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Abstract—In this paper, we consider real-time beamforming
design for dynamic wireless environments with varying channels
and different numbers of access points (APs) and users in
cell-free systems. Specifically, a sum spectral efficiency (SE)
maximization optimization problem is formulated for the beam-
forming design in dynamic wireless environments of cell-free
systems. To efficiently solve it, a high-generalization network
(HGNet) is proposed to adapt to the changing numbers of APs
and users. Then, a high-generalization beamforming module is
also designed in HGNet to extract the valuable features for
the varying channels, and we theoretically prove that such a
high-generalization beamforming module is able to reduce the
upper bound of the generalization error. Subsequently, by online
adaptively updating about 3% of the parameters of HGNet, an
online adaptive updating (OAU) algorithm is proposed to enable
the online adaptive real-time beamforming design for improving
the sum SE. Numerical results demonstrate that the proposed
HGNet with OAU algorithm achieves a higher sum SE with a
lower computational cost on the order of milliseconds.

Index Terms—Cell-free systems, beamforming, real-time, deep
learning, generalization, dynamic wireless environments.

I. INTRODUCTION

RECENTLY, cell-free systems have received considerable
attentions [2], [3]. By connecting all access points (APs)

to a central processing unit (CPU) via backhaul links, cell-
free systems allow multiple APs to collaboratively design
beamforming to serve users within the network coverage
area, thus eliminating many interference issues present in
cellular systems [4], [5]. Nevertheless, beamforming design is
a nonconvex optimization problem that is difficult to solve effi-
ciently [6], [7]. Conventional optimization algorithms like the
weighted minimum mean square error (WMMSE) algorithm
[8] usually use the convex approximation to obtain a stable
solution of the beamforming design. Unfortunately, most of
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them require multiple iterations and matrix inversions, which
are difficult to meet the demands of the real-time beamforming
design.

To facilitate the real-time implementation, deep learning
has been extensively applied to the beamforming design of
cell-free systems [9], [10]. Notably, by applying graph neural
networks (GNNs), the work in [11] proposed an Edge-GNN to
solve the sum spectral efficiency (SE) maximization problem
of cooperative beamforming design. Based on the weight
sharing mechanism of convolutional neural networks (CNNs),
Ref. [12] designed a SUNet with high computational efficiency
for achieving the beamforming design in cell-free systems.
Once trained, these deep learning algorithms require only
simple feed-forward computations to infer beamforming, en-
hancing the real-time reflection speed compared to WMMSE
algorithm. However, these methods generally assume to work
in a fixed configuration, i.e., the channel conditions are the
same for the training and the inference phases.

In practice, communication systems normally operate in
dynamic wireless environments due to user mobility and ran-
dom distributions for various transmission media [13]. Given
these realistically dynamic wireless environments, most deep
learning-based beamforming design algorithms struggle to
achieve good performance under real-time requirements. This
is since the varying channels resulting from dynamic wireless
environments cause the data distribution fed into deep learning
to be different in the training and the inference phases. Such
shift violates the basic assumptions of deep learning, i.e., the
same data distribution in the training and the inference stages
can yield better generalization performance [14]. Although
retraining the model with current channel data can improve
the generalization of varying channels, it is time-consuming
and insufficient for real-time applications.

There have been some pioneering works utilizing deep
learning to consider dynamic wireless environments, where
the channels vary over periods while remaining constant
within each period [15], [16], [17]. Specifically, by using
continuous learning to adapt to a new period without forgetting
the knowledge learned from previous ones, [15] optimized
power allocation for dynamic wireless environments in single-
input single-output (SISO) cellular systems. The work in
[16] proposed a meta-gating framework including outer and
inner networks to realize the beamforming design for dynamic
wireless environments in multiple-input single-output (MISO)
cellular systems. The outer network evaluated the importance
of the inner network’s parameters under varying channels, and
then decided which subset of the inner network should be
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activated through a gating operation. For intelligent omnidirec-
tional surface assisted MISO cellular systems, [17] proposed
a meta-critic reinforcement learning capable of recognizing
changes in dynamic wireless environments and automatically
performing the self-renewal of the learning mode, while the
beamforming design was performed by the low-performance
zero-forcing.

Although the above methods have been applied to dynamic
wireless environments, it is still a challenge to apply them
to the real-time beamforming design for dynamic wireless
environments in cell-free systems. The reasons are as follows.
Firstly, compared to SISO and MISO cellular systems, the
multiple-input multiple-output (MIMO) cell-free systems con-
sidered in this paper contain numerous APs and users with
multiple antennas, which greatly hinders the application of
these methods for the real-time beamforming design. Sec-
ondly, compared to the power allocation in [15] and the zero-
forcing in [17], the number of the optimized variables for the
beamforming design is considerably higher, further increasing
the challenge of the real-time beamforming design. Thirdly,
dynamic wireless environments potentially lead to a variation
in the association relationship between APs and users for
cell-free systems, i.e., the number of APs and users changes
over periods while remaining constant within each period. The
algorithms in [15], [16], [17] probably need to retrain the
network architectures and parameters as the number of users
and APs varies in cell-free systems, which is also difficult to
meet real-time requirements.

