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On the Geometric Ergodicity of Metropolis-Hastings
Algorithms for Lattice Gaussian Sampling

Zheng Wang, Member, IEEE, and Cong Ling, Member, IEEE

Abstract— Sampling from the lattice Gaussian distribution has
emerged as an important problem in coding, decoding, and
cryptography. In this paper, the classic Metropolis-Hastings (MH)
algorithm in Markov chain Monte Carlo methods is adopted
for lattice Gaussian sampling. Two MH-based algorithms are
proposed, which overcome the limitation of Klein’s algorithm.
The first one, referred to as the independent Metropolis-Hastings-
Klein (MHK) algorithm, establishes a Markov chain via an
independent proposal distribution. We show that the Markov
chain arising from this independent MHK algorithm is uniformly
ergodic, namely, it converges to the stationary distribution expo-
nentially fast regardless of the initial state. Moreover, the rate
of convergence is analyzed in terms of the theta series, lead-
ing to predictable mixing time. A symmetric Metropolis-Klein
algorithm is also proposed, which is proven to be geometrically
ergodic.

Index Terms— Lattice Gaussian distribution, lattice coding, lat-
tice decoding, MCMC methods, integer least-squares problems.

I. INTRODUCTION

RECENTLY, the lattice Gaussian distribution has emerged
as a common theme in various research domains.

In mathematics, Banaszczyk firstly applied it to prove the
transference theorems for lattices [1]. In coding, lattice
Gaussian distribution was employed to obtain the full shap-
ing gain for lattice coding [2], [3], and to achieve the
capacity of the Gaussian channel [4]. It was also used to
achieve information-theoretic security in the Gaussian wiretap
channel [5], [6] and in the bidirectional relay channel [7],
respectively. In cryptography, the lattice Gaussian distribution
has already become a central tool in the construction of
many primitives. Specifically, Micciancio and Regev used it to
propose lattice-based cryptosystems based on the worst-case
hardness assumptions [8]. Meanwhile, it also has underpinned
the fully-homomorphic encryption for cloud computing [9].
Algorithmically, lattice Gaussian sampling with a suitable
variance allows to solve the shortest vector problem (SVP)
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and the closest vector problem (CVP) [10], [11]; for example,
it has led to efficient lattice decoding for multi-input multi-
output (MIMO) systems [12], [13]. In theory, it has been
demonstrated that lattice Gaussian sampling is equivalent
to CVP via a polynomial-time dimension-preserving reduc-
tion [14], and SVP is essentially a special case of the CVP.

Due to the central role of the lattice Gaussian distribution
playing in these fields, its sampling algorithms become an
important computational problem. In contrast to sampling from
a continuous Gaussian distribution, it is by no means trivial
to perform the sampling even from a low-dimensional discrete
Gaussian distribution. As the default sampling algorithm for
lattices, Klein’s algorithm [15] is capable to sample from
the lattice Gaussian distribution within a negligible statistical
distance only if the standard deviation is large enough [16].
However, such a requirement renders Klein’s algorithm inap-
plicable to many scenarios of interest.

Markov chain Monte Carlo (MCMC) methods attempt
to sample from the target distribution by building a
Markov chain, which randomly generates the next sample
conditioned on previous samples. After a burn-in period, which
is normally measured by the mixing time, the Markov chain
will reach a stationary distribution, and successful sampling
from the complex target distribution can be carried out. To this
end, the Gibbs algorithm was introduced into lattice Gaussian
sampling, which employs univariate conditional sampling to
build a Markov chain [17]. It is able to sample beyond the
range of Klein’s algorithm. In [17], a flexible block-based
Gibbs algorithm was also presented, which performs sampling
over multiple elements within a block. In this way, the corre-
lation within the block could be exploited, leading to a faster
convergence especially in the case of highly correlated compo-
nents. Unfortunately, related analysis of the convergence rate
for the associated Markov chains in these two algorithms was
lacking, resulting in an unpredictable mixing time.

On the other hand, Gibbs sampling has already been adapted
to signal detection for multi-input multi-output (MIMO) com-
munications [18]–[23]. In particular, the selection of σ (also
referred to as “temperature”) is studied in [18] and it is argued
that σ should grow as fast as the signal-to-noise ratio (SNR)
in general. In [19], a mixed-Gibbs sampler is proposed to
achieve near-optimal performance, which takes the advan-
tages of an efficient stopping criterion and a multiple restart
strategy. Moreover, Gibbs sampling is also introduced into
soft-output decoding in MIMO systems, where the extrinsic
information calculated by a priori probability (APP) detector
is used to produce soft outputs [20]. In [21], an investigation
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of Gibbs-based MCMC receivers in different communication
channels are given. Due to the finite state space formed by a
finite modulation constellation, those Gibbs samplers converge
exponentially fast to the stationary distribution. However,
the rate of convergence has not yet been determined.

In this paper, another famous MCMC scheme, known as
the Metropolis-Hastings (MH) algorithm [24], is studied in
detail for lattice Gaussian sampling. In particular, it makes
use of a proposal distribution which suggests a possible state
candidate and then employs an acceptance-rejection rule to
decide whether to accept the suggested candidate in the next
Markov move. Obviously, the art of designing an efficient MH
algorithm lies in choosing an appropriate proposal distribution,
and this motivates us to design the target proposal distributions
based on Klein’s algorithm.

In the proposed independent Metropolis-Hastings-
Klein (MHK) algorithm, a candidate at each Markov
move is generated from a Gaussian-like proposal distribution
via Klein’s algorithm. In this case, we show that the
Markov chain induced by the independent MHK algorithm is
uniformly ergodic, which implies it converges exponentially
fast to the stationary distribution irrespective of the starting
state. Its convergence rate is then estimated given the lattice
basis B, the query point c and the standard derivation σ .
Thus, the mixing time of the induced Markov chain becomes
predictable. To the best of our knowledge, this is the first
time that the convergence rate of MCMC in communications
and signal processing is determined analytically since MCMC
was introduced into this field in 1990’s [25].

Different from the algorithms in [10] and [11] which have
exponential space and time complexity, the proposed inde-
pendent MHK algorithm has polynomial space complexity,
and its time complexity1 varies with σ , where a larger value
of σ corresponds to smaller mixing time. This is in agreement
with the fact we knew before: if σ is large enough, then
there is no need of MCMC in lattice Gaussian sampling since
Klein’s algorithm can be applied directly with polynomial time
complexity. Likewise, the proposed sampling algorithm can
also be extended to lattice decoding, and more details can be
found in our following work [26].

The second proposed algorithm, namely the symmetric
Metropolis-Klein (SMH) algorithm, establishes a symmetric
proposal distribution between two consecutive Markov states.
We show it also converges to the stationary distribution
exponentially fast but the selection of the initial state also
plays a role. Such a case is referred to as geometric ergodicity
in MCMC literature [27]. Besides the geometric ergodicity,
another advantage of the proposed SMH algorithm lies in its
remarkable elegance and simplicity, which comes from the
usage of a symmetrical proposal distribution.

To summarize, the main contributions of this paper are the
following:

1) The independent MHK algorithm is proposed for
lattice Gaussian sampling, where the Markov chain

1In this paper, the computational complexity is measured by the number of
arithmetic operations (additions, multiplications, comparisons, etc.). The time
complexity of an MCMC sampler can be estimated by the mixing time times
the complexity of each Markov move.

arising from it converges exponentially fast to the
stationary distribution.

2) The convergence rate of the independent MHK algo-
rithm is derived explicitly in terms of the theta
series, thereby making the estimation of mixing time
possible.

3) The SMH algorithm is further proposed for lattice
Gaussian sampling, which not only achieves expo-
nential convergence, but also is simpler due to its
symmetry.

