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Abstract—Sampling from the lattice Gaussian distribution is
emerging as an important problem in coding and cryptogra-
phy. In this paper, the conventional Gibbs sampling algorithm
is demonstrated to be geometrically ergodic in tackling with
lattice Gaussian sampling, which means its induced Markov
chain converges exponentially fast to the stationary distribution.
Moreover, as the exponential convergence rate is dominated
by the spectral radius of the forward operator of the Markov
chain, a comprehensive analysis is given and we show that the
convergence performance can be further enhanced by usages of
blocked sampling strategy and choices of selection probabilities.

Keywords:Lattice Gaussian sampling, Markov chain Monte

Carlo, lattice coding and decoding.

I. INTRODUCTION

Nowadays, lattice Gaussian distribution has drawn a lot

of attentions in various research fields. In mathematics, Ba-

naszczyk firstly applied it to prove the transference theorems

for lattices [1]. In coding, lattice Gaussian distribution was

employed to obtain the full shaping gain for lattice coding [2],

and to achieve the capacity of the Gaussian channel and the

secrecy capacity of the Gaussian wiretap channel, respectively

[3]. Meanwhile, lattice Gaussian distribution is also applied

to relay network under the compute-and-forward strategy for

the physical layer security [4]. In cryptography, the lattice

Gaussian distribution has already become a central tool in

the construction of many primitives. Specifically, Micciancio

and Regev used it to propose lattice-based cryptosystems

based on the worst-case hardness assumptions [5]. Meanwhile,

it also has underpinned the fully-homomorphic encryption

for cloud computing [6]. Algorithmically, lattice Gaussian

sampling with a suitable variance allows to solve the shortest

vector problem (SVP) and the closest vector problem (CVP)

[7]; for example, it has led to efficient lattice decoding for

multi-input multi-output (MIMO) systems [8].

Because of the central role of lattice Gaussian distribution

playing in these fields, its sampling algorithms become an

important computational problem. However, different from the

case of continuous Gaussian density, sampling from the lattice

Gaussian distribution is not straightforward at all even for a

low-dimensional system. One feasible way is proposed in [7]

but besides the exponential time complexity, it also requires

exponential space complexity. Another sampling algorithm for

lattices is due to Klein, originally proposed for bounded-

distance decoding (BDD) [9]. However, Klein’s algorithm

is only valid when the standard deviation of lattice Gaus-

sian distribution is sufficiently large (i.e., σ ≥ ω(
√

log n) ·
max1≤i≤n‖b̂i‖), rendering Klein’s algorithm inapplicable to

many cases of interest.

To this end, Markov chain Monte Carlo (MCMC) methods

are introduced as an alternative way for lattice Gaussian sam-

pling, which attempts to sample from the target distribution

by building a Markov chain [10], [11]. After a burn-in time,

the Markov chain will step into a stationary distribution, where

samples from the target distribution can be obtained thereafter.

In [10], Gibbs algorithm was introduced into lattice Gaussian

sampling by showing its ergodicity, which employs univariate

conditional sampling to build the Markov chain. Although

an artificially designed symmetric Metropolis-within-Gibbs

sampling algorithm has proved to be geometrical ergodicity

[12], the convergence behaviour of classic Gibbs sampler is

still unknown.

In this paper, a comprehensive analysis is conducted to

prove the geometric ergocidity of Gibbs sampler for lattice

Gaussian distribution, which means the underlying Markov

chain converges exponentially fast to the lattice Gaussian

distribution. Furthermore, by showing the derived spectral

radius of the forward operator (or the lag-1 maximal corre-

lation between two consecutive states) exactly characterizes

the convergence rate of the Markov chain, we give a con-

vergence analysis aiming to further enhance the convergence

performance, where blocked sampling and reasonable choice

of selection probabilities are shown to be beneficial to the

rapid Markov mixing.