Motivated by the above challenges, this paper investigates
the real-time beamforming design for dynamic wireless envi-
ronments in cell-free systems. The objective is to maximize
the sum SE while maintaining computational efficiency for
the varying channels with the different numbers of APs
and users. To achieve the objective, this paper proposes a
high-generalization network (HGNet) with an online adaptive
updating (OAU) algorithm. More specifically, the major con-
tributions are summarized as follows:

1) To effectively characterize the dynamic wireless environ-
ments in cell-free systems, the channels as well as the
number of APs and users are modeled as varying over
periods and remaining constant within each period. Mean-
while, a sum SE maximization optimization problem for
the varying channels and the different numbers of APs
and users is built for the beamforming design in dynamic
wireless environments of cell-free systems.

2) To solve the non-convex optimization problem, we pro-
pose HGNet. Particularly, HGNet incorporates the resid-
ual structure of CNNs to map channel state informa-
tion (CSI) to beamforming with high computational ef-
ficiency, which also adapts to the varying numbers of
APs and users. HGNet also designs a high-generalization
beamforming module to extract the valuable features for
the varying channels, and we theoretically prove that
the high-generalization beamforming module decreases
the upper bound of the generalization error. This helps
HGNet to yield a better generalization sum SE for dy-
namic wireless environments.

3) To enable the online adaptive real-time beamforming
design, an OAU algorithm is proposed to adaptively
update about 3% of the parameters of HGNet online,
taking a computationally efficient information entropy
as the loss function. This further enhances the sum SE
performance of dynamic wireless environments with the
varying channels and the different numbers of APs and
users in cell-free systems.

4) Numerical results are conducted to validate the effec-
tiveness of the proposed HGNet with OAU algorithm.
For the varying channels and the different numbers of
APs and users, the average sum SE performance of
HGNet outperforms those of the recent deep learning
algorithms Edge-GNN [11] and SUNet [12], where the
average computational cost of HGNet is also the lowest
on the millisecond scale. Meanwhile, the proposed OAU
algorithm further improves the sum SE performance of
HGNet with an average computation cost in the order of
milliseconds.

The rest of this paper is organized as follows. In Section
II, the system model is introduced, followed by formulating a
sum SE maximization optimization problem with the varying
channels and the different numbers of APs and users. In
Section III, the HGNet containing the high-generalization
beamforming module is proposed, and a theoretical proof that
the high-generalization beamforming module can reduce the
upper bound of the generalization error is given. In Section IV,
the OAU algorithm is proposed to online adaptively update the
parameters of HGNet to realize the online adaptive real-time
beamforming design with increasing sum SE performance. In
Section V, some experimental results for HGNet and OAU
algorithm are showed and analyzed. Finally, some conclusions
are provided in Section VI.

Notations: The scalar, vector, and matrix are denoted by
lowercase letter x, boldface lowercase letter x, and boldface
uppercase letter X, respectively. C and R denote the sets
of complex and real numbers, respectively. (·)H denotes the
conjugate transpose. (·)−1 denotes the matrix inversion. {·}
denotes the set. sup denotes the minimum upper bound.

II. SYSTEM MODEL

As illustrated in Fig.1, a dynamic wireless environment
for cell-free systems is considered, where the channels as
well as the number of APs and users vary between periods
and remain constant within each period. Scenarios with the
considered dynamic environment can be widely found in
practice. For instance, autonomous vehicles move from high-
density areas to open environments, the channel changes ac-
cordingly from Rayleigh fading with non-line-of-sight (NLoS)
to Rician fading with LoS [18]. To ensure the safety of
autonomous vehicles, real-time communication is crucial [19],
often requiring resource allocation at the millisecond level to
support low-latency communication [20]. In such cases, the
period can be defined based on environmental conditions, such
as “time in high-density areas” or “time in open environments”
. Further, let T = {1, · · · , T} denote the set of periods,
where It users are assumed to access Qt APs in the tth
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Fig. 1: An illustration for dynamic wireless environments
with the varying channels and the different numbers of APs

and users.

