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Abstract—In this paper, a general recursive least square (GRL-
S) detection algorithm is proposed for the uplink of distributed
massive multiple-input multiple-output (MIMO) to alleviate the
bottlenecks in both computational complexity and data band-
width for interconnection. Different from the existing recursive
least square (RLS) detection algorithm which only supports a
single antenna in each distributed unit (DU), the proposed GRLS
allows for multiple antennas in each DU, rendering it adaptable
to a variety of practical scenarios. Moreover, among the total C
DUs and with an integer parameter C0, the complexity of C−C0

DUs in GRLS can be significantly reduced by leveraging the
channel hardening property. Through analysis, we demonstrate
that the convergence of the GRLS algorithm is guaranteed if
C0 ≥

⌊(√
B/2 +

√
K
)2

/B

⌋
holds, where K and B denote the

numbers of antennas at the user side and each DU, respectively.
Furthermore, based on the daisy-chain architecture, the proposed
GRLS algorithm also enjoys excellent scalability, which can be
easily extended with extra DUs for further improvement. Finally,
the computational complexity and data bandwidth analysis are
provided to unveil the superiority of GRLS compared to other
distributed detection schemes for massive MIMO.

Index Terms—Massive MIMO, distributed MIMO detection,
decentralized signal detection, daisy-chain, RLS.

I. INTRODUCTION

Due to its promising capacity, ultra-fast data rate, and
high energy efficiency, massive MIMO has become a core
technology for enabling beyond fifth-generation (5G) and
sixth-generation (6G) wireless communications [1]. However,
most of the existing detection schemes for massive MIMO
are commonly implemented in a centralized manner. As the
number of antennas at the base station (BS) increases to
hundreds or thousands, there arises a pressing challenge in
transferring the vast volumes of raw data for advanced signal
processing, even with the state-of-the-art hardware capabilities
[2]. Meanwhile, the rapid growths in both computational
complexity and data storage requirement also render the single
computing fabric difficult to satisfy practical demands. To this
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end, a number of distributed detection schemes for massive
MIMO have been proposed [2]–[9].

Specifically, the decentralized baseband processing (DBP)
architecture was introduced in [2]. It partitions the BS antennas
into C individual DUs, where each DU contains B antennas
and is equipped with an independent computing fabric. Based
on DBP, the alternating direction method of multipliers (AD-
MM), conjugate gradient (CG) methods [3], and expectation
propagation algorithm (EPA) [4] can be applied for distributed
massive MIMO detection but at a high data bandwidth cost.
Besides, the minimum mean square error (FD-MMSE) [5]
and the Gaussian message passing (GMP) [6] algorithms were
employed on the fully decentralized architecture, which retains
only an unidirectional link from DUs to the central processing
unit (CPU), thereby further reducing the data bandwidth cost
at the expense of practical performance degradation. Further-
more, with the aid of channel hardening, the decentralized
Newton (DN) detection was designed for a lower complexity
implementation [7]. However, all of these methods require a
large number of antennas in DU, i.e., B � 1, and rely on the
CPU to process the partial results. In contrast, the daisy-chain
architecture, presented in [8], [9], directly outputs the detection
results to the CPU, thus freeing it from the detection process.
Based on the daisy-chain architecture, the RLS detection al-
gorithm operates as the traditional zero forcing (ZF) detection
but in a distributed fashion. Nevertheless, this approach not
only suffers from the high complexity and bandwidth costs,
but also confine to DUs equipped with only a single antenna,
rendering it impractical in the most of cases. Unfortunately,
these issues persist in other detection methods, such as the
stochastic gradient descent (SGD) and the averaged stochastic
gradient descent (ASGD) detection schemes [8].

In this paper, we extend the distributed RLS detection to
a more generalized one, named as GRLS, allowing multiple
antennas to be deployed at each DU. Then, by exploiting the
channel hardening property in massive MIMO, those compu-
tationally expensive operations, such as matrix multiplication
and inversion, in the last C − C0 DUs in GRLS can be
greatly simplified, resulting in remarkable reductions in both
complexity and data bandwidth. Meanwhile, to ensure the
convergence of GRLS, we also provide a convergence analysis
concerning the choice of C0. Furthermore, the complexity and
data bandwidth of GRLS are given to validate its advantages
over various existing distributed massive MIMO detection
schemes. Finally, simulation results are provided to affirm its
improved trade-off between performance and complexity, as
well as its notable scalability to very large antenna arrays,
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Fig. 1. Illustration of a decentralized daisy-chain architecture with C DUs.
Each DU is equipped with B = N/C antennas and an independent
computing fabric for channel estimation (CHEST) and detection (DET), while
quantization (Q) is performed centrally.

i.e., XL-MIMO [10].