The rest of this paper is organized as follows. Section II
introduces the lattice Gaussian distribution and briefly reviews
the basics of MCMC methods. In Section III, we propose
the independent MHK algorithm for lattice Gaussians, where
uniform ergodicity is demonstrated. In Section IV, the conver-
gence rate of the independent MHK algorithm is analyzed and
explicitly calculated in terms of the theta series. In Section V,
the proposed SMH algorithm for lattice Gaussian sampling is
given, followed by the demonstration of geometric ergodicity.
Finally, Section VI concludes the paper.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the transpose, inverse,
pseudoinverse of a matrix B by BT , B−1, and B†, respectively.
We denote by bi the i th column of the matrix B, by ̂bi the
i th Gram-Schmidt vector of B, and by bi, j the entry in the
i th row and j th column of B. �x� denotes rounding to the inte-
ger closest to x . If x is a complex number, �x� rounds the
real and imaginary parts separately. In addition, we use the
standard small omega notation ω(·), i.e., f (n) = ω(g(n)) if
for any k > 0, the inequality | f (n)| > k · |g(n)| holds for all
sufficiently large n.

II. PRELIMINARIES

In this section, we introduce the background and mathemat-
ical tools needed to describe and analyze the proposed lattice
Gaussian sampling algorithms.

A. Lattice Gaussian Distribution

Let B = [b1, . . . , bn] ⊂ R
n consist of n linearly indepen-

dent vectors. The n-dimensional lattice � generated by B is
defined by

� = {Bx : x ∈ Z
n}, (1)

where B is called the lattice basis. We define the Gaussian
function centered at c ∈ R

n for standard deviation σ > 0 as

ρσ,c(z) = e
− ‖z−c‖2

2σ2 , (2)

for all z ∈ R
n . When c or σ are not specified, we assume

that they are 0 and 1 respectively. Then, the discrete Gaussian
distribution over � is defined as

D�,σ,c(x) = ρσ,c(Bx)

ρσ,c(�)
= e− 1

2σ2 ‖Bx−c‖2

∑

x∈Zn e− 1
2σ2 ‖Bx−c‖2

(3)

for all x ∈ Z
n , where ρσ,c(�) �

∑

Bx∈� ρσ,c(Bx) is just a
scaling to obtain a probability distribution.

Note that this definition differs slightly from the one in [8],
where σ is scaled by a constant factor

√
2π (i.e., s = √

2πσ ).
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Fig. 1. Illustration of a two-dimensional lattice Gaussian distribution.

Fig. 1 illustrates the discrete Gaussian distribution over Z
2.

As can be seen clearly, it resembles a continuous Gaussian
distribution, but is only defined over a lattice. In fact, discrete
and continuous Gaussian distributions share similar properties,
if the flatness factor is small [5].

B. Klein’s Algorithm

Intuitively, the shape of D�,σ,c(x) suggests that a lattice
point Bx closer to c will be sampled with a higher probability.
Therefore, sampling from the lattice Gaussian distribution can
be naturally used to solve the CVP (where c is the query point)
and SVP (where c = 0) in lattices. Because of this, Klein’s
algorithm that samples from a Gaussian-like distribution was
originally proposed for lattice decoding [15].

Algorithm 1 Klein’s Algorithm
Input: B, σ, c
Output: Bx ∈ �
1: let B = QR and c′ = Q†c
2: for i = n, …, 1 do
3: let σi = σ

|ri,i | and x̃i = c′
i −

∑n
j=i+1 ri, j x j

ri,i
4: sample xi from DZ,σi ,̃xi

5: end for
6: return Bx

As shown in Algorithm 1, the operation of the Klein’s
algorithm has polynomial complexity O(n2) excluding QR
decomposition (which may be done only once in the
beginning). More precisely, by sequentially sampling from
the 1-dimensional conditional Gaussian distribution DZ,σi ,̃xi in
a backward order from xn to x1, the Gaussian-like distribution
arising from Klein’s algorithm is given by

PKlein(x) =
n
∏

i=1

DZ,σi ,̃xi (xi ) = ρσ,c(Bx)
∏n

i=1 ρσi ,̃xi (Z)

= e
− 1

2σ2 ‖Bx−c‖2

∏n
i=1

∑

x̃i ∈Z
e
− 1

2σ2
i

‖xi−x̃i‖2
, (4)

where x̃i = c′
i−

∑n
j=i+1 ri, j x j

ri,i
, σi = σ

|ri,i | = σ
‖̂bi ‖ , c′ = Q†c, ri, j

denotes the element of the upper triangular matrix R from the
QR decomposition B = QR and ̂bi ’s are the Gram-Schmidt
vectors of B with ‖̂bi‖ = |ri,i |.

Furthermore, it has been demonstrated in [16] that PKlein(x)
is close to D�,σ,c(x) within a negligible statistical distance if

σ = ω(
√

log n) · max
1≤i≤n

‖̂bi‖, (5)

However, even with the help of lattice reduction2 (e.g., LLL
reduction), the standard deviation ω(

√
log n) · max1≤i≤n ‖̂bi‖

can be too large to be useful.

C. MCMC Methods

As for the lattice Gaussian sampling in the range σ 
=
ω(

√
log n) · max1≤i≤n ‖̂bi‖, MCMC methods have become an

alternative solution, where the discrete Gaussian distribution
D�,σ,c is viewed as a complex target distribution lacking
direct sampling methods. By establishing a Markov chain
that randomly generates the next state, MCMC is capable
of sampling from the target distribution of interest, thereby
removing the restriction on σ [17].

As an important parameter which measures the time
required by a Markov chain to get close to its stationary
distribution, the mixing time is defined as [29]

tmix(ε) = min{t : max ‖Pt (x, ·) − π(·)‖T V ≤ ε}, (6)

where ‖ · ‖T V represents the total variation distance (other
measures of distance also exist, see [30] for more details).
It is well known that the spectral gap γ = 1 − |λ1| > 0
of the transition matrix offers an upper bound on the mix-
ing time, where λ1 represents the second largest eigenvalue
(in magnitude) of the transition matrix P. A large value of the
spectral gap leads to rapid convergence to stationarity [31].

However, the spectrum of a Markov chain can be hard to
analyze, especially when the state space 
 becomes exponen-
tially large, making it difficult to have a compact mathematical
expression of the adjacency matrix. Thanks to the celebrated
coupling technique, for any Markov chain with finite state
space 
, exponentially fast convergence can be demonstrated
if the underlying Markov chain is irreducible and aperiodic
with an invariant distribution π [29]. Nevertheless, in the
case of lattice Gaussian sampling, the countably infinite state
space x ∈ Z

n naturally becomes a challenge. For this reason,
we perform the convergence analysis from the beginning —
ergodicity [32].

Definition 1: Let P be an irreducible and aperiodic transi-
tion matrix for a Markov chain. If the chain is positive recur-
rent, then it is ergodic, namely, there is a unique probability
distribution π on 
 and for all x ∈ 
,

lim
t→∞‖Pt (x, ·) − π‖T V = 0, (7)

where Pt (x; ·) denotes a row of the transition matrix P
for t Markov moves.

Although ergodicity implies asymptotic convergence to sta-
tionarity, it does not say anything about the convergence rate.
To this end, the following definition is given [32].

2It is well known that lattice reduction such as the LLL algorithm is able
to significantly improve mini ‖̂bi‖ while reducing maxi ‖̂bi ‖ at the same
time [28].
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Definition 2: A Markov chain with stationary distribu-
tion π(·) is uniformly ergodic if there exists 0 < δ < 1 and
M < ∞ such that for all x

‖Pt (x, ·) − π(·)‖T V ≤ M(1 − δ)t . (8)

Obviously, the exponential decay coefficient δ is key to
determine the convergence rate. As M is a constant, the con-
vergence rate does not depend on the initial state x. As a
weaker version of ergodicity, geometric ergodicity also con-
verges exponentially, but M is parameterized by the initial
state x.

Definition 3: A Markov chain with stationary distribu-
tion π(·) is geometrically ergodic if there exists 0 < δ < 1
and M(x) < ∞ such that for all x

‖Pt (x, ·) − π(·)‖T V ≤ M(x)(1 − δ)t . (9)

Besides exponential convergence, polynomial convergence
also exists [33], which goes beyond the scope of this paper
due to its slow convergence. Unless stated otherwise, the state
space of the Markov chain we are concerned with throughout
the context is the countably infinite 
 = Z

n .