period. Qt = {1t, · · · , Qt} and It = {1t, · · · , It} denote
the sets of APs and users at the tth period. Each AP is
equipped with M antennas, and each user with N antennas.
All APs are connected to a CPU via backhaul links for
exchanging information, where the CPU can access global
CSI to collaboratively design beamforming for improving the
system sum SE1 [12], [22]. To simplify the notation, i and j
denote the indexes of users, and q denotes the index of AP. The
received signal of the ith user at the tth period is represented
as

yi,t = Hi,tvi,tsi,t +
∑
j ̸=i

Hi,tvj,tsj,t + zi,t ∈ CN×1, (1)

where Hi,t ∈ CN×QtM and vi,t ∈ CQtM×1 denote the CSI
matrix and beamforming vector of the AP set Qt to the ith

user at the tth period. si,t denotes the data sent to the ith user
at the tth period. zi,t ∼ CN

(
0, σ2

i,tI
)

denotes the additive
noise. From Eq.(1), the SE of the ith user at the tth period is
denoted as

Ri,t =

log

∣∣∣∣∣∣∣I+Hi,tvi,tv
H
i,tH

H
i,t

∑
j ̸=i

Hi,tvj,tv
H
j,tH

H
i,t + σ2

i,tI

−1
∣∣∣∣∣∣∣ .

(2)
To better depict the influence brought by dynamic wireless

environments, we consider the sum SE maximization problem

1This paper focuses on the real-time beamforming design under dynamic
wireless environments with varying channels and different numbers of APs
and users in cell-free systems, assuming that all APs in the network coverage
area serve all users simultaneously. This assumption actually reduces the scal-
ability of cell-free systems [21]. However, when user scheduling techniques
are implemented to improve the scalability of cell-free systems, the proposed
method is still able to perform despite the varying number of users caused by
the user scheduling techniques. This is because the proposed method is based
on the convolution operation, which guarantees that the dimension of the
output varies flexibly with that of the input. Therefore, in the future, we will
integrate a deep learning-based user scheduling algorithm into the proposed
method to further improve the scalability of cell-free systems.

for the varying channels and the different numbers of APs and
users in cell-free systems, i.e.,

max
vi,t

It∑
i=1

Ri,t

s.t.
It∑
i=1

vq,H
i,t vq

i,t ≤ Pmax,∀q ∈ Qt,∀t ∈ T ,

D (Ht)⇐ t,∀t ∈ T ,
(Qt, It)⇐ t,∀t ∈ T ,

(3)

where Pmax is the maximum transmit power of the AP. vq
i,t ∈

CM×1 is the beamforming vector of the qth AP to the ith user
at the tth period, and vi,t =

[
v1,H
i,t , · · · ,vq,H

i,t · · · ,v
Qt,H
i,t

]
∈

CQtM×1. Ht =
[
HH

1,t, · · · ,HH
i,t, · · · ,HH

It,t

]H ∈ CItN×QtM

denotes the CSI matrix of the AP set Qt to the user set It at
the tth period. D (Ht) denotes the distribution of Ht.

Remark 1: The constraint D (Ht)⇐ t, ∀t ∈ T in the op-
timization problem (3) indicates the channels varying with
the period t for dynamic wireless environments in cell-free
systems. Due to the variations in the channels, the input CSI
of deep learning has different distributions during the training
and the inference phases. This violates the underlying assump-
tion of deep learning that better generalization performance
is only produced by using the same data distribution in the
training and the inference stages. As a result, the constraint
D (Ht)⇐ t, ∀t ∈ T severely increases the difficulty of solving
the optimization problem (3) leveraging deep learning.

Remark 2: The constraint (Qt, It)⇐ t, ∀t ∈ T in the opti-
mization problem (3) describes the number of APs and users
varying with the period t for dynamic wireless environments
in cell-free systems. The changing numbers of APs and users
result in a variation in the dimension of the input CSI for
deep learning, requiring the corresponding dimension of the
output beamforming to adjust accordingly. In other words, the
constraint (Qt, It)⇐ t,∀t ∈ T requires that the dimension
of the output beamforming of deep learning flexibly varies
with that of the input CSI. This may require deep learning
method to retrain the network architectures and parameters
in a remarkably time-consuming manner, which fails to meet
the demands of the real-time beamforming design.

Note that the optimization problem (3) is non-convex,
which can be solved approximately by traditional optimization
algorithms with high computational complexity. However, it
is difficult to realize the real-time beamforming design. Deep
learning is a good alternative to improve the computational
efficiency. Unfortunately, according to Remark 1 and Remark
2, applying deep learning to solve the optimization problem
(3) is also a challenge in terms of generalization and real-
time performance due to the constraints D (Ht)⇐ t,∀t ∈ T
and (Qt, It)⇐ t,∀t ∈ T . As a result, it is necessary to carry
out a high-generalization real-time beamforming design for
dynamic wireless environments with the varying channels and
the different numbers of APs and users in cell-free systems.