II. RLS DETECTION ALGORITHM BASED ON
DECENTRALIZED DAISY-CHAIN ARCHITECTURE

Considering a massive MIMO scenario with N antennas
at the BS that serves K single antenna users (N � K), the
input-output relation for the uplink is

y = Hx + n. (1)

Here, y ∈ CN is the received vector, x ∈ OK is the
transmitted vector from the discrete QAM constellation OK ,
H ∈ CN×K represents the Rayleigh fading channel matrix
whose entries follow CN (0, 1) and n ∈ CN denotes the
addictive white Gaussian noise (AWGN) with mean 0 and
covariance matrix σ2IN . Given the system model in (1), the
traditional linear detection methods, i.e., ZF and MMSE are
presented as

xZF =
(
HHH

)−1
HHy, (2)

xMMSE =
(
HHH + σ2IK

)−1
HHy, (3)

where the final detection output x̂ is acquired by quantizing
x̂ = dxZFcQ ∈ OK or x̂ = dxMMSEcQ ∈ OK . Theoretically,
due to the favorable propagation in massive MIMO systems,
the optimal maximum likelihood (ML) detection performance
can be approximated by ZF or MMSE [1].

On the other hand, based on the daisy-chain architecture
shown in Fig. 1, the RLS detection algorithm serves as a
recursive version of ZF detection by [8]

xc = xc−1 + Pch
H
c (yc − hcxc−1), (4)

where

Pc = Pc−1 −
Pc−1h

H
c hcP

H
c−1

1 + hcPc−1hHc
∈ CK×K (5)

is the weight matrix. Here, hc ∈ C1×K , yc, and xc ∈ CK
refer to the local channel information, received signal, and
estimated vector at the c-th DU, respectively.

However, the RLS detection method restricts each DU in
daisy-chain to equip with only one single antenna, i.e., B = 1,
which severely limits its piratical applications. Moreover, the
matrix multiplications in computing Pc in (5) also incur a
high complexity cost. In addition, updating xc on the c-th
DU requires Pc−1 and xc−1 from the previous DU, which
accounts for the high data bandwidth consumption by convey-
ing a K ×K matrix and a K × 1 vector, respectively.

III. THE PROPOSED GRLS DETECTION ALGORITHM

A. Extension of the Traditional RLS Algorithm

We now extend the existing RLS detection algorithm to a
more generalized one such that it allows for having multiple
antennas at each DU over iterations as

xc = xc−1 + PcH
H
c (yc −Hcxc−1), (6)

with
Rc =

(
IB + HcPc−1H

H
c

)−1
(7)

and
Pc = Pc−1 −Pc−1H

H
c RcHcP

H
c−1, (8)

where Hc ∈ CB×K and yc ∈ CB with B ≥ 1. Meanwhile, the
weight matrix Pc is used to approximate (HH

AcumHAcum)−1,
while HAcum = [H1;H2; . . . ;Hc] ∈ CNc×K denotes the ac-
cumulated channel information from the previous Nc = c×B
received antennas. Note that matrix HAcum is equivalent to H
and Nc is equal to N when c = C. Furthermore, according to
(6), (7), and (8), xc can be reformulated as

xc = [P−10 +

c∑
i=1

HH
i Hi]

−1[P−10 x0 +

c∑
i=1

HH
i yi], (9)

which naturally leads to the following convergence result.

Theorem 1. Based on the iterations in (6), (7), and (8), xc
will gradually converge to the MMSE detection solution in (3)
with the initial setup x0 = 0 and P0 = 1

σ2 IK .

Concerning the least squares problem, the least absolute
shrinkage and selection operator (LASSO) [11] and box-
relaxation optimization (BRO) [12] methods can be applied
for further improvement. However, as shown in (6), (7), and
(8), each iteration of such an extension of RLS involves the
complicated operations such as matrix multiplication and ma-
trix inversion. In order to effectively reduce the computational
complexity burden, we aim to incorporate the property of
channel hardening into the iterations.