D. Classical MH Algorithms

The origin of the Metropolis algorithm can be traced back
to the celebrated work of [34] in 1950’s. In [24], the orig-
inal Metropolis algorithm was successfully extended to a
more general scheme known as the Metropolis-Hastings (MH)
algorithm. In particular, let us consider a target invariant
distribution π together with a proposal distribution q(x, y).
Given the current state x for Markov chain Xt , a state
candidate y for the next Markov move Xt+1 is generated from
the proposal distribution q(x, y). Then the acceptance ratio α
is computed by

α(x, y) = min

{

1,
π(y)q(y, x)

π(x)q(x, y)

}

, (10)

and y will be accepted as the new state by Xt+1 with
probability α. Otherwise, x will be retained by Xt+1. In this
way, a Markov chain {X0, X1, . . .} is established with the
transition probability P(x, y) as follows:

P(x, y) =
{

q(x, y)α(x, y) if y 
= x,

1 −
∑

z
=x
q(x, z)α(x, z) if y = x.

(11)

It is interesting that in MH algorithms, the proposal dis-
tribution q(x, y) can be any fixed distribution from which
we can conveniently draw samples. Undoubtedly, the fastest
converging proposal distribution would be q(x, y) = π(y)
itself, but in most cases of interest π cannot be sampled
directly. To this end, many variations of MH algorithms with
different configurations of q(x, y) were proposed.

III. INDEPENDENT MHK ALGORITHM

In this section, the independent Metropolis-Hastings-
Klein (MHK) algorithm for lattice Gaussian sampling is firstly
presented. Then, we show that the Markov chain induced by
the proposed algorithm is uniformly ergodic.

A. Independent MHK Algorithm

In the proposed independent MHK algorithm, Klein’s sam-
pling is used to generate the state candidate y for the each
Markov move Xt+1. As shown in Algorithm 2, it consists of
three basic steps:

Algorithm 2 Independent Metropolis-Hastings-Klein
Algorithm for Lattice Gaussian Sampling
Input: B, σ, c, X0, tmix(ε)
Output: sample from a distribution statistically close

to π = D�,σ,c
1: for t =1,2, …, do
2: let x denote the state of Xt−1
3: generate y by the proposal distribution q(x, y) in (12)
4: calculate the acceptance ratio α(x, y) in (13)
5: generate a sample u from the uniform density U [0, 1]
6: if u ≤ α(x, y) then
7: let Xt = y
8: else
9: Xt = x

10: end if
11: if t ≥ tmix(ε) then
12: output the state of Xt

13: end if
14: end for

1) Sample from the independent proposal distribution with
Klein’s algorithm to obtain the candidate state y for Xt+1,

q(x, y) = q(y) = PKlein(y)

= ρσ,c(By)
∏n

i=1 ρσi ,ỹi (Z)

= e
− 1

2σ2 ‖By−c‖2

∏n
i=1

∑

ỹi∈Z
e
− 1

2σ2
i

‖yi−ỹi‖2
(12)

where y ∈ Z
n , ỹi = c′

i −
∑n

j=i+1 ri, j y j

ri,i
, σi = σ

|ri,i | = σ
‖̂bi ‖ ,

c′ = Q†c, B = QR by QR decomposition and ̂bi ’s are the
Gram-Schmidt vectors of B.

2) Calculate the acceptance ratio α(x, y)

α(x, y) = min

{

1,
π(y)q(y, x)

π(x)q(x, y)

}

= min

{

1,
π(y)q(x)

π(x)q(y)

}

= min

{

1,

∏n
i=1 ρσi ,ỹi (Z)

∏n
i=1 ρσi ,̃xi (Z)

}

, (13)

where π = D�,σ,c.
3) With probability α(x, y) accept Xt+1 = y; otherwise,

reject y and let Xt+1 = x.
A salient feature of the independent MHK algorithm is that

the generation of the state candidate y is independent of the
previous one, which is completely accomplished by Klein’s
algorithm. Therefore, the connection between two consecutive
Markov states only lies in the decision part. The complexity of
the MCMC sampler is given by the number of Markov moves
times the complexity of each move, i.e., O(tmix · n2).

It is easy to check that the Markov chain associated with the
independent proposal distribution q shown in (12) is reversible
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(by the Metropolis-Hastings construction), from which we
obtain that π is a strictly positive stationary distribution, and
hence, the Markov chain is positive recurrent, namely ergodic.
Then, we have the following well-known result, whose proof
can be found in [29] and [32].

Proposition 1: Given the target lattice Gaussian distribu-
tion π = D�,σ,c, the Markov chain induced by the independent
MHK algorithm is ergodic:

lim
t→∞‖Pt (x; ·) − D�,σ,c(·)‖T V = 0 (14)

for all states x ∈ Z
n.

B. Uniform Ergodicity
The independent proposal distribution defined in (12) enjoys

the following property.
Lemma 1: In the independent MHK algorithm for lattice

Gaussian sampling from D�,σ,c, there exists δ > 0 such that

q(x)

π(x)
≥ δ (15)

for all x ∈ Z
n, where q(x) = PKlein(x).

Proof: Using (3) and (4), we have
q(x)

π(x)
= ρσ,c(Bx)

∏n
i=1 ρσi ,̃xi (Z)

· ρσ,c(�)

ρσ,c(Bx)

= ρσ,c(�)
∏n

i=1 ρσi ,̃xi (Z)

(a)≥ ρσ,c(�)
∏n

i=1 ρσi (Z)
= δ (16)

where (a) holds due to the fact that [8]

ρσi ,x̃(Z) ≤ ρσi (Z) �
∑

j∈Z

e
− 1

2σ2
i

j 2

. (17)

As can be seen clearly, the right-hand side (RHS) of (16) is
completely independent of x, meaning it can be expressed as
a constant δ determined by the given B, c and σ . Therefore,
the proof is completed.

We then arrive at a main Theorem to show the uniform
ergodicity of the proposed algorithm.

Theorem 1: Given the invariant lattice Gaussian distribu-
tion D�,σ,c, the Markov chain established by the independent
MHK algorithm is uniformly ergodic:

‖Pt (x, ·) − D�,σ,c(·)‖T V ≤ (1 − δ)t (18)

for all x ∈ Z
n.

Proof: By (12) and (13), the transition probability P(x, y)
of the independent MHK algorithm is given by

P(x, y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min

{

q(y),
π(y)q(x)

π(x)

}

if y 
= x,

q(x) +
∑

z
=x

max

{

0, q(z) − π(z)q(x)

π(x)

}

if y = x.

(19)

Using Lemma 1, it is straightforward to check that the follow-
ing relationship holds

P(x, y) ≥ δπ(y) (20)

for all x, y ∈ Z
n .

Now, consider the following construction of coupling of two
Markov chains Xt and X′

t [27]. X′
t is supposed to start from the

stationary distribution π , and Xt from a fixed (but arbitrarily)
initial state x0. At each step t > 0, repeat the following
procedure:

• If Xt = X′
t , choose Xt+1 = X′

t+1 from distribution
P(Xt , ·).

• Else,

– With probability δ, choose Xt+1 = X′
t+1 from

distribution π(·);
– With probability 1 − δ, conditionally independently

sample

Xt+1 from distribution
1

1 − δ
[P(Xt , ·) − δπ(·)];

X′
t+1 from distribution

1

1 − δ
[P(X′

t , ·) − δπ(·)].