III. PROPOSED HGNET

In this section, we pay our attention on designing a HGNet
to implement the high-generalization real-time beamforming
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Fig. 2: Proposed HGNet.

design for dynamic wireless environments with the varying
channels and the different numbers of APs and users in cell-
free systems by solving the optimization problem (3). As
illustrated in Fig.2, the proposed HGNet mainly includes an
input module, a convolution unit C (·, θl), a high-generalization
beamforming module G (·, θl) and an output module. Specifi-
cally, the input module transforms a complex-valued CSI into
a real-valued CSI. C (·, θl) maps the real-valued CSI to beam-
forming with low computational complexity and satisfying
(Qt, It)⇐ t,∀t ∈ T in the optimization problem (3). Sub-
sequently, G (·, θl) is specially designed to improve the sum
SE performance for D (Ht)⇐ t, ∀t ∈ T in the optimization
problem (3). Finally, the output module yields the complex-
valued beamforming that satisfies the power constraint.

A. Input

Since deep learning methods such as CNNs normally deal
with three-dimensional (3D) real numbers, the input module
converts Ht ∈ CItN×QtM into a 3D real-valued CSI tensor
H3D

t,mod ∈ RQt×It×MN by computing modulus values and
dimension transformations. 2

B. Convolution Unit C (·, θl)
C (·, θl) aims to achieve the mapping from

H3D
t,mod ∈ RQt×It×MN to beamforming with fulfilling

(Qt, It)⇐ t,∀t ∈ T in the optimization problem (3).
Particularly, (Qt, It)⇐ t,∀t ∈ T requires that the dimension

2In this paper, the first, second and third dimensions of a 3D tensor are
denoted as width, height and third dimension, respectively.

of the output beamforming of deep learning should flexibly
change with the dimension of the input H3D

t,mod ∈ RQt×It×MN .
Fortunately, the output dimension of the convolution unit is
determined by the input data dimension and the convolutional
architectural parameters. Accordingly, it is encouraged to
apply the convolution unit to derive some architectural
conditions for satisfying (Qt, It)⇐ t, ∀t ∈ T . On the other
hand, the unique weight sharing mechanism of the convolution
unit significantly reduces the computational complexity of
neural networks, which is also in line with the goal of the
real-time beamforming design. Consequently, C (·, θl) selects
the convolution unit to cascade into a deep structure with L
layers, where each layer contains a convolution layer (CL), a
batch normalization (BN) layer, and an activation layer (AL).
Formally, the formula of the lth layer C (·, θl) is defined as

Cl = AL (BN (CL (Gl−1, θl))) , (4)

where Cl denotes the output of C (·, θl), and θl is the
parameters of HGNet. Gl−1 denotes the input of C (·, θl),
and G0 = H3D

t,mod ∈ RQt×It×MN . CL (·, ·) denotes the
convolution operation. BN (·) denotes the BN operation, which
is added after the CL for reducing the overfitting probability
[23]. AL (·) denotes the AL operation [24], which selects
the commonly used ReLU(x) = max(0, x). Note that the
last layer C (·, θL) outputs the real and imaginary parts of
beamforming, which should contain both positive and negative
values. Thus, AL (·) in C (·, θL) can adopt Tanh(x) = ex−e−x

ex+e−x .
Remark 3: For the constraint (Qt, It)⇐ t,∀t ∈ T in the

optimization problem (3), when the dimension of the input 3D
real-valued CSI H3D

t,mod at the tth period is Qt×It×MN , the
dimension of the corresponding output beamforming should be
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a 3D complex-valued tensor of dimension Qt×It×M , which
can be transformed into a 3D real-valued tensor of dimension
Qt × It × 2M . At the t′

th period, the dimension of the input
3D real-valued CSI H3D

t′,mod changes from Qt × It ×MN to
Qt′ × It′ × MN , then the dimension of the corresponding
output beamforming should vary from Qt× It× 2M to Qt′ ×
It′ × 2M .

Based on Remark 3, when H3D
t,mod ∈ RQt×It×MN is inputted

to C (·, θl) , l = {1, · · · , L}, the dimension of the output CL of
the Lth layer C (·, θL) should be Qt× It× 2M . However, the
dimension of CL is determined by the architectural parameters
of the CL in C (·, θl) , l = {1, · · · , L} such as the number
of convolution kernel and the sizes of convolution kernel,
sliding step, zero padding. Consequently, in what follows, we
derive some architectural conditions for the CL in C (·, θl) , l =
{1, · · · , L} to satisfy Remark 3.

Proposition 1: Let win
C(·,θl), hin

C(·,θl), wout
C(·,θl) and hout

C(·,θl)
denote the input-output width and height of C (·, θl), as well
as kwl , khl , pwl , phl , swl and shl denote the width and height
of the convolution kernel, the zero padding, the sliding step
for the CL of C (·, θl), respectively. When swl = 1, shl = 1,
if pwl = 1

2 (k
w
l − 1), phl = 1

2 (k
h
l − 1), both pwl , phl and

kwl , khl are positive integers, then wout
C(·,θl) = win

C(·,θl) and
hout
C(·,θl) = hin

C(·,θl).