B. Complexity Reduction by Adopting Channel Hardening

With N � K, the Gram matrix HHH is diagonally dom-
inant due to channel hardening, which is one of the key
properties in massive MIMO systems [1]. Here, since the
weight matrix Pc is an approximation of the inverse of
HH

AcumHAcum, it is supposed to be diagonally dominant as well
when c is sufficiently large, which inspires us to construct the
matrix Pc only by its diagonal elements, i.e.,

P̄c = diag
(
diag

(
P̄c−1 − P̄c−1H

H
c R̄cHcP̄

H
c−1
))
. (10)
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Algorithm 1: The Proposed GRLS Detection Algorithm

Input : yc, Hc, c = 1, 2, · · ·C, σ2, β and C0

Output : estimated transmit signal x̂
1: Initialize: x0 = 0,P0 = 1

σ2 IK
2: for c = 1, 2, · · · , C0 do
3: Rc =

(
IB + HcPc−1H

H
c

)−1
4: Pc = Pc−1 −Pc−1H

H
c RcHcP

H
c−1

5: xc = xc−1 + PcH
H
c (yc −Hcxc−1)

6: if c = C0 then
7: P̄c = diag (diag (Pc))
8: end if
9: end for

10: for c = C0 + 1, C0 + 2 · · · , C do
11: R̄c = diag

(
diag

((
IB + HcP̄c−1H

H
c

)−1))
12: P̄c = diag

(
diag

(
P̄c−1 − P̄c−1H

H
c R̄cHcP̄

H
c−1
))

13: xc = xc−1 + (1− β)
(
P̄cH

H
c (yc −Hcxc−1)

)
14: end for
15: output x̂ = dxCcQ ∈ OK

Similarly, the matrix Rc in (7) can also be approximated as

R̄c = diag
(

diag
((

IB + HcP̄c−1H
H
c

)−1))
. (11)

Thanks to the diagonal structure of matrices P̄c and R̄c,
significant reductions in both computational complexity and
data bandwidth can be achieved. On one hand, the computation
of the matrix inversion is simplified as computing only the
reciprocal of the diagonal elements, while the matrix multipli-
cation is also simplified as only the diagonal elements need to
be preserved. On the other hand, the K ×K diagonal matrix
P̄c, which needs to convey by each DU, can be refined as a
K×1 diagonal vector, thus greatly reducing the required data
bandwidth.

C. Accumulation of Channel Information

However, due to the daisy-chain architecture, the matrix Pc
at the c-th DU only contains the information from the previous
Nc received antennas. As a result, the diagonal elements
of Pc become dominant gradually with the increment of c,
thus rendering the complexity reduction driven by channel
hardening ineffective during the early stages in daisy-chain.

To address this issue, we divide the iterations of the pro-
posed GRLS into two stages:
• The first C0 DUs: Due to the lack of channel information

for exploiting the channel hardening, perform the iteration
in (6) based on Rc in (7) and Pc in (8).

• The rest of C − C0 DUs: Based on the accumulated
channel information for channel hardening, perform the
iteration in (6) based on R̄c in (11) and P̄c in (10).

In addition, for better detection performance, the technique
of damping factor β ∈ (0, 1) (i.e., here we use β = 0.1) is
also introduced to the second stage by

xc = βxc−1 + (1− β)xc. (12)

Finally, at the CPU, the detected signal

x̂ = dxCcQ ∈ OK (13)

is outputted as the detection solution of GRLS.
Based on the daisy-chain architecture, the GRLS algorithm

employs local processing of data where it is generated to
avoid the additional overhead for transmission and storage.
Furthermore, leveraging its sequential, regular, and modular
structure, extending GRLS to larger antenna arrays can be eas-
ily achieved by increasing the number of DUs, which demon-
strates its excellent scalability. To summarize, the proposed
general recursive least square (GRLS) detection algorithm
for distributed uplink massive MIMO systems is outlined in
Algorithm 1.

IV. CONVERGENCE ANALYSIS

Undoubtedly, how to reasonably set the parameter C0 is the
key to GRLS. In what follows, we provide the convergence
analysis with respect to the choice of C0.

Lemma 1. For the flat Rayleigh fading matrix Hc ∈ CB×K
whose entries follow CN (0, 1), it follows that

Ac = E[HH
c Hc] = BIK . (14)

Proof. To start with, let hmn denote the element in the m-
th row and n-th column of matrix Hc. Meanwhile, define
Dc = HH

c Hc with its elements dmn =
∑B
l=1 h

∗
lmhln.

