard Gibbs is still substantial. Another observation is
that the decoding performance of lattice-reduction-aided Gibbs
sampling based on SIC outperforms that of zero-forcing (ZF).
In terms of the convergence behaviour of geometric ergodicity,
this is because the initial starting point provided by SIC-LLL
is closest to the center of the distribution shown in (60), thus
enabling a most efficient Markov mixing. As a complement,
Fig. 5 shows the BER of Gibbs sampling detectors in a 32× 32
uncoded MIMO system with 64-QAM. As expected, consider-
able decoding performance gain can be obtained by the proposed
lattice-reduction-aided Gibbs sampling algorithm.

Fig. 6 shows the BER performance of Gibbs sampling de-
tectors in a 16× 16 uncoded MIMO system with 4-QAM. This

Fig. 5. Bit error rate versus average SNR per bit for the uncoded 32× 32
MIMO system using 64-QAM.

Fig. 6. Bit error rate versus average SNR per bit for the uncoded 16× 16
MIMO system using 4-QAM.

corresponds to a lattice decoding scenario with restricted state
space in dimension n = 32. As a comparison, lattice-reduction-
aided Gibbs sampler with different choices of standard deviation
σ (i.e., δstatistic, δhassibi and δdistance) are illustrated under the same
Markov moves (i.e., t = 50). Here, the choice σw is contained
in σstatistic, and the choice δhassibi comes from [24] as

σ2
hassibi =

SNR
lnn

+

√

(

SNR
lnn

)2

− 2
SNR
lnn

, (61)

which still belongs to a statistic solution of σ. Clearly, in both
lattice-reduction-aided Gibbs samplers based on ZF and SIC,
the decoding performance with δdistance given in (50) are the
best. This confirms our analysis as it fully takes advantage of
each specific decoding while the choice δstatistic or δhassibi only
offers a general solution by statistics.

Similarly, the same observations can also be found in Fig. 7,
which shows the BER performance in a 16× 16 uncoded MIMO
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Fig. 7. Bit error rate versus average SNR per bit for the uncoded 16× 16
MIMO system using 16-QAM.

Fig. 8. Bit error rate versus average SNR per bit for the uncoded 24× 24
MIMO system using 4-QAM.

system using 16-QAM. Intuitively, compared to the basic ZF-
LLL or SIC-LLL detection, considerable performance gain is
obtained by the lattice-reduction-aided Gibbs sampling detec-
tors with t = 50. As expected, the choice of σdistance performs
the best due to its advantages of customized strategy, and the
solution σhassibi is slightly better than σstatistic. In addition, for
the sake of stalling problem, we point out the importance of the
lower bound σ ≥ 1/

√
2π contained in both σdistance and σstatistic,

which prevents the Markov mixing from getting frozen.
Fig. 8 presents the BER performance comparison between

the lattice-reduction-aided Gibbs sampling decoding and other
decoding schemes in a 24× 24 uncoded MIMO system with
4-QAM. Clearly, all the selected decoding schemes achieve the
full receive diversity gain while the lattice-reduction-aided SIC
detector serves as a basic line. In particular, compared to the
embedding list algorithm in [59], fixed candidates algorithm
(FCA) in [71] and iterative list decoding in [72] with 50 samples,

Fig. 9. Bit error rate versus average SNR per bit for the uncoded 48× 48
MIMO system using 16-QAM.

the proposed lattice-reduction-aided Gibbs sampling detector
with δdistance yields a better decoding performance under the
same number (t = 50) of Markov moves. Meanwhile, with
the increase of Markov moves (i.e., t = 100), the decoding
performance improves gradually. On the other hand, the BER of
the recycling-based lattice-reduction-aided Gibbs sampling de-
tector is also shown, where the decoding performance improves
due to the larger size of the qualified candidate list. Accordingly,
the decoding performance of recycling Gibbs improves with the
increment of Markov moves as well. Note that since a large size
of samples is allowed, recycling Gibbs deserves a larger σ for
a more dynamic state space searching. To this end, the standard
deviation we choose for it is σ = 2, thus making the collected
samples more diverse. As a complement, the corresponding BER
performance comparison in a 48× 48 uncoded MIMO system
with 16-QAM is also given in Fig. 9, where further performance
gain can be achieved by the recycling operation without extra
computational cost.