Proof: As can be seen in Fig.1, C (·, θl) contains a CL, a
BN and an AL. For the CL in C (·, θl), its output width and
height wCL

C(·,θl) × hCL
C(·,θl) are denoted as

wCL
C(·,θl) =

win
C(·,θl)

+2pw
l −kw

l

swl
+ 1,

hCL
C(·,θl) =

hin
C(·,θl)

+2ph
l −kh

l

shl
+ 1,

(5)

where swl = 1, shl = 1, pwl = 1
2 (k

w
l − 1) and phl = 1

2 (k
h
l − 1)

are brought into Eq.(5),

wCL
C(·,θl) =

win
C(·,θl)

+2× 1
2 (k

w
l −1)−kw

l

1 + 1 = win
C(·,θl),

hCL
C(·,θl) =

hin
C(·,θl)

+2× 1
2 (k

h
l −1)−kh

l

1 + 1 = hin
C(·,θl).

(6)

Based on Eq.(6), the output width and height of the CL in
C (·, θl) are win

C(·,θl) and hin
C(·,θl), respectively. On the other

hand, the BN and AL do not change the input dimension, i.e.,
the output width and height of the BN and AL in C (·, θl)
are also win

C(·,θl) and hin
C(·,θl), respectively. Consequently, the

output width and height of C (·, θl) are win
C(·,θl) and hin

C(·,θl),
i.e., wout

C(·,θl) = win
C(·,θl) and hout

C(·,θl) = hin
C(·,θl), respectively. ■

Proposition 2: When swl > 1, shl > 1, if pwl =
1
2 (w

in
C(·,θl)s

w
l − win

C(·,θl) − swl + kwl ) and phl = 1
2 (h

in
C(·,θl)s

h
l −

hin
C(·,θl)−shl +khl ), as well as pwl , phl , swl , shl , kwl , khl are pos-

itive integers, then wout
C(·,θl) = win

C(·,θl) and hout
C(·,θl) = hin

C(·,θl).

Proof: For the CL in C (·, θl), where swl > 1, shl > 1, pwl =
1
2 (w

in
C(·,θl)s

w
l − win

C(·,θl) − swl + kwl ) and phl = 1
2 (h

in
C(·,θl)s

h
l −

hin
C(·,θl)−s

h
l +khl ), its output width and height wCL

C(·,θl)×h
CL
C(·,θl)

are denoted as

wCL
C(·,θl) =

win
C(·,θl)

+2× 1
2 (w

in
C(·,θl)

swl −win
C(·,θl)

−swl +kw
l )−kw

l

swl

+1 = win
C(·,θl),

hCL
C(·,θl) =

hin
C(·,θl)

+ 2× 1
2 (h

in
C(·,θl)

shl −hin
C(·,θl)

− shl + kh
l )− kh

l

shl

+1 = hin
C(·,θl).

(7)
Similarly, the output width and height of C (·, θl) are win

C(·,θl)
and hin

C(·,θl), i.e., wout
C(·,θl) = win

C(·,θl) and hout
C(·,θl) = hin

C(·,θl). ■

Obviously, as long as the architectures kwl , khl , pwl , phl , swl
and shl in each C (·, θl) satisfy Proposition 1 or Proposition 2,
the width and height of CL are Qt × It. In addition, if the
number of convolutional kernels cL for the Lth layer C (·, θL)
is set to 2M , then the dimension of CL is Qt × It × 2M .
On the other hand, based on Proposition 1 or Proposition 2,
when the dimension of the input 3D real-valued CSI H3D

t′,mod
changes from Qt×It×MN to Qt′×It′×MN at the t′ period,
then the dimension of CL also varies from Qt × It × 2M to
Qt′×It′×2M . Consequently, the architectural conditions that
satisfy the constraint (Qt, It)⇐ t, ∀t ∈ T in the optimization
problem (3) are summarized in Remark 4.

Remark 4: The constraint (Qt, It)⇐ t, ∀t ∈ T in the opti-
mization problem (3) is satisfied, if only the following condi-
tions are held as

1) The architectural parameters kwl , khl , pwl , phl , swl , shl ,
l = 1, · · · , L in each C (·, θl) satisfy Proposition 1 or
Proposition 2.

2) The number of convolutional kernels cL for C (·, θL) is
equal to 2M .

In summary, based on Proposition 1, Proposition 2 and
Remark 4, as long as the two conditions in Remark 4 are
satisfied, C (·, θl) maps CSI to beamforming with satisfying
(Qt, It)⇐ t, ∀t ∈ T in the optimization problem (3).