Then, in the case of m = n, we can find that h∗lmhlm =
<(hlm)2 +=(hlm)2, while <(hlm)2 and =(hlm)2 both follow
the Gamma distribution with the shape parameter α = 0.5 and
the scale parameter γ = 1 [13] (i.e., <(·) and =(·) denote the
real and imaginary parts, respectively), namely,

h∗lmhlm ∼ Γ(0.5, 1) + Γ(0.5, 1) = Γ(1, 1). (15)

Building upon it, dmm, as the summation of h∗lmhlm, obeys
the following distribution

dmm =

B∑
l=1

h∗lmhlm ∼ Γ(B, 1). (16)

Subsequently, in the case of m 6= n, hlm and hln are
independent entries with mean zero, and this leads to

E [dmn] =

{
B if m = n,

0 if m 6= n,
(17)

which completes the proof.

Theorem 2. The proposed GRLS detection algorithm for the
distributed massive MIMO systems converges when

C0 ≥

(√B

2
+
√
K

)2

/B

 , (18)

where bxc rounds to the closest integer smaller than or equal
to x.

Proof. According to Theorem 1, the convergence of the first
stage about the first C0 DUs in GRLS is guaranteed uncondi-
tionally. Therefore, we pay our attentions on the convergence
of the second stage for the rest of C − C0 DUs.
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In particular, we can express the error in the second stage
(i.e., c > C0) as

eC=xC − xMMSE

=xC−1 + P̄CH
H
C (yC −HCxC−1)− xMMSE

=(IK−P̄CHH
CHC)(xC−1−xMMSE)+P̄CH

H
C (yC−HCxMMSE)

=(IK − P̄CH
H
CHC)eC−1 + P̄CH

H
CnC . (19)

Moreover, given the fact that Hc is statistically independent
of P̄c and ec, then based on (14) in Lemma 1, by taking
expectation on (19), we have

E[eC ] = E[(IK − P̄CH
H
CHC)eC−1] + E[P̄CH

H
CnC ]

= (IK − P̄CAC)E[eC−1]

,
C∏

c=C0+1

FcE[eC0
], (20)

where Fc , IK−BP̄c ∈ CK×K is the iteration matrix. Then,
to guarantee the convergence of (20) for diminishing the error
over the iterations, the spectral radius of Fc should be smaller
than 1 [14], namely,

ρ(Fc) = max
1≤k≤K

|λk(Fc)| = max
1≤k≤K

|1−Bλk(P̄c)| < 1, (21)

where λk(·) denotes the k-th eigenvalue. Since the matrix P̄c
is approximated to the inverse of a positive-definite matrix
HH

AcumHAcum, its eigenvalues are all larger than 0 [1], which
implies that the condition in (21) can be further expressed by

λmax(P̄c) <
2

B
. (22)

On the other hand, at the c-th DU, λmin

((
HH

AcumHAcum
)−1)

approaches Nc
(

1−
√
K/Nc

)2
with Nc � K [14] such that

the following approximation holds

λmax
(
P̄c
)
≈ 1

λmin

((
HH

AcumHAcum
)−1) ≈ 1

Nc

(
1−

√
K
Nc

)2 .
(23)

Therefore, by substituting (23) into (22), we arrive at the
following convergence requirement

Nc >

(√
B

2
+
√
K

)2

. (24)

To satisfy (24) with Nc = c×B for c = C0+1, C0+2, . . . , C,
we get the following condition

C0 ≥
⌈
Nc
B
− 1

⌉
=

(√B

2
+
√
K

)2

/B

 , (25)

completing the proof.

According to Theorems 1 and 2, it is evident that the
proposed GRLS offers a flexible trade-off between the de-
tection performance and complexity reduction, where a better
detection performance can be obtained with the increment
of C0 at the expense of computational complexity. When
C0 = C, GRLS will exactly output the performance of MMSE
detection.

V. COMPLEXITY AND DATA BANDWIDTH ANALYSIS

We now study the complexity and data bandwidth of the
proposed GRLS algorithm for distributed detection in massive
MIMO, where the computational complexity is evaluated in
terms of the required number of complex multiplications [4].
For example, computing the inversion of a K ×K complex-
valued matrix demands complexity 0.5K3.