II. GIBBS SAMPLER FOR LATTICE GAUSSIAN

Let B = [b1, . . . ,bn] ⊂ R
n consist of n linearly inde-

pendent vectors. The n-dimensional lattice Λ based on B is

defined by

Λ = L(B) = {Bx : x ∈ Z
n}, (1)

where B is known as the lattice basis. We define the Gaussian

function centered at c ∈ R
n for standard deviation σ > 0 as

ρσ,c(z) = e−
‖z−c‖2

2σ2 , (2)
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for all z ∈ R
n. Then, the discrete Gaussian distribution over

Λ is defined as

DΛ,σ,c(x) =
ρσ,c(Bx)

ρσ,c(Λ)
=

e−
1

2σ2 ‖Bx−c‖2∑
x∈Zn e−

1
2σ2 ‖Bx−c‖2 (3)

for all x ∈ Z
n, where ρσ,c(Λ) �

∑
Bx∈Λ ρσ,c(Bx) is just a

scaling to make a probability distribution. We claim that such

a definition differs slightly from the one in [5], where σ is

scaled by a constant factor
√
2π (i.e., s =

√
2πσ). It has been

demonstrated in [13] Klein’s algorithm is capable to sample

from DΛ,σ,c within a negligible statistical distance if

σ ≥ ω(
√

log n) · max1≤i≤n‖b̂i‖. (4)

However, Gaussian sampling algorithms are lacking for the

range σ < ω(
√

log n) · maxi‖b̂i‖.

From the perceptive of MCMC, lattice Gaussian distribution

DΛ,σ,c with σ < ω(
√

log n) · maxi‖b̂i‖ can be seen as a

complex target distribution lacking direct sampling methods.

Therefore, Gibbs sampler that makes use of the 1-dimensional

conditional distribution becomes a tractable alternative to work

with [14]. More specifically, each coordinate of x is sampled

from the following 1-dimensional conditional distribution

Pi(xi|x[−i]) =
e−

1
2σ2 ‖Bx−c‖2∑

xi∈Z e
− 1

2σ2 ‖Bx−c‖2 , (5)

where 1 ≤ i ≤ n denotes the coordinate index of x,

x[−i] � [x1, . . . , xi−1, xi+1, . . . , xn]
T . During the univariate

sampling, the other n − 1 variables contained in x[−i] are

leaving unchanged. Note that since xi is a variable, it will not

be completely determined by x[−i] while all the candidates

of xi in the sampling space are possible to be sampled with

certain probabilities, that is,

var(xi|x[−i]) > 0. (6)

If time permits to reach the stationary distribution, the pro-

posed Gibbs sampler will draw samples from DΛ,σ,c no matter

what value σ takes, which means the obstacle encountered by

Klein’s algorithm is overcome.

Theoretically, there are various scan schemes to proceed the

component updating in Gibbs sampler. Among them, random

scan is the basic one and will be considered throughput

the context. Typically, in random scan Gibbs sampler, the

coordinate index i is randomly chosen based on the selection

probabilities [α1, . . . , αn], where
∑n

i=1 αi = 1 and αi > 0.

In particular, the transition probability of the Markov chain

in Gibbs sampler is a weighted sum of the full conditional

probabilities as

P (Xt,Xt+1) =
n∑

i=1

αiPi(xi|x[−i]), (7)

where t is the time index of the Markov chain. To summarize,

Algorithm 1 illustrates the operation of Gibbs sampler for

lattice Gaussian distribution. The initial Markov state x0 can

be chosen from the state space Ω = Z
n arbitrarily or from the

Algorithm 1 Gibbs sampler for lattice Gaussian distribution

Input: B, σ, c,x0, tmix(ε)
Output: x ∼ DΛ,σ,c

1: for t =1,2, . . . do
2: randomly choose the index i based on [α1, . . . , αn]
3: sample xi from Pi(xi|x[−i]) shown in (5)

4: update x with the sampled xi and let Xt = x
5: if t ≥ tmix(ε) then
6: output the state of Xt

7: end if
8: end for

output of a suboptimal algorithm, while tmix(ε) denotes the

mixing time of the Markov chain.

Theorem 1 ([10]). Given the invariant distribution DΛ,σ,c,
the Markov chain induced by the Gibbs sampler converges to
the stationary distribution in the total variation (TV) distance
as t → ∞:

lim
t→∞‖P t(x; ·)−DΛ,σ,c‖TV = 0. (8)

III. GEOMETRIC ERGODICITY OF GIBBS SAMPLER

Although ergodicity implies asymptotic convergence to s-

tationarity, it does not entail the way of the convergence,

resulting in an intractable Markov chain [15]. Among the kinds

of ergodicity in literature [16], geometric ergodicity which

converges exponentially is defined as:

Definition 1. A Markov chain with stationary distribution π(·)
is geometrically ergodic if there exists 0 < ρ < 1 and M(x) <
∞ such that for all x ∈ Ω

‖P t(x, ·)− π(·)‖TV ≤ M(x)ρt, (9)

where Ω represents the state space of the Markov chain and
M(x) is parameterized by the initial state x.