C. High-Generalization Beamforming Module G (·, θl)
C (·, θl) has been solved for dynamic wireless envi-

ronments with the varying numbers of APs and users
(Qt, It)⇐ t, ∀t ∈ T in cell-free systems as long as the
two conditions in Remark 4 are satisfied. In the follow-
ing, under the conditions specified in Remark 4, G (·, θl)
is designed to improve the generalization performance of
D (Ht)⇐ t, ∀t ∈ T in the optimization problem (3), by pro-
cessing the output Cl of C (·, θl) to obtain the valuable
features of the varying channels. Especially, G (·, θl) includes
a distinguishing sensitive feature module and a discarding
sensitive feature module.

1) Distinguishing Sensitive Feature Module: C (·, θl) aims
at the real-time beamforming design, whereas the purpose
of G (·, θl) is to obtain the valuable features of the varying
channels. These are two different tasks. To address this, a
commonly used simple gradient reversal layer (GRL) [25] is
added between these two tasks. The GRL transforms the gra-
dient into a negative gradient in the gradient backpropagation,
which forms an adversarial training to find a balance between
the above two tasks, and please refer to [25] for more details.
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On the other hand, the output Cl ∈ RQt×It×C 3 of C (·, θl)
contains C features with dimension Qt × It. To determine
which features contain sensitive information for the varying
channels, this work designs a sensitive feature discriminator
D (·, θl) containing a global average pooling (GAP) layer and
a fully connected (FC) layer. Specifically, D (·, θl) first utilizes
GAP to process Cl ∈ RQt×It×C to obtain global features gl

for reducing computational complexity, which is denoted as

gl = GAP (Cl) ∈ RC . (8)

Afterwards, gl is fed into the FC layer, where the number
of the input-output neurons of the FC layer is C and T ,
respectively. Meanwhile, a sensitive feature discriminator loss
function Ldis

l is minimized to train D (·, θl), i.e.,

Ldis
l = − 1

T

T∑
t=1

T∑
t′=1

1[t=t′] logD (gl, θl) , (9)

where 1[t=t′] denotes an indicator function, i.e., if the index t
is equal to t′, then 1[t=t′] = 1, otherwise 1[t=t′] = 0.

Note that an intuitive finding can be obtained for D (·, θl).
That is, the features contributing most to the prediction of
D (·, θl) may contain sensitive features to the varying channels,
since the inputs and outputs of D (·, θl) are the features and the
number of the varying channels, respectively. Consequently,
this paper defines a score sl to represent the contribution of
the features, computed as the dot product of gl ∈ RC and the
weighted activations wcor

l ∈ RC of the FC layer for the correct
prediction of D (·, θl), as the weighted activations indicate the
importance of the input data [26]. Formally, it can be denoted
as

sl = wcor
l ⊗ gl ∈ RC , (10)

where ⊗ denotes the dot product. Obviously, when the value
of the element in sl ∈ RC is larger, its corresponding feature
is more sensitive to the varying channels, and vice versa.

2) Discarding Sensitive Feature Module: Based on sl ∈
RC , this work explicitly discards some sensitive features to the
varying channels during the training stage. Specifically, given
sl ∈ RC , this work computes the probability pcl of discarding
the cth feature of dimension Qt × It in Cl ∈ RQt×It×C , i.e.,

pcl =
scl

C∑
c=1

scl

, (11)

where scl denotes the cth element in sl =[
s1l , · · · , scl , · · · , sCl

]
∈ RC .

Subsequently, based on pl =
[
p1l , · · · , pcl , · · · , pCl

]
∈ RC ,

a weighted random selection (WRS) algorithm [27] is applied
to generate the binary mask, since it is highly computationally
efficient with complexity O(C). To be more concrete, for the
cth feature of dimension Qt × It in Cl ∈ RQt×It×C with
probability pcl , a random number rcl ∈ (0, 1) is generated,
where a key value kcl is computed as

kcl = rcl
1
pc
l . (12)

3Note that Remark 4 only requires the third dimension of CL to be 2M , and
has no requirement for the other Cl, l = {1, · · · , L−1}. For simplicity, let C
be collectively referred to the third dimension of Cl, i.e., Cl ∈ RQt×It×C .

When scl is larger, both pcl and kcl increase, indicating that
the feature of dimension Qt × It in Cl ∈ RQt×It×C is
more sensitive, and vice versa. Consequently, to discard the
sensitive features and retain the valuable features for the
varying channels, the Cdis items with the largest key values
are selected, and their corresponding mask values are set to 0,
i.e.,

mc
l =

{
0 if c ∈ TOP

([
k1l , · · · , kcl , · · · , kCl

]
, Cdis

)
,

1 otherwise,
(13)

where c ∈ TOP
([
k1l , · · · , kcl , · · · , kCl

]
, Cdis

)
denotes the Cdis

items with the largest key.
Afterwards, the binary mask ml =[

m1
l , · · · ,mc

l , · · · ,mC
l

]
∈ RC is dot-multiplied with Cl

to obtain the valuable features Gl for the varying channels,
which is defined as

Gl = ml ⊗Cl ∈ RQt×It×C . (14)

It is obvious that Gl effectively extracts the valuable features
for the varying channels via the binary mask to discard the
sensitive features. Remarkably, G (·, θl) is only added after
Cl, l = {1, · · · , L−1} without CL to guarantee that the output
beamforming of HGNet is a real-valued tensor of dimension
Qt × It × 2M with H3D

t,mod ∈ RQt×It×MN as the input.