In particular, the computational complexity of GRLS con-
sists of two parts. As for the first stage (i.e., c ≤ C0), com-
puting Rc involves matrix multiplications between Pc−1 ∈
CK×K and HH

c ∈ CK×B , between Hc ∈ CB×K and
Pc−1H

H
c ∈ CK×B , and a B × B matrix inversion, which

corresponds to complexity K2B + KB2 + 0.5B3. Similarly,
the complexities of computing Pc and xc are K2B + KB2

and K2B + 2KB, respectively.
On the other hand, as for the second stage (i.e., c > C0), the

matrix multiplications between P̄c−1 and HH
c , and between

Hc and P̄c−1H
H
c in (11) only need to take the diagonal

elements into account, resulting in complexity 2KB. Sub-
sequently, the inversion operation requires the complexity
B since it only involves calculating the reciprocals of the
diagonal elements. The complexities of (11), (10), and (6) are
reduced to 2KB +B, 2KB, and 3KB, respectively.

To summarize, the total computational complexity of GRLS
is (3K2B+2KB2+2KB+0.5B3)C0+(7KB+B)(C−C0).
For ease of illustration, the complexity comparison is shown
in Table I. Throughout the context, the numbers of DUs of
RLS, SGD, and ASGD algorithms in [8] are set to C = N
due to the restriction B = 1, and the ADMM, CG, EPA, FD-
MMSE, GMP, and DN algorithms in [3]–[7] with C = 8 are
applied as the comparison, which corresponds to B = N/8
in each DU. As recommended in [8], the step-size of SGD is
configured at 0.03 and the onset of the averaging procedure in
ASGD is set to k0 = N/2. Meanwhile, the numbers of inner
iterations for EPA and GMP algorithms and the numbers of
outer iterations for ADMM, CG, EPA, and DN algorithms are
set to I = 3 and T = 3, respectively. From Table I, the pro-
posed GRLS algorithm exhibits a much lower computational
complexity than other schemes except the simple SGD and
ASGD algorithms. More precisely, compared to the traditional
RLS algorithm, more than 75% complexity is reduced for the
case of 256 × 16, where B = 4, C = 64, and C0 = 7, the
minimum value in (18), are employed in GRLS, making it
highly suitable for practical hardware implementation.

As summarized in Table I, the data bandwidth for intercon-
nection of these distributed massive MIMO detection schemes
is determined by the averaged complex values transferred on
each link (e.g., K for SGD algorithm), which means the
actual overhead in interface and may restricts its applications
in practice [8]. Intuitively, GRLS achieves the comparable
data bandwidth to the simple SGD and ASGD algorithms,
along with a 78% reduction compared to the traditional RLS
algorithm in the case of 256× 16. Moreover, for the 256× 32
scenario, while GRLS requires more data bandwidth, it still
brings a reduction of 76% over RLS, making it more easily
accommodated by existing hardware interfaces.
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TABLE I
COMPUTATION COMPLEXITY COMPARISON OF DECENTRALIZED ALGORITHMS

Algorithm Number of complex multiplications Averaged complex values 256× 16 system 256× 32 system
transferred on each link Complexity Bandwidth Complexity Bandwidth

ADMM [3]
(
2K2B +KB +K + 0.5K3

)
C +

((
K2 + 2K

)
C +K

)
T (2T − 1)K 158640 80 690016 160

CG [3] (K2B +KB)C + (K2 + 7K)CT − 4KC (2T + 2)K 77952 128 299264 256

EPA [4] ((8O + 2K + 1)NKI + 5OK)T +NK +O (2T − 1)K 5943056 80 14245392 160

FD-MMSE [5] (K2B +KB + 3.5K3 +K2 + 4K)C 2K 186880 32 1197056 64

GMP [6] (8O + 2K + 1)NKI +NK + 6OK 2K 1984000 32 4754432 64

DN [7]
(
K2B +KB +K

)
C + (K2C +K)T

Star: (4T − 2)K
75952

160
295264

320

Ring: 2KT + 4KT/C 120 240

RLS [8]
(
3K2 + 4K + 1

)
N K2 +K 213248 272 819456 1056

SGD [8] (2K + 1)N K 8448 16 16640 32

ASGD [8] (2K + 1) k0 + (3K + 1) (N − k0) 2K 10496 32 20736 64

Cmin : 51972 58 210000 250

Proposed GRLS (3K2B + 2KB2 + 2KB + 0.5B3)C0 + (7KB +B)(C − C0)
(
(K2 +K)C0 + 2K(C − C0)

)
/C 2× Cmin : 75016 84 362404 436

3× Cmin : 98060 110 514800 622
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Fig. 2. GRLS detection algorithm convergence with SNR = 2 dB for the uncoded 256× 16 massive MIMO.