In Fig. 10, the BER of Gibbs sampling detectors with dif-
ferent coefficients α ≥ 1 by means of correct decoding radius
Rlll-sic are evaluated in a 24× 24 uncoded MIMO system with
16-QAM. The choice of σdistance is applied and the number of
Markov moves is set by t = 50. Specifically, given the initial
starting point x0 = xlll-sic, ‖Hxsic-lll − c‖ ≤ αRlll-sic serves as a
judgement to decide whether to invoke Gibbs sampling detector
or not. As shown in Fig. 10, the decoding performance degrades
gradually with the increase of α, where α = 1 strictly obeys
xcvp = xlll-sic and α > 1 is a loose version of it. Clearly, with
a moderate α (experimentally n/8), the decoding shows negli-
gible performance loss, but saving considerable computational
complexity from it. To be more precisely, the percentage of
the direct decoding finished by the initial starting point, i.e.,
xoutput = xsic-lll, is depicted in Fig. 11.

Here, we highlight two salient features observed from Fig. 11.
On one hand, with the increase of Eb/N0, the noises are sup-
pressed gradually, which significantly improves the quality of
the output from SIC-LLL. In other words, more and more initial
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Fig. 10. Bit error rate versus average SNR per bit for the uncoded 24× 24
MIMO system using 16-QAM.

Fig. 11. Percentage of direct decoding versus average SNR per bit for the
uncoded 24× 24 MIMO system using 16-QAM.

starting points are eligible to be directly outputted along with
diminishing noises. Hence, from the perspective of each specific
decoding point, the demand for Gibbs sampling detector should
decrease along with SNR, which emphasizes the significance
of the proposed startup mechanism by removing amounts of
unnecessary sampling operations. On the other hand, with the
increase of α, the startup judgement becomes loose while more
initial starting points are allowed to output. This naturally leads
to inevitable performance degradation. However, as shown in
Fig. 10, a moderate choice ofα (e.g.α = n/8) still could achieve
a promising trade-off between performance loss and complexity
reduction.

Following the same scenario in Fig. 10 and Fig. 11, for a better
comparison to illustrate the computational cost, Fig. 12 is given
to show the computational efficiency of the proposed startup
mechanism. More specifically, the average elapsed running

Fig. 12. Average time cost versus average SNR per bit for the uncoded24× 24
MIMO system using 16-QAM.

times per decoding case by lattice-reduction-aided Gibbs sam-
pling detectors with different α ≥ 1 are drawn, which actually
correspond to the invoked detection complexities respectively.
The simulation is conducted by MATLAB R2016a on a single
computer, with an Intel Core i7 processor at 2.7 GHz, a RAM
of 8 GB and Windows 10 Enterprise Service Pack operating
system. Here, the operation of LLL reduction (with polynomial
complexity O(n3 log n)) is applied as a preprocessing, which
is not taken into account by the running times. As for the
comparison, the running times of SIC-LLL, Gibbs sampling
per each Markov move (approximately 2.4× 10−3s) as well
as standard lattice-reduction-aided Gibbs sampling detector are
presented as the baselines. Clearly, the case of α = 1 has the
same decoding performance with the standard lattice-reduction-
aided Gibbs sampling detector. However, under the help of the
proposed startup mechanism, considerable running time can be
saved with the increment of SNR, which is very important in
practise. Meanwhile, with the increase of α, the judgement of
the startup mechanism becomes looser and looser, resulting in
performance degradation and complexity reduction.

VI. CONCLUSION

In this paper, lattice reduction was introduced to Gibbs
sampler for lattice Gaussian sampling. The convergence rate
of systematic scan Gibbs sampling was investigated in full
details. As demonstrated, the HGR maximal correlation over
elements in lattice Gaussian sampling plays an indispensable
role in the Markov mixing. Therefore, lattice reduction is applied
to establish an equivalent lattice Gaussian distribution, where
Gibbs sampling can be carried out with a better convergence
performance. After that, we show that the proposed lattice-
reduction-aided Gibbs sampling can be easily used as a sampler
decoding scheme to solve the CVP. To balance the trade-off
between Markov mixing and sampler decoding, the choice of
the standard deviation during the sampling was studied, and
a suboptimal σ based on the initial starting point was given.
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Meanwhile, the recycling operation was adopted to lattice de-
coding in MIMO systems for the further performance improve-
ment. Finally, to pursuit an efficient sampler decoding, a startup
mechanism resorting to correct decoding radius from BDD was
proposed.
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