D. Output

Before the output beamforming, an identity mapping is
added to construct the residual structure for effectively avoid-
ing the gradient vanishing problem [28], which is denoted as

V3D
t,rea = AL (CL +VIM) ∈ RQt×It×2M , (15)

where VIM denotes the output of the identity mapping with
H3D

t,mod ∈ RQt×It×MN as the input. Afterwards, the output
module first transforms V3D

t,rea ∈ RQt×It×2M into a 3D
complex-valued beamforming tensor V3D

t,com ∈ CQt×It×M as
follows

V3D
t,com = V3D

t,rea[:, :, 0 : M ] + jV3D
t,rea[:, :,M : 2M ]. (16)

On the other hand, V3D
t,com also needs to satisfy the power

constraint. Since this is a convex constraint [29], it can be
satisfied using a projection function. Consequently, following
[29], the output module applies the following projection func-
tion to satisfy the power constraint, i.e.,

vq
i,t =


vq
i,t if

It∑
i=1

vq,H
i,t vq

i,t ≤ Pmax,

vq
i,t

It∑
i=1

vq,H
i,t vq

i,t

Pmax otherwise.
(17)

Finally, following the commonly utilized unsupervised training
method [30], we also take the negative of the sum SE as the
loss function to train HGNet, where the output beamforming
of HGNet is denoted as V3D

t,HGNet ∈ CQt×It×M .
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E. Theoretical Analysis of High-Generalization of HGNet

In this subsection, the bias of the varying channels is mea-
sured by the commonly known maximum mean discrepancy
(MMD) distance. It is a metric that quantifies the difference
between the data distribution in the source and the target
domains [31]. It is defined as follows.

Definition 1: (MMD [32]) Let F =
{
f ∈ Hk : ∥f∥Hk

≤ 1
}

denote the set of functions on the sample space, in which
Hk is a reproducing kernel Hilbert space (RKHS) with kernel
function k. Let Str and Tin denote the source domain of the
training stage and the target domain of the inference stage,
where Ŝtr and T̂in denote the D data sampled from Str and
Tin, respectively. The MMD distance between Ŝtr and T̂in is
defined as

dMMD

(
Ŝtr, T̂in

)
= sup

f∈F

[
1

D

D∑
d=1

f (xd)−
1

D

D∑
d=1

f (yd)

]
,

where xd and yd denote the dth data in Ŝtr and T̂in, respec-
tively.

To facilitate analysis for the high generalization of G (·, θl)
in HGNet, similar to MMD in Definition 1, a G-MMD is
defined as follows.

Definition 2: (G-MMD) Following the definition in MMD,
G-MMD distance between Ŝtr and T̂in is defined as

dG-MMD

(
Ŝtr, T̂in

)
=

1

C

C∑
c=1

sup
fc∈Fc

[
1

D

D∑
d=1

fc (Gl [:, :, c])
d
Ŝtr
− 1

D

D∑
d=1

fc (Gl [:, :, c])
d
T̂in

]
,

where (Gl [:, :, c])
d
Ŝtr

and (Gl [:, :, c])
d
T̂in

denote the cth features
of dimension Qt × It in the output of G (·, θl) when the dth

data in Ŝtr and T̂in are inputted to HGNet, respectively. Fc ={
fc ∈ Hk : ∥fc∥Hk

≤ 1
}

denotes the set of functions on the
sample space corresponding to Gl [:, :, c].

Proposition 3: With the previous definitions, let Sttr, t ∈ T
denote the source domain of the training stage for T varying
channels, where Ŝttr denote the D data sampled from St. Let
RTin [G] denote the generalized risk bound of G (·, θl) in HGNet
for the target domain Tin. With the probability of at least 1−
δ, δ ∈ (0, 1), the following inequality holds for RTin [G]:

RTin [G] ≤ sup
t,t′∈T

dG-MMD

(
St

′

tr ,Sttr
)
+ dG-MMD

(
T̂in, Tin

)
+ϖ + ϱ+ ξ,

where Tin =
∑T

t=1 κtSttr denotes a mixture of T vary-
ing channels closest to the target domain Tin, and the
mixture weight is given by

∑T
t=1 κt = 1. T̂in denotes

the D data sampled from Tin. ϖ =
∑T

t=1 κtRSt
tr
[G] de-

notes the mixture weight of the generalization error for
known source domains Sttr, t ∈ T . ϱ = RTin