Here, the notion of spectral gap γ of the Markov chain is

induced. Then, according to the following Theorem from [17],

the geometric ergodicity can be simply verified by γ > 0 for

a reversible, irreducible and aperiodic Markov chain.

Theorem 2 ([17]). A reversible, irreducible and aperiodic
chain with the spectral gap γ = 1 − spec(F) > 0 in L2

0

converges exponentially to the stationary distribution π

‖P t(x, ·)− π(·)‖TV ≤ M(x)(1− γ)t, (10)

where spec(·) denotes the spectral radius and F represents
the forward operator of the Markov chain.

Particularly, given the transition probability P (Xt,Xt+1),
the forward operator F of the Markov chain is defined as [14]

Fh(x) �
∑
y∈Ω

h(y)P (x,y) = E[h(y)|x] (11)
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with induced operator norm

‖F‖ = sup
h∈L2

0(π),var(h)=1

‖Fh‖ = sup
h∈L2

0(π),var(h)=1

〈h(Xt), h(Xt+1)〉. (12)

Here, x and y denote the Markov states of Xt and Xt+1

respectively. L2(π) is the Hilbert space of square integrable

functions with respect to π so that L2
0(π) � {h(x) :

E[h(x)] = 0, var[h(x)] < ∞} denotes the subspace of L2(π)
consisting of functions with zero mean relative to π. More

precisely, for h(·), g(·) ∈ L2
0(π), the inner product defined by

the space is

〈h(x), g(x)〉 = E[h(x)g(x)] (13)

with variance

varπ[h(x)] = 〈h(x), h(x)〉 = ‖h(x)‖2. (14)

Clearly, from Theorem 2, the convergence rate of the

Markov chain is exactly characterized by the spectral radius

of F, i.e., ρ = spec(F). Based on it, we then arrive at the

following Corollary to demonstrate the geometric ergodicity

of Gibbs sampler for lattice Gaussian distribution.

Corollary 1. Given the invariant lattice Gaussian distribu-
tion DΛ,σ,c, the Markov chain induced by Gibbs sampler is
geometrically ergodic as

‖P t(x, ·)−DΛ,σ,c‖TV ≤ M(x)spect(F). (15)

Proof: To start with, it is easy to verify that the Markov

chain induced by Gibbs sampler is irreducible, aperiodic and

reversible. Then, according to Theorem 2, in order to show

the geometric ergodicity, we only need to prove γ > 0 by

0 < spec(F) < 1.

Typically, spec(F) is closely related with the norm of F as

[17], [18]

spec(F) = lim
t→∞‖Ft‖1/t. (16)

In theory, reversibility corresponds to a self-adjoint operator

F with [19]

‖Ft‖ = ‖F‖t, (17)

then we have

spec(F) = ‖F‖. (18)

Subsequently, according to (12) and (13), the spectral radius

of F can be further expressed as

spec(F) = sup
h∈L2

0(π),var(h)=1

〈h(Xt), h(Xt+1)〉.

= sup
h∈L2

0(π),var(h)=1

E[h(Xt)h(Xt+1)]. (19)

Because only one component of x (i.e., xi) over Xt and

Xt+1 is different and because the coordinate index i is

determined randomly, Xt
[−i] can be viewed as a joint function

made up by Xt and i, i.e., X[−i] = f(X, i), where the random

variable i serves as the update index i at each move. Hence,

given Xt
[−i], X

t and Xt+1 are conditionally independent on

sampling xi, which is also referred to as interleaving Markov

property in data augmentation literatures [14]. Then, we have

E[h(Xt)h(Xt+1)]=E[E[h(Xt)h(Xt+1)|Xt
[−i]]]

= E

[
n∑

i=1

αiE[h(Xt)h(Xt+1)|Xt
[−i]]

]

= E

[
n∑

i=1

αiE[h(Xt)|Xt
[−i]]E[h(Xt+1)|Xt

[−i]]

]
(a)
= E

[
n∑

i=1

αiE
2[h(x)|x[−i]]

]
(b)
=

n∑
i=1

αiE[h2(x)]−
n∑

i=1

αiE[var[h(x)|x[−i]]]

(c)
= var[h(x)]−

n∑
i=1

αiE[var[h(x)|x[−i]]]. (20)