It is easy to check that Xt and X′
t marginally update according

to the same transition probability (19).
According to the coupling inequality [29], the total variation

distance between the distributions of Xt and X′
t is upper

bounded by

‖Pt (x0, ·) − π(·)‖T V ≤ P(Xt 
= X′
t ). (21)

Note that, by construction, the two chains stay together at all
times once they meet at a same state, namely,

if Xn = X′
n, then Xt = X′

t for t ≥ n. (22)

Therefore, given the event Xt 
= X′
t , there is no coupling in

any of the t consecutive moves, and we have

P(Xt 
= X′
t ) = P(Xt 
= X′

t , . . . , X0 
= X′
0)

=
t

∏

i=1

P(Xi 
= X′
i |Xi−1 
= X′

i−1) · P(X0 
= X′
0)

≤
t

∏

i=1

P(Xi 
= X′
i |Xi−1 
= X′

i−1)

=
t

∏

i=1

[

1 − P(Xi = X′
i |Xi−1 
= X′

i−1)
]

=
⎡

⎣1 −
∑

y∈Zn

P(Xi = X′
i = y|Xi−1 
= X′

i−1)

⎤

⎦

t

(b)≤
⎡

⎣1 −
∑

y∈Zn

δπ(y)

⎤

⎦

t

= (1 − δ)t , (23)

where (b) is because, by construction again, for each move
we have probability at least δ of making Xi and X′

i
(i = 1, 2, . . . , t) equal.

Then, substituting (23) into (21), we obtain

‖Pt (x, ·) − π(·)‖T V ≤ (1 − δ)t , (24)

completing the proof.
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Obviously, given the value of δ < 1, the mixing time of the
Markov chain can be calculated by (6) and (24), that is,

tmix(ε) = lnε

ln(1 − δ)
≤ (−lnε) ·

(

1

δ

)

, ε < 1 (25)

where we use the bound ln(1 − δ) < −δ for 0 < δ < 1.
Therefore, the mixing time is proportional to 1/δ, and becomes
O(1) as δ → 1.

Here, we point out that the aforementioned spectral
gap γ of the transition matrix can also be used to bound
the mixing time. Resorting to the conductance of the Markov
chain [29], one obtains a lower bound on the spectral gap γ
of the transition matrix (see Appendix VI for its derivation)

γ ≥ δ2

8
. (26)

This yields another upper bound on the mixing time on the
order of 1

δ2 , which is however looser than (25).

C. Convergence in General Cases (σ 
= σ )

In the proposed independent MHK algorithm, by default,
the standard deviation of the proposal distribution q is set
the same as σ , namely, σ = σ . Therefore, a natural question
is whether a flexible standard deviation σ 
= σ still works.
For this reason, in what follows, the relationship between
σ and σ is investigated.

Let the standard deviations of q(x) and π(x) be σ and σ
respectively, then the corresponding ratio of q(x)/π(x) in (16)
can be rewritten as

q(x)

π(x)
≥ ρσ,c(�)

∏n
i=1 ρσ i (Z)

· e
−( 1

2σ2 − 1
2σ2 )‖Bx−c‖2

. (27)

Unfortunately, in the case of σ < σ , as ‖Bx − c‖ can
be arbitrary, it is impossible to determine a constant lower
bound upon q(x)/π(x) for x ∈ Z

n , implying the uniform
ergodicity can not be achieved [35].3 Therefore, σ < σ should
be avoided in practice and the corresponding convergence
analysis is ignored here.

On the other hand, in the case of σ > σ , let d(�, c) denote
the Euclidean distance between lattice � and c

d(�, c) = min
x∈Zn

‖Bx − c‖, (28)

then it follows that
q(x)

π(x)
≥ ρσ,c(�)

∏n
i=1 ρσ i (Z)

· e−( 1
2σ2 − 1

2σ2 )d2(�,c) (29)

for all x ∈ Z
n , which means the underlying Markov chain

is uniformly ergodic by satisfying (15) in Lemma 1. More
precisely, q(x)/π(x) could be expressed as

q(x)

π(x)
≥ ρσ,c(�)

∏n
i=1 ρσi (Z)

· β (30)

where

β =
∏n

i=1 ρσi (Z)
∏n

i=1 ρσ i (Z)
· e−( 1

2σ2 − 1
2σ2 )d(�,c)2

. (31)

3In theory, that q(x)/π(x) is lower bounded by a constant for all x ∈ Z
n

is both sufficient and necessary to the uniform ergodicity [35].

Fig. 2. Coefficient β of E8 lattice in the case of σ > σ when c = 0.

Clearly, parameter β becomes the key to govern the conver-
gence performance. Compared to (16), if β > 1, the con-
vergence of the Markov chain will be boosted by a larger
value of δ, otherwise the convergence will be slowed down.
However, in the case of σ > σ , it easy to check that the value
of β is monotonically decreasing with the given σ , rendering
β > 1 inapplicable to the most cases of interest.

As can be seen clearly from Fig. 2, the convergence rate
can be enhanced by β > 1 only for a small enough σ
(e.g., σ 2 < 0.398, e.g., −4 dB), thus making the choice of
σ = σ (i.e., β = 1) reasonable to maintain the convergence
performance. This essentially explains the reason why the
independent MHK algorithm is proposed with σ = σ as a
default configuration in general.

IV. CONVERGENCE RATE ANALYSIS

In this section, convergence analysis about the exponential
decay coefficient δ in the independent MHK algorithm is
performed, which leads to a quantitative estimate of the mixing
time. For a better understanding, the analysis is carried out in
cases c = 0 and c 
= 0 separately.

A. Convergence Rate (c = 0)

Lemma 1 shows that the ratio q(x)/π(x) in the independent
MHK sampling algorithm is lower bounded by a constant δ.
We further derive an explicit expression of the coefficient δ
due to its significant impact on the convergence rate, for the
case c = 0.

Specifically, we have

q(x)

π(x)
= ρσ,0(�)

∏n
i=1 ρσi ,̃xi (Z)

(c)≥
∑

x∈Zn e− 1
2σ2 ‖Bx‖2

∏n
i=1 ρσi (Z)

(d)= ��( 1
2πσ 2 )

∏n
i=1 �Z( 1

2πσ 2
i
)

(e)= ��( 1
s2 )

∏n
i=1 ϑ3(

1
s2

i
)

= δ. (32)
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Here, for notational simplicity, s = √
2πσ and si = √

2πσi =
s/‖̂bi‖ are applied in the equations. In (c), the inequality
ρσi ,x̃ (Z) ≤ ρσi (Z) shown in (17) is used again. Theta series
�� and Jacobi theta function ϑ3 are applied in (d) and (e)
respectively, where

��(τ) =
∑

λ∈�

e−πτ‖λ‖2
, (33)

ϑ3(τ ) =
+∞
∑

n=−∞
e−πτn2

(34)

with �Z = ϑ3 [36].
Proposition 2: If s = ω(

√
log n) · max1≤i≤n ‖̂bi‖ or 1/s =

ω(
√

log n) · (min1≤i≤n ‖̂bi‖
)−1

, then the coefficient δ ≈ 1.
Proof: To start with, let us recall the flatness factor [5],

which is defined as

ε�(σ) = det(B)

(
√

2πσ)n
��

(

1

2πσ 2

)

− 1. (35)

and

ε�(σ) = ε, if σ = ηε(�). (36)

Here, ηε(�) is known as the smoothing parameter and
for any n-dimensional lattice � and positive real ε > 0,
ηε(�) is defined as the smallest real σ > 0 such that
ρ1/

√
2πσ (�∗\{0}) ≤ ε, where �∗ denotes the dual lattice

of � [16].
Therefore, the exponential decay coefficient δ given in (32)

can be expressed as

δ = ��( 1
2πσ 2 )

∏n
i=1 ϑ3(

1
2πσ 2

i
)

= | det(B)|−1 · (
√

2πσ)n · [ε�(σ) + 1]
∏n

i=1

√
2πσi · [εZ(σi ) + 1]

= ε�(σ) + 1
∏n

i=1[εZ(σi ) + 1] , (37)

where det(·) denotes the determinant of a matrix.
Meanwhile, from [8, Lemma 3.3], for any n-dimensional

lattice � and positive real ε > 0, it follows that

ηε(�) ≤
√

log(2n(1 + 1/ε))

π
· max

1≤i≤n
‖̂bi‖ (38)

and for any ω(log n), there is a negligible ε(n) such that

ηε(�) 
= ω(
√

log n) · max
1≤i≤n

‖̂bi‖. (39)

According to (35), it is easy to verify that the flatness factor
ε�(σ) is a monotonically decreasing function of σ , i.e., for
σ1 ≥ σ2, we have ε�(σ1) ≤ ε�(σ2). Therefore, letting
ηε(�) 
= ω(

√
log n) · max1≤i≤n ‖̂bi‖ be a benchmark of

comparison, we may bound the flatness factor ε�(σ) by a
negligible ε(n) if σ = ω(

√
log n) · max1≤i≤n ‖̂bi‖. On the

other hand, it is also easy to check that εZ(σi ) will become
negligible if σi = ω(

√
log n). Hence, we have

δ = ε�(σ) + 1
∏n

i=1[εZ(σi ) + 1] ≈ 1 (40)

for σ = ω(
√

log n) · max1≤i≤n ‖̂bi‖.