VI. SIMULATION

In this section, to illustrate the convergence of the proposed
GRLS algorithm, we first verify the effectiveness of the setting
of parameter C0 in Theorem 2. Then we compare GRLS with
other distributed detection methods in bit error rate (BER)
performance. Finally, we assess the performance of the GRLS
across varying system sizes to evaluate its scalability. In all
simulations, we consider the 16-QAM modulation scheme and
uncoded systems. Generally, in massive MIMO, the channel
hardening property is deemed to hold if N/K ≥ 8 [15], [16].

Fig. 2 illustrates the convergence performance of the pro-
posed GRLS detection algorithm under different antenna con-
figurations at each DU for 256× 16 massive MIMO systems
at signal-to-noise ratio (SNR) = 2 dB. As can be seen clearly,
when C0 exceeds the minimum value in Theorem 2 (Cmin),
the GRLS detection algorithm converges rapidly and achieves
the near MMSE performance. It is worth noting that as C0

increases to C, GRLS works as the MMSE detection solution,
which is in line with the result derived in Theorem 1.

The BER performance comparison between GRLS and
other distributed detection schemes, employed the same pa-
rameters as Section V, is presented in Fig. 3 with respect to a
256×16 massive MIMO system. Despite their extremely high
computational complexity and data bandwidth, the EPA and
RLS algorithms achieve the MMSE performance. Also, the
ADMM and CG detection schemes incur a slight performance

loss over the centralized MMSE detection but at a substantial
data bandwidth cost. Due to the high scattering of BS antennas,
the local estimation results obtained by FD-MMSE, GMP,
and DN algorithms are inaccurate, resulting in significant
performance degradation. Besides, the SGD and ASGD algo-
rithms require quite low computational complexity and data
bandwidth, making it easy to apply, but their performance
decreases at about 7.0 dB and 3.5 dB over the centralized
MMSE detection, respectively. Note that the proposed GRLS
detection algorithm with Cmin outperforms CG, DN, FD-
MMSE, and GMP detection schemes at a lower cost while
achieving near MMSE performance with the increment of C0.

In Fig. 4, we extend the BER performance comparison to
a 256× 32 massive MIMO system. Intuitively, all the conver-
gence performance of FD-MMSE, GMP, and DN algorithms
degrades further, leading to unsatisfactory detection perfor-
mance in uplink massive MIMO systems. This is attributed
to the fact that the limited number of antenna resources in
each DU fails to satisfy the condition B � K. In contrast,
the convergence of GRLS works well as expected, because
its convergence always hold if (18) is satisfied. Clearly, with
the increment of C0, the BER performance of GRLS im-
proves gradually. For example, the proposed GRLS detection
algorithm with two and three times Cmin achieves gains of
nearly 1.5 dB and 2.0 dB over that with Cmin at the BER
of 10−5, respectively. However, it also leads to a rise in
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Fig. 3. BER performance comparison of different methods for the uncoded
256× 16 massive MIMO.
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Fig. 4. BER performance comparison of different methods for the uncoded
256× 32 massive MIMO.

computational complexity and data bandwidth costs by 72%
and 74% for 2 × Cmin, and 145% and 148% for 3 × Cmin,
as indicated in Table I, respectively. In summary, a larger
C0 brings considerable performance gains but with higher
complexity and bandwidth cost such that it should be selected
according to the practical implementation requirement.

In Fig. 5, to illustrate the scalability of our proposed
GRLS algorithm, we scale the total number of BS antennas
N = C ×B by increasing the number of DU from C = 128,
C = 192, to C = 256 with fixed B = 4. As can be seen
clearly, GRLS consistently exhibits near-MMSE performance,
suggesting its effectiveness and scalability in distributed mas-
sive MIMO systems.

VII. CONCLUSION

In this paper, by exploiting the potential of the RLS detec-
tion algorithm, we proposed a novel near-MMSE algorithm,
termed GRLS, for distributed massive MIMO detection with
low computational complexity and data bandwidth. The con-
vergence, complexity, and bandwidth analysis for the proposed
GRLS detection algorithm are also provided. When the derived
convergence condition about C0 is satisfied, the proposed
GRLS achieves rapid convergence and is capable of attaining
the near MMSE performance. Additionally, the simulation re-
sults not only confirm its desirable trade-off between complex-
ity and performance but also validate its excellent scalability,
making it well-suited for practical implementations.
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Fig. 5. BER performance of the GRLS algorithm with a fixed number of
users K = 64.
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