Here, equality (a) holds due to the fact that given Xt
[−i],

Xt and Xt+1 are independent and identically distributed with

respect to xi, (b) and (c) respectively come from the properties

of random variable in statistics shown below

E2[A] = E[A2]− var[A] (21)

and

E[E[A|B]] = E[A]. (22)

Then, by substitution, it follows that

spec(F)= sup
h∈L2

0(π),var(h)=1

{
var[h(x)]−

n∑
i=1

αiE[var[h(x)|x[−i]]]

}

=1− inf
h∈L2

0(π),var(h)=1

{
n∑

i=1

αiE[var[h(x)|x[−i]]]

}

=1− inf
h∈L2

0(π),var(h)=1

⎧⎨⎩
n∑

i=1

αi

∑
x[−i]

var[h(x)|x[−i]]P (x[−i])

⎫⎬⎭
(23)

Clearly, as h(·) in the infimum is required to satisfy

var(h) = 1, the value of inf
h∈L2

0(π),var(h)=1
{var[h(x)|x[−i]]}

is actually determined by the Pearson correlation coefficient

between xi and x[−i], i.e., corr(xi,x[−i]). Typically, it equals

to 1 when xi is independent of x[−i], i.e., |corr(xi,x[−i])| = 0.

On the other hand, it turns out to be 0 if and only if xi

completely depends on x[−i], i.e., |corr(xi,x[−i])| = 1, which

obviously contradicts the sampling setup shown in (6) since

xi is a random variable and any candidate of xi is possible to

be sampled. Therefore, it follows that

inf
h∈L2

0(π),var(h)=1
{var[h(x)|x[−i]]} > 0 (24)

and so as to the summation

inf
h∈L2

0(π),var(h)=1

⎧⎨⎩
n∑

i=1

αi

∑
x[−i]

var[h(x)|x[−i]]P (x[−i])

⎫⎬⎭ > 0.

(25)

Meanwhile, because of var[h(x)|x[−i]] < var[h(x)], we can
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immediately arrive at

inf
h∈L2

0(π),var(h)=1

{
n∑

i=1

αiE[var[h(x)|x[−i]]]

}
< 1 (26)

and

0 < spec(F) < 1, (27)

thus completing the proof by invoking Theorem 2 with 0 <
γ = 1− spec(F) < 1.

To summarize, the Markov chain converges exponentially

fast to the lattice Gaussian distribution DΛ,σ,c, where the

exponential convergence rate ρ is characterized by spec(F).
In fact, this can be interpreted from maximal correlation point

of view since spec(F) shown in (19) essentially represents the

lag-1 maximal correlation between two consecutive Markov

states Xt and Xt+1 [20], which means Markov states further

apart in the chain turns out to be gradually uncorrelated

in an exponential way. Additionally, note that in geometric

ergodicity, the initial state x ∈ Z
n can be carefully selected

for a smaller coefficient M(x) < ∞.

IV. CONVERGENCE ANALYSIS

It is not surprising that the lag-1 maximal correlation govern

the rapid mixing since the lower correlation, the greater the

amount of information contained in a given number of draws

from the posterior, making it a useful diagnostics on the

convergence rate of the MCMC sampler. However, from (23),

it is difficult to calculate spec(F) explicitly, except in some

rare cases. Nevertheless, comprehensive convergence analysis

still can be carried out, which targets at a smaller convergence

rate.

A. Blocked Sampling

Specifically, although Gibbs sampler will converge to the

stationary distribution eventually, the way it functions by indi-

vidually sampling only one component of x at each time tends

to yield a slow convergence. Especially when components of

x are highly correlated with each other, the Markov chain will

most likely be trapped by some local minima for a long time.

With the increase of the dimension, such a flaw will get worse,

which severely diminishes the convergence.

From the regression point of view one should avoid in-

troducing unnecessary components into the sampler, however

removing one component by integrating it out of x turns out

to be difficult in most cases of interest, rendering blocked

sampling as a feasible alternative to improve the convergence.

Because of this, sampling over multiple components of x is

worthwhile to be considered. In what follows we show that

such a mechanism motivated by blocked sampling is able to

achieve a faster convergence than the standard Gibbs sampler

by a smaller spec(F).