On the other hand, according to Jacobi’s formula [37]

��(τ) = |det(B)|−1
(

1

τ

) n
2

��∗
(

1

τ

)

, (41)

the expression of the flatness factor shown in (35) can be
rewritten as

ε�(σ) = ��∗(2πσ 2) − 1, (42)

where �∗ is the dual lattice of �. Then, we have

δ = ��( 1
2πσ 2 )

∏n
i=1 ϑ3(

1
2πσ 2

i
)

= ε�∗( 1
2πσ ) + 1

∏n
i=1[εZ∗( 1

2πσi
) + 1] , (43)

where Z
∗ = Z.

With respect to ε�∗( 1
2πσ ) and εZ∗( 1

2πσi
) in (43), similarly, if

1

2πσ
= ω(

√

log n) · max
1≤i≤n

‖̂b∗
i ‖, (44)

where ̂b∗
i ’s are the Gram-Schmidt vectors of the dual lattice

basis B∗ � (B−1)T J (J is a column-flipping matrix), then both
ε�∗( 1

2πσ ) and εZ∗( 1
2πσi

) will be bounded by a negligible ε(n).
Thus, we have

δ ≈ 1. (45)

According to (44), it follows that

1

σ
= ω(

√

log n) ·
(

max
1≤i≤n

‖̂b∗
i ‖

)

( f )= ω(
√

log n) ·
[

max
1≤i≤n

(‖̂bn−i+1‖−1)

]

= ω(
√

log n) ·
(

min
1≤i≤n

‖̂bi‖
)−1

, (46)

where ( f ) comes from the fact that [38]

‖̂b∗
i ‖ = ‖̂bn−i+1‖−1. (47)

Therefore, the proof is completed.
Obviously, according to Proposition 1, as s either goes

to 0 or ∞, the coefficient δ will converge to 1. This is
in line with the fact that Klein’s algorithm is capable of
sampling from the lattice Gaussian distribution directly when
σ = ω(

√
log n) · max1≤i≤n ‖̂bi‖.

Proposition 3: If s ≤ min1≤i≤n ‖̂bi‖, then the coefficient δ
is lower bounded by

δ ≥ 1.086−n · ��

(

1

s2

)

. (48)

Meanwhile, if s ≥ max1≤i≤n ‖̂bi‖, then the coefficient δ is
lower bounded by

δ ≥ 1.086−n · ��∗(s2). (49)

Proof: By definition, we have

ϑ3(1) =
+∞
∑

n=−∞
e−πn2 =

4
√

π

�( 3
4 )

= 1.086, (50)
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where �(·) stands for the Gamma function [39]. It is worth
pointing out that the explicit values of ϑ3(2), ϑ3(3), . . . can
also be calculated [40], where the same derivation in the
following can also be carried out. Here we choose ϑ3(1) as the
benchmark due to its simplicity. As the Jacobi theta function
ϑ3(τ ) is monotonically decreasing with τ , let 1/s2

i ≥ 1,
i.e., s ≤ ‖̂bi‖, then it follows that

ϑ3

(

1

s2
i

)

≤ ϑ3(1) = 1.086. (51)

Assume s ≤ min1≤i≤n ‖̂bi‖, then the following lower bound
for δ can be obtained,

δ = ��( 1
s2 )

∏n
i=1 ϑ3(

1
s2

i
)

≥ 1.086−n · ��(
1

s2 ). (52)

On the other hand, as Z is a self-dual lattice, i.e., Z = Z
∗,

then if s2
i ≥ 1, namely, s ≥ ‖̂bi‖, it follows that

ϑ∗
3 (s2

i ) = ϑ3(s
2
i ) ≤ ϑ3(1) ≤ 1.086. (53)

Therefore, let s ≥ max1≤i≤n ‖̂bi‖, according to Jacobi’s
formula shown in (41), δ can be lower bounded as

δ = ��( 1
s2 )

∏n
i=1 ϑ3(

1
s2

i
)

= |det(B)|−1(s2)
n
2 ��∗(s2)

∏n
i=1(s

2
i )

n
2 ϑ∗

3 (s2
i )

= ��∗(s2)
∏n

i=1 ϑ∗
3 (s2

i )

≥ 1.086−n · ��∗(s2), (54)

completing the proof.
Remark: We emphasize that the significance of lattice

reduction (e.g., LLL or HKZ) can be seen here, as increasing
min1≤i≤n ‖̂bi‖ and decreasing max1≤i≤n ‖̂bi‖ simultaneously
will greatly enhance the convergence performance due to a
better lower bound of δ.

Next, with respect to the range of min1≤i≤n ‖̂bi‖ ≤ s ≤
max1≤i≤n ‖̂bi‖, we arrive at the following proposition.

Proposition 4: If min1≤i≤n ‖̂bi‖ ≤ s ≤ max1≤i≤n ‖̂bi‖,
then the coefficient δ is lower bounded by

δ ≥ 1.086−(n−m) · 2−m ·
∏

i∈I ‖̂bi‖
sm

· ��

(

1

s2

)

, (55)

where I denotes the subset of indexes i with si > 1 (i.e.,
s > ‖̂bi‖), i ∈ {1, 2, . . . , n}, |I | = m.

Proof: From the definition, we have

ϑ3(τ ) =
+∞
∑

n=−∞
e−πτn2

= 1 + 2
∑

n≥1

e−πτn2

≤ 1 + 2
∫ ∞

0
e−πτ x2

dx

(g)= 1 +
√

1

τ
, (56)

TABLE I

LOWER BOUNDS ON δ WITH RESPECT TO s = √
2πσ IN THE

INDEPENDENT MHK ALGORITHM

where (g) holds due to the Gaussian integral
∫∞
−∞ e−ax2

dx =
√

π
a .

Hence, for terms ϑ3(
1
s2

i
) with 1/s2

i ≤ 1, namely, s ≥ ‖̂bi‖,

we have

ϑ3

(

1

s2
i

)

≤ 1 + |si | ≤ 2si = 2
s

‖̂bi‖
. (57)

Therefore, from (51) and (57), if follows that
n
∏

i=1

ϑ3

(

1

s2
i

)

≤ 1.086(n−m) · 2m · sm

∏

i∈I ‖̂bi‖
, (58)

completing the proof.
To summarize, the value of δ with respect to the given

s = √
2πσ in the independent MHK algorithm is given

in Table I.
Now, let us consider some lattices whose theta series are

more understood. We have the following property for an
isodual lattice, which is one that is geometrically similar to
its dual [37].

Proposition 5: The coefficient δ = ��( 1
s2 )

∏n
i=1 ϑ3(

1
s2
i
)

for an isod-

ual lattice � has a multiplicative symmetry point at s = 1,
and asymptotically converges to 1 on both sides when s either
goes to 0 or ∞.

Proof: Here, we note that the theta series �� of an isodual
lattice � and that of its dual �∗ are the same, i.e., ��(τ) =
��∗(τ ), and the volume of an isodual lattice |det(B)| naturally
equals 1. Therefore, we have

��

(

1

s2

)

= sn��(s2), (59)

ϑ3

(

1

s2
i

)

= siϑ3(s
2
i ), (60)

then from (59) and (60), the symmetry with respect to s = 1
can be obtained as follows,

��( 1
s2 )

∏n
i=1 ϑ3(

1
s2

i
)

= sn��(s2)
∏n

i=1 siϑ3(s2
i )

= ��(s2)
∏n

i=1
1

‖̂bi ‖ϑ3(s2
i )

= ��(s2)
1

|det(B)| · ∏n
i=1 ϑ3(s2

i )

= ��(s2)
∏n

i=1 ϑ3(s2
i )

. (61)
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Fig. 3. Coefficient 1/δ of the E8 lattice in the case of c = 0.

Fig. 4. Coefficient 1/δ of the Leech lattice in the case of c = 0.

By definition, it is straightforward to verify that

��( 1
s2 )

∏n
i=1 ϑ3(

1
s2

i
)

→ 1, when s → 0. (62)

Then because of the symmetry,
��( 1

s2 )
∏n

i=1 ϑ3(
1

s2
i
)

will also asymp-

totically approach 1 when s → ∞, completing the proof.
Examples of the coefficient 1/δ for the isodual E8 and

Leech lattice are shown in Fig. 3 and Fig. 4, respectively. It is
worth pointing out that 1/δ has a maximum at the symmetry
point s = 1, i.e., σ 2 = 1

2π . Actually, 1/δ is similar to, but not
exactly the same as the secrecy gain defined in [37]. In our
context, 1/δ roughly estimates the number of the Markov
moves required to reach the stationary distribution. On the
other hand, as for non-isodual lattices, D4 lattice is applied to
give the illustration in Fig. 5, where the symmetry still holds
but centers at s = 0.376. Therefore, with the exact value of δ,
the explicit estimation of the mixing time for the underlying
Markov chain can be obtained.

B. Convergence Rate (c 
= 0)

As for the convergence analysis in the case of c 
= 0,
we firstly define the exponential decay coefficient δ′ as

δ′ = q(x)

π(x)
= ρσ,c(�)

∏n
i=1 ρσi ,̃xi (Z)

, (63)

then we have the following proposition.

Fig. 5. Coefficient 1/δ of the D4 lattice in the case of c = 0.

Proposition 6: For any c ∈ R
n and c 
= 0, one has

δ′ ≥ e
− d2(�,c)

2σ2 · δ (64)

where δ is exponential decay coefficient for the case c = 0.
Proof: Let c′ = c mod � stand for the modular operation

of c over lattice �. Then it follows that

ρσ,c(�) =
∑

z∈�

e− 1
2σ2 ‖z−c‖2

=
∑

z∈�

e− 1
2σ2 ‖z−c′‖2

= e
− ‖c′‖2

2σ2 ·
∑

z∈�

e
− ‖z‖2

2σ2 · 1

2
·
(

e
− 1

σ2 〈z,c′〉 + e
1

σ2 〈z,c′〉
)

(h)≥ e
− ‖c′‖2

2σ2 ·
∑

z∈�

e
− ‖z‖

2σ2

= e− d2(�,c)
2σ2 · ρσ (�), (65)

where (h) follows from the fact that for any positive
real a > 0, a + 1/a ≥ 2.

Thus, the value of δ′ is reduced by a factor of e
− d2(�,c)

2σ2 from δ.
Clearly, if c = 0, then δ′ = δ, implying c 
= 0 is a general
case of c = 0.4 Hence, according to (65), as long as c is not
too far from �, δ′ has a similar lower bound.

V. SYMMETRIC METROPOLIS-KLEIN ALGORITHM

In this section, we propose the symmetrical Metropolis-
Klein (SMK) algorithm for lattice Gaussian sampling. The
underlying Markov chain is proved to be geometrically
ergodic, which not only converges exponentially fast, but also
depends on the selection of the initial state.

A. Symmetric Metropolis-Klein Algorithm

The Metropolis algorithm can be viewed as a special
case of the MH algorithm by utilizing a symmetric proposal
distribution q(x, y) = q(y, x) [34]. In the proposed algorithm,
we again use Klein’s algorithm to generate the symmetric

4In fact, as ρσ,c(�) is periodic, all c ∈ � will lead to d(�, c) = 0, thus
corresponding to the case of c = 0.
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proposal distribution. Yet, the generation of the state candi-
date y depends on the current state x, which is different from
the independent MHK algorithm. Specifically, as shown in
Algorithm 3, its sampling procedure at each Markov move
can be summarized by the following steps:

Algorithm 3 Symmetric Metropolis-Klein Algorithm for
Lattice Gaussian Sampling
Input: B, σ, c, X0, tmix(ε)
Output: sample from a distribution statistically close

to π = D�,σ,c
1: for t =1,2, …, do
2: let x denote the state of Xt−1
3: generate y by the proposal distribution q(x, y) in (66)
4: calculate the acceptance ratio α(x, y) in (67)
5: generate a sample u from the uniform density U [0, 1]
6: if u ≤ α(x, y) then
7: let Xt = y
8: else
9: Xt = x

10: end if
11: if t ≥ tmix(ε) then
12: output the state of Xt

13: end if
14: end for

1) Given the current Markov state Xt = x, sample from
the symmetric proposal distribution through Klein’s algorithm
to obtain the candidate state y for Xt+1,

q(x, y) = ρσ,Bx(By)
∏n

i=1 ρσi ,ỹi (Z)
= e

− 1
2σ2 ‖Bx−By‖2

∏n
i=1 ρσi ,ỹi (Z)

(i)= q(y, x), (66)

where ỹi = c′
i −

∑n
j=i+1 ri, j y j

ri,i
, c′ = Q†Bx and B = QR.

Note that equality (i) holds due to the inherent symmetry
(see Lemma 2 in the following).

2) Calculate the acceptance ratio α(x, y)

α(x, y) = min

{

1,
π(y)q(y, x)

π(x)q(x, y)

}

= min

{

1,
π(y)

π(x)

}

= min

{

1, e
1

2σ2

(‖Bx−c‖2−‖By−c‖2)
}

, (67)

where π = D�,σ,c.
3) With probability α(x, y) accept Xt+1 = y; otherwise,

reject y and let Xt+1 = x.
Lemma 2: The proposal distribution q shown in (66) is

symmetric and only depends on x − y, namely,

q(x, y) = q(y, x) = q(x − y) (68)

for all x, y ∈ Z
n.

The proof of Lemma 2 is provided in Appendix VI. Such a
special case is called the “random-walk” Metropolis-Hastings
algorithm [27].

At each Markov move, the state candidate y for Xt+1
is sampled from a Gaussian-like distribution centered at the
current state x. Since the chain is symmetric, the calculation
of the acceptance ratio α is greatly simplified. From (67), it is

quite straightforward to see that if By is closer to the given
point c than Bx, then state candidate y must be accepted
by Xt+1 since α = 1; otherwise it will be accepted with
a probability depending on the distance from By to c, thus
forming a Markov chain.5

Again, we recall the following standard result (see, e.g., [29]
for a proof).

Proposition 7: Given the target lattice Gaussian distribu-
tion π = D�,σ,c, the Markov chain induced by the proposed
symmetric Metropolis-Klein algorithm is ergodic:

lim
t→∞‖Pt (x; ·) − D�,σ,c(·)‖T V = 0 (69)

for all states x ∈ Z
n.