Proposition 1. Given the selection probabilities αi’s, the
blocked version of Gibbs sampler achieves a faster conver-
gence rate by a smaller convergence rate ρ = spec(F), i.e.,

xt+1
1

xt
2

xt
3

xt
4

Xt

Standard Blocked

>Xt+1<

xt+1
1

xt+1
2

xt
3

xt
4

Xt

Fig. 1. Illustration of standard Gibbs sampler and blocked Gibbs sampler.
Components within the dashed block are sampled as a whole by blocked
Gibbs sampler.

spec(F)block ≤ spec(F). (28)

Proof: First of all, according to the law of total variance
shown below

var(A) = E[var(A|B)] + var[E(A|B)], (29)

the term shown in (20) can be derived as

E[h(Xt)h(Xt+1)] =
n∑

i=1

αivar[E[h(x)|x[−i]]] (30)

and subsequently, we have

spec(F)= sup
h∈L2

0(π),var(h)=1

n∑
i=1

αivar[E[h(x)|x[−i]]]. (31)

For ease of presentation, a two-component blocked sam-

pling scenario depicted in Fig. 1 is firstly considered. Typi-

cally, suppose xi and xj of x can be sampled together, then

considering the fact that

E[h(x)|x[−i,−j]] = E[E[h(x)|x[−i]]|x[−j]], (32)

we can immediately get

var(E[h(x)|x[−i,−j]]) ≤ var(E[h(x)|x[−i]]]) (33)

and

var(E[h(x)|x[−i,−j]]) ≤ var(E[h(x)|x[−j]]]). (34)

Obviously, this two-component blocked sampling can be easily

extended to any larger size blocked sampling. To conclude, it

follows that

var(E[h(x)|x[−block]]) ≤ var(E[h(x)|x[−i]]]), (35)

where the block contains the component xi.

Consequently, according to (31) and (35), we can arrive at

spec(F)block ≤ spec(F), (36)

completing the proof.

Compared to conventional univariate sampling, by sampling
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multiple components together, the slow, componentwise moves

will be replaced by the fast moves incorporating the infor-

mation about dependence between components. Moreover, it

is straightforward to see that the convergence performance

also improves gradually with grouping more elements into the

block

var(E[h(x)|x[−block,−j]]) ≤ var(E[h(x)|x[−block]]]), (37)

where the insight behind this is intuitive to understand since

larger blocks allow moves in more general directions. To

be more specific, if all the components forming a single

block could be sampled directly, there would be no any need

for MCMC sampling. In this regard, blocked technique is

strongly recommended if sampling over multi-component can

be efficiently carried out. For more details on low complexity

implementation, readers are referred to [10] for Gibbs-Klein

sampling algorithm.

B. Selection Probabilities αi’s

Since every two adjacent states differ from each other by

only one coordinate of x, Gibbs sampler is naturally charac-

terized by the selection probabilities αi’s, which determine the

percentage of visits to a specific element of x. As shown in (7),

there is a great flexibility in choice of αi’s while extensions

to other scan schemes can be easily constructed based on it.

As can be seen clearly from (31), spec(F) is a function

of αi’s and optimal allocation of visiting percentage can be

therefore designed to minimize it. In particular, according to

(23), the following relationship can be revealed

spec(F) ∝ 1∑n
i=1 αiE[var[h(x)|x[−i]]]

. (38)

Intuitively, in order to reduce spec(F), a small αi is pre-

ferred when E[var[h(x)|x[−i]]] turns out to be small, which

can be interpreted to make fewer visits to a component that is

less variable. Therefore, compared to equal selection probabil-

ities, i.e., αi = 1/n, considerable convergence potential can

be exploited by a sophisticated design of αi’s. For this reason,

a heuristic allocation method of αi’s is introduced to enhance

the convergence.

In particular, since h(·) belonging to the Hilbert space L2
0(π)

is hard to track, the variance of xi during the univariate

conditional sampling Pi(xi|x[−i]) is applied as an alternative

metric to approximately evaluate E[var[h(x)|x[−i]]] in a sense,

that is,

var[Pi(xi|x[−i])] ∝ E[var[h(x)|x[−i]]]. (39)

Then, based on such a relationship, αi’s can be optimized

according to

αi =
var[Pi(xi|x[−i])]∑n
i=1 var[Pi(xi|x[−i])]

, (40)

where a large E[var[h(x)|x[−i]]] corresponds to a relatively

large αi. By doing this, the component of x with large

sampling variance is desired to be sampled more frequently

for a better convergence performance.

V. CONCLUSION

In this paper, we demonstrated that the classic Gibbs sam-

pling from MCMC methods converges exponentially fast to

the lattice Gaussian distribution. An explicit expression of the

convergence rate was presented, which is characterized by the

spectral radius of the forward operator of the Markov chain.