B. Geometric Ergodicity

In MCMC, a set C ⊆ 
 is referred to as a small set, if
there exist k > 0, 1 > δ > 0 and a probability measure v
on 
 such that

Pk(x,B) ≥ δv(B), ∀x ∈ C (70)

for all measurable subsets B ⊆ 
. This is also known as
the minorisation condition in literature [32]. Actually, uniform
ergodicity is a special case where the minorisation condition
is satisfied with C = 
. For a bounded small set C , the drift
condition of discrete state space Markov chains is defined as
follows [27]:

Definition 4: A Markov chain with discrete state space 

satisfies the drift condition if there are constants 0 < λ < 1
and b < ∞, and a function V : 
 → [1,∞), such that

∑

y∈


P(x, y)V (y) ≤ λV (x) + b1C(x) (71)

for all x ∈ 
, where C ⊆ 
 is a small set, and the indicator
function 1C(x) = 1 if x ∈ C and 0 otherwise.

It is well-known that the drift condition implies geometric
ergodicity [32]. Equipped with minorisation and drift condi-
tions, we are now in a position to prove the following theorem:

Theorem 2: Given the invariant lattice Gaussian distribu-
tion D�,σ,c, the Markov chain established by the symmetric
Metropolis-Klein algorithm is geometrically ergodic.

Proof: The proof boils down to verifying the drift condi-
tion (71).

First of all, the distribution π(x) = D�,σ,c(x) is clearly
bounded between 0 and 1 over any bounded set. Besides, for
any ‖Bx−By‖ ≤ δq , where δq > 0 is a constant, the proposal
distribution q(x, y) can always be lower bounded by a constant
εq > 0 as follows,

q(x, y) ≥ e− δ2
q

2σ2

∏n
i=1 ρσi ,ỹi (Z)

( j )≥ e− δ2
q

2σ2

∏n
i=1 ρσi (Z)

= εq , (72)

5A query about the SMK algorithm is whether a flexible standard devia-
tion σ in the proposal distribution q works, i.e., σ 
= σ . The answer is yes.
However, since the explicit convergence rate is tedious to analyze, we omit
its analysis here.
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where ( j) holds due to (17). Thus, by [41, Th. 2.1], every non-
empty bounded set C ⊆ Z

n in the underlying Markov chain
of the SMK algorithm is a small set. Then we may define a
small set C as

C = {x ∈ Z
n : π(x) ≥ ε} (73)

for sufficiently small ε.
Meanwhile, at each Markov move, the acceptance ratio (67)

suggests the acceptance region Ax and the potential rejection
region Rx for current state x as follows:

Ax = {y ∈ Z
n|π(y) ≥ π(x)}; (74)

Rx = {y ∈ Z
n|π(y) < π(x)}. (75)

Obviously, state candidate y ∈ Ax will surely be accepted by
Xt+1 while state candidate y ∈ Rx has a certain probability to
be rejected. Then, the LHS of the drift condition (71) can be
rewritten as (76), as shown at the bottom of this page, where
the second and third terms result from whether state candidate
y ∈ Rx is accepted or rejected, respectively.

Set the potential function V (x) = π(x)− 1
2 . Dividing (76)

by V (x) on both sides, we then arrive at the results shown
in (77), as shown at the bottom of this page. Furthermore,
since the ratios on the RHS of (77) are at most 1, we obtain6

∑

y∈Zn P(x, y)V (y)

V (x)
≤ 5

4
. (78)

Depending on whether x ∈ C or not, the drift condition can
be rewritten as

∑

y∈Zn

P(x, y)V (y) ≤ λV (x) for x /∈ C (79)

and
∑

y∈Zn

P(x, y)V (y) ≤ λV (x) + b for x ∈ C. (80)

The two cases are illustrated in Fig. 6. We proceed case by
case.

(i). In the case x ∈ C ,

V (x) ≤ 1√
ε
. (81)

By (78) we have
∑

y∈Zn

P(x, y)V (y) ≤ 1√
ε

· 5

4
= b for x ∈ C (82)

and thus condition (80) is satisfied.

6Note that 1 ≤ 1 − a2 + a ≤ 5
4 for 0 ≤ a ≤ 1.

Fig. 6. Illustration of cases (a) x /∈ C and (b) x ∈ C in the Markov move
induced by SMK. The blue dash circle represents the area of the small set
while the red solid circle denotes the acceptance region Ax .

(ii). In the case x /∈ C , we consider

λ = lim sup
‖x‖→∞

∑

y∈Zn
P(x, y)V (y)

V (x)
. (83)

If λ < 1, then (79) is satisfied for sufficiently small ε.
It is easy to verify that

lim‖x‖→∞�(x) · ∇ log π(x) = −∞, (84)

where �(x) denotes the unit vector x/‖x‖ and ∇ represents
the gradient. This condition implies that for any γ > 0, there
exists dγ > 0 such that for ‖x‖ ≥ dγ

π(x + a · �(x))

π(x)
≤ e−a·γ , (85)

where a ≥ 0 represents a constant. In other words, as ‖x‖ goes
to infinity, the above ratio is at least exponentially decaying
with a rate γ tending to infinity.

Let Cζ = {x ∈ R
n | π(x) = ζ }. We define the radial μ-zone

around Cπ(x) as (See Fig. 7)

Cπ(x)(μ) = {z + s · �(z) | z ∈ Cπ(x),−μ ≤ s ≤ μ}.

Denote by B(x, K ) a Euclidean ball of radius K , centered
at x. As in [42], for arbitrary but fixed ε1 > 0, choose K > 0
such that

∑

y∈Z
n

By/∈B(Bx,K )

q(x, y) ≤ ε1. (86)

∑

y∈Zn

P(x, y)V (y) =
∑

y∈Ax

P(x, y)V (y) +
∑

y∈Rx

P(x, y)V (y)

=
∑

y∈Ax

q(x, y)V (y) +
∑

y∈Rx

q(x, y)
π(y)

π(x)
V (y) +

∑

y∈Rx

q(x, y)

[

1 − π(y)

π(x)

]

V (x) (76)

∑

y∈Zn P(x, y)V (y)

V (x)
=

∑

y∈Ax

q(x, y)
π(x)1/2

π(y)1/2 +
∑

y∈Rx

q(x, y)

[

1 − π(y)

π(x)
+ π(y)1/2

π(x)1/2

]

(77)
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Fig. 7. Illustration of the contour Cπ(x) (solid curve), radial μ-zone Cπ(x)(μ)
(area between the two dashed curves) and ball B(Bx, K ) in the case x /∈ C .

This can be assured by noting that

q(x, y) = e
− ‖Bx−By‖2

2σ2

∏n
i=1 ρσi ,ỹi (Z)

(l)≤ e− ‖Bx−By‖2

2σ2

∏n
i=1 ρσi ,1/2(Z)

, (87)

where (l) is because ρσi ,ỹi (Z) has a minimum at ỹi = 1/2
and then applying a tail bound of lattice Gaussian distribution
[1, Lemma 1.5].

From the fact that the Euclidean norms {‖Bx‖, x ∈ Z
n} of

a lattice are discrete, it follows that for any K > 0 there exists
μ > 0 such that

lim sup
‖x‖→∞

∑

y∈Zn∩Cπ(x)(μ)By∈B(Bx,K )

q(x, y)

= lim sup
‖x‖→∞

∑

y∈Zn ,‖By‖=‖Bx‖
By∈B(Bx,K )

q(x, y). (88)

In words, one may choose small enough μ such that only those
lattice points of the same norm ‖x‖ count.

Substitute (83) into (77) and rearrange it as

λ = lim sup
‖x‖→∞

∑

y∈Rx

q(x, y) +
∑

y∈Ax

q(x, y)
π(x)1/2

π(y)1/2

+
∑

y∈Rx

q(x, y)

[

−π(y)

π(x)
+ π(y)1/2

π(x)1/2

]

. (89)

We will keep the first term and bound the sum of the other
two. To do so, we consider three regions:

1) By /∈ B(Bx, K ). Since all the ratios in (89) are at most 1
(in fact 0 ≤ −π(y)

π(x) + π(y)1/2

π(x)1/2 ≤ 1
4 for y ∈ Rx), the sum

of the last two terms in (89) is upper bounded by ε1 by
choosing K such that (86) holds;

2) By ∈ B(Bx, K ) but y /∈ Cπ(x)(μ). As ‖x‖ → ∞, all
the ratios in (89) tend to 0 outside of any radial μ-zone
for any K (cf. (85)). Thus the sum of the last two terms
in (89) can be bounded by some ε2 in this region;

3) By ∈ B(Bx, K ) and y ∈ Cπ(x)(μ). Again, since all the
ratios in (89) are at most 1, the limit of the sum of the
last two terms in (89) is given by (88).