In order to improve the convergence performance, effective

operations by blocked sampling technique and reasonable

allocation of selection probabilities were presented, which are

proven to be beneficial for the Markov mixing.

REFERENCES

[1] W. Banaszczyk, “New bounds in some transference theorems in the
geometry of numbers,” Math. Ann., vol. 296, pp. 625–635, 1993.

[2] G. Forney and L.-F. Wei, “Multidimensional constellations–Part II:
Voronoi constellations,” IEEE J. Sel. Areas Commun., vol. 7, no. 6,
pp. 941–958, Aug. 1989.

[3] C. Ling and J.-C. Belfiore, “Achieiving the AWGN channel capacity with
lattice Gaussian coding,” IEEE Trans. Inform. Theory, vol. 60, no. 10,
pp. 5918–5929, Oct. 2014.

[4] S. Vatedka, N. Kashyap, and A. Thangaraj, “Secure compute-and-
forward in a bidirectional relay,” IEEE Transactions on Information
Theory, vol. 61, no. 5, pp. 2531–2556, May 2015.

[5] D. Micciancio and O. Regev, “Worst-case to average-case reductions
based on Gaussian measures,” in Proc. Ann. Symp. Found. Computer
Science, Rome, Italy, Oct. 2004, pp. 372–381.

[6] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in CRYPTO, Springer, Heidelberg, pp. 75-92, 2013.

[7] D. Aggarwal, D. Dadush, O. Regev, and N. Stephens-Davidowitz,
“Solving the shortest vector problem in 2n time via discrete Gaussian
sampling,” STOC, 2015.

[8] Z. Wang, S. Liu, and C. Ling, “Decoding by sampling - Part II:
Derandomization and soft-output decoding,” IEEE Trans. Commun.,
vol. 61, no. 11, pp. 4630–4639, Nov. 2013.

[9] P. Klein, “Finding the closest lattice vector when it is unusually close,”
in ACM-SIAM Symp. Discr. Algorithms, 2000, pp. 937–941.

[10] Z. Wang, C. Ling, and G. Hanrot, “Markov chain Monte Carlo al-
gorithms for lattice Gaussian sampling,” in Proc. IEEE International
Symposium on Information Theory (ISIT), Honolulu, USA, Jun. 2014,
pp. 1489–1493.

[11] Z. Wang and C. Ling, “On the geometric ergodicity of Metropolis-
Hastings algorithms for lattice Gaussian sampling,” accepted by IEEE
Transactions on Information Theory, to appear soon., [Online] Avail-
able:http://arxiv.org/pdf/1501.05757v2.pdf.

[12] ——, “Symmetric Metropolis-within-Gibbs algorithm for lattice Gaus-
sian sampling,” in Proc. IEEE Information Theory Workshop (ITW),
Cambridge, United Kingdom, Sept. 2016, pp. 394–398.

[13] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proc. 40th Ann. ACM
Symp. Theory of Comput., Victoria, Canada, 2008, pp. 197–206.

[14] J. S. Liu, Monte Carlo Strategies in Scientific Computing, New York:
Springer-Verlag, 2001.

[15] L. Tierney, “Markov chains for exploring posterior distributions (with
discussion),” in Proc Ann. Stat., vol. 22, 1994, pp. 1701–1762.

[16] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability.
UK, Cambridge University Press, 2009.

[17] I. Kontoyannis and S. P. Meyn, “Geometric ergodicity and spectral gap
of non-reversible real valued Markov chains,” in Proc. Probab. Theory
and related Fields, vol. 154, 2012, pp. 327–339.

[18] J. A. Fill, “Eigenvalue bounds on convergence to stationary for nonre-
versible Markov chains, with application to the exclusion process.” in
Proc. Annals of Applied Probability, vol. 1, 1991, pp. 62–87.

[19] J. S. Liu, W. H. Wong, and A. Kong, “Covariance structure and
convergence rate of the Gibbs sampler with various scans,” J. Roy.
Statist. Soc. Series B, 57(1): 157-169, 1995.

[20] J. S. Liu, “Fraction of missing information and convergence rate of
data augmentation,” in Computationally Intensive Statistical Methods:
Proceedings of the 26th symposium on the Interface, North Carolina,
1994, pp. 490–497.

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 273Authorized licensed use limited to: Southeast University. Downloaded on August 27,2023 at 09:09:59 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