In words, as ‖x‖ → ∞, only those lattice points of the
same norm ‖x‖ in the last region count, when one evaluates
the second and third sums of (89).

For notational convenience, define two regions Ax =
{y ∈ Z

n |π(y) > π(x)} and Rx = {y ∈ Z
n |π(y) ≤ π(x)},

which are slightly different from (74), (75), i.e., Ax does not
include the boundary but Rx does. Then we arrive at

λ ≤ lim sup
‖x‖→∞

∑

y∈Rx

q(x, y)

= 1 − lim inf‖x‖→∞
∑

y∈Ax

q(x, y)

(k)
< 1 (90)

where inequality (k) holds because

lim inf‖x‖→∞
∑

y∈Ax

q(x, y) > 0 (91)

due to symmetry of q(x, y). In fact, as shown in Fig. 7,
it follows from the symmetry (i.e., depicted by the blue dash
dot line) that

∑

y∈Ax

q(x, y) <
1

2
<

∑

y∈Rx

q(x, y), (92)

and the two probabilities can approach 1
2 as ‖x‖ → ∞. This

completes the proof in the case x /∈ C .
In essence, the convergence of geometric ergodicity can be

divided into two stages. On one hand, if x /∈ C , the drift
condition guarantees the Markov chain shrinks geometrically
towards the small set C . On the other hand, if x ∈ C ,
the minorisation condition shown in (70) implies the Markov
chain will converge to the stationary distribution exponentially
fast. This can be demonstrated by using the coupling technique
as in the previous section and δ is just the exponential decay
coefficient, which depends on C . It was shown in [43] that,
for C = {x : V (x) ≤ d} and d > 2b/(1 − λ), Markov chains
satisfying the drift condition will converge exponentially to
the stationary distribution as follows

‖Pn(x0, ·) − π(·)‖T V ≤ (1 − δ)rn +
(

Ur

α1−r

)n

×
(

1+ b

1 − λ
+ V (x0)

)

, (93)

where 0 < r < 1,

α = 1 + d

1 + 2b + λd
and U = 1 + 2(d + b). (94)

Clearly, there is a trade-off between these two convergence
stages: a larger set C indicates a smaller δ in the minorisation
condition for x ∈ C but a faster shrink speed λ towards C
for x /∈ C (close to 1/2 when ‖x‖ → ∞). However, the size
of C , measured by d here, is determined artificially, making
both δ and λ sensitive to a slight change of d . Moreover,
a closed-form expression of λ is difficult to get even for a
specific C . Therefore, although geometric ergodicity can be
achieved by the proposed SMK algorithm, it is difficult to
obtain quantitative bounds on δ and λ.

Finally, (93) indicates that the convergence of the Markov
chain arising from the SMK algorithm also highly depends on
the starting state x0, which follows the definition of geometric
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ergodicity given in (9). In theory, x0 could be any candidate
from the state space but a poor choice may intensively increase
the required mixing time. To this end, starting the Markov
chain with x0 as close to the center of the distribution as
possible would be a judicious choice. This is actually in
accordance with the result shown in (93), implying the closest
point to c is the optimal choice. As a simple solution, Babai’s
nearest plane algorithm is recommended here to output x0 [44].

VI. CONCLUSIONS

In this paper, two MH-based algorithms were proposed to
sample from lattice Gaussian distributions. As the proposal
distribution in the MH algorithms can be set freely, an inde-
pendent proposal distribution and a symmetric proposal distri-
bution were exploited respectively for geometric convergence.
In addition, it was proven that the Markov chain arising from
the independent MHK algorithm is uniformly ergodic, leading
to exponential convergence regardless of the starting state.
We showed its convergence rate can be explicitly calculated
via theta series, making the mixing time predictable. On the
other hand, the proposed SMK algorithm was demonstrated to
be geometrically ergodic, where the selection of the starting
state matters. Due to its inherent symmetry, it not only
converges exponentially fast, but also is simple to implement.

APPENDIX A
PROOF OF INEQUALITY IN (26)

Proof: To start with, let us recall the definition of conduc-
tance (also known as bottleneck ratio) in Markov chains [29].

Definition 5: The conductance � of a Markov chain is
defined as

�(S) = min
S⊆
,π(S)≤1/2

Q(S, Sc)

π(S)
, (95)

where subset Sc stands for the complement set of S
(i.e., S

⋃

Sc = 
, S
⋂

Sc = ∅), and the edge measure Q
is defined by

Q(x, y) = π(x)P(x, y) (96)

and

Q(S, Sc) =
∑

x∈S,y∈Sc

Q(x, y). (97)

It is this value 0 < � ≤ 1 that has been used to bound
the spectral gap γ of Markov chains. More precisely, in the
independent MHK algorithm, we have

� = min
S⊆
,π(S)≤1/2

∑

x∈S,y∈Sc π(x)P(x, y)

π(S)

(m)≥ min
S⊆
,π(S)≤1/2

∑

x∈S,y∈Sc π(x) · δπ(y)

π(S)

= min
S⊆
,π(S)≤1/2

δ · ∑x∈S π(x) · ∑y∈Sc π(y)

π(S)

= min
S⊆
,π(S)≤1/2

δ · π(Sc)

≥ δ

2
, (98)

where inequality (m) holds due to (20).

Next, by invoking the cheeger inequality [45] of
Markov chains

�2

2
≤ γ ≤ 2�, (99)

we have

γ ≥ δ2

8
, (100)

completing the proof.

APPENDIX B
PROOF OF LEMMA 2

Proof: According to the QR-decomposition B = QR,
we have

q(x, y) = e
− 1

2σ2 ‖Bx−By‖2

∏n
i=1 ρσi ,ỹi (Z)

= e
− 1

2σ2 ‖Rx−Ry‖2

∏n
i=1 ρσi ,ỹi (Z)

(101)

by removing the orthogonal matrix Q, where ỹi =
c′

i−
∑n

j=i+1 ri, j y j

ri,i
, c′ = Rx.

Specifically, the term ρσi ,ỹi (Z) in the denominator of (101)
can be expressed as

ρσi ,ỹi (Z) =
∑

zi ∈Z

e
− 1

2σ2
i

(zi−
c′i −

∑n
j=i+1 ri, j y j

ri,i
)2

=
∑

zi ∈Z

e
− 1

2σ2
i

(zi−
∑n

j=i ri, j x j −
∑n

j=i+1 ri, j y j
ri,i

)2

=
∑

zi ∈Z

e
− 1

2σ2
i

(xi−zi +
n
∑

j=i+1

ri, j
ri,i

(x j−y j ))
2

=
∑

z′
i ∈Z

e
− 1

2σ2
i

(z′
i−φ)2

= ρσi ,φ(Z), (102)

where z′
i = zi − xi and φ =

n
∑

j=i+1

ri, j
ri,i

(x j − y j ).

Similarly, we can easily get that

ρσi ,̃xi (Z) =
∑

zi ∈Z

e
− 1

2σ2
i

(yi−zi +
n
∑

j=i+1

ri, j
ri,i

(y j−x j ))
2

=
∑

z′
i ∈Z

e
− 1

2σ2
i

(z′
i−φ)2

= ρσi ,φ(Z) = ρσi ,ỹi (Z), (103)

where x̃i = c′′
i −∑n

j=i+1 ri, j x j

ri,i
, c′′ = Ry. Therefore, we have

q(x, y) = q(y, x).
In fact, (102) shows that q(x, y) is a function of x−y only;

moreover, since ρσi ,φ(Z) is even in φ, q(x, y) = q(x − y) =
q(y − x), completing the proof.
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