[G∗] +
RTin [G∗] denotes the combined error of ideal G∗ (·, θ∗l ). ξ =

2
D

(∑T
t=1 κtE

[√
tr
(
kŜt

tr

)]
+ E

[√
tr
(
kT̂in

)])
+2

√
log( 2

δ )
2D ,

in which kŜt
tr

and kT̂in
denote kernel functions computed on

samples from Ŝttr and T̂in, respectively.
Proof: Please see Appendix A for the detailed proof. ■

From Proposition 3, it is clear that sup
t,t′∈T

dG-MMD

(
St′tr ,Sttr

)
and dG-MMD

(
T̂in, Tin

)
mainly determine the upper bound of

the generalization error of G (·, θl) in HGNet. To be concrete,
sup

t,t′∈T
dG-MMD

(
St′tr ,Sttr

)
denotes the G-MMD distance of the

output Gl of G (·, θl) for any pair of the varying channels
in the source domain of the training stage. Since the out-
put Gl of G (·, θl) explicitly discards the sensitive features
to the varying channels during the training stage, this can
promote G (·, θl) to learn a model that extracts non-sensitive
features for the varying channels, i.e., effectively reducing
sup

t,t′∈T
dG-MMD

(
St′tr ,Sttr

)
. On the other hand, dG-MMD

(
T̂in, Tin

)
denotes the G-MMD distance of the output Gl of G (·, θl)
for source domain Sttr, t ∈ T and target domain Tin. After
removing the sensitive features to the varying channels, the
features extracted from the target domain Tin would become
more similar to those of the source domains Sttr, t ∈ T ,
thus also decreasing dG-MMD

(
T̂ , T

)
. In summary, based on

Proposition 3, G (·, θl) obtains a lower upper bound of the
generalization error, which guarantees that HGNet yields a
better sum SE performance for D (Ht)⇐ t,∀t ∈ T in the
optimization problem (3).

IV. OAU ALGORITHM

To realize the online adaptive real-time beamforming design
to further improve the sum SE performance of dynamic wire-
less environments with the varying channels and the different
numbers of APs and users in cell-free systems, the OAU
algorithm is proposed in this section. Intuitively, it is a natural
choice to adaptively update the parameters of HGNet online
by taking the negative of the sum SE as a loss function.
Despite the simplicity of this approach, it suffers from two
major problems.

1) The parameters of HGNet are normally high-dimensional,
and updating the entire parameters is time-consuming
without fulfilling the requirements of the real-time beam-
forming design.

2) Since computing the sum SE involves the matrix in-
version with high computational complexity, it is also
difficult to satisfy the real-time beamforming design when
updating the parameters of HGNet with the negative sum
SE as the loss function.

To solve the first problem, the proposed OAU algorithm
online adaptively updates the affine parameters of the BN layer
in HGNet instead of the entire parameters of HGNet. This is
because the affine parameters comprise less than 3% of the
total number of parameters in HGNet. Consequently, updating
the affine parameters of the BN layer is more computationally
efficient, and suitable for the real-time beamforming design.
Concretely, to simplify notation, the input of the BN layer
at the lth layer C (·, θl) of HGNet is defined as Xl =
CL (Gl−1, θl) ∈ RQt×It×C . The BN layer first calculates the
normalized value of Xl ∈ RQt×It×C as

Xnor
l =

Xl − E[Xl]√
Var[Xl] + ϵ

, (18)
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where ϵ denotes a very small constant to avoid a zero in the
denominator. E[Xl] and Var[Xl] denote the mean and variance
of Xl, respectively. Since the input CSI in the inference stage
is a single input rather than a mini-batch as in the training
phase, it is more challenging to compute E[Xl] and Var[Xl].
As a result, following the widely applied approach of deep
learning, the unbiased estimation for the mean and variance
of the mini-batch of the training phase over the total training
dataset is used as E[Xl] and Var[Xl], which are denoted as

E[Xl]← ED[µl],Var[Xl]←
B

B − 1
ED[σ

2
l ], (19)

where B denotes the mini-batch size of the training stage.
ED[·] denotes the expectation over the total training dataset.
µl and σ2

l denote the mean and variance on the mini-batch B
for the input data of the BN layer at the lth layer C (·, θl) of
HGNet, respectively.

Subsequently, Xnor
l is transformed by the affine parameters

to obtain the output of the BN layer at the lth layer C (·, θl)
of HGNet, which is denoted as

Xbn
l [:, :, c] = γc

l ⊗Xnor
l [:, :, c] + βc

l , (20)

where γl =
[
γ1
l , · · · , γc

l , · · · , γC
l

]
∈ RC and βl =[

β1
l , · · · , βc

l , · · · , βC
l

]
∈ RC denote the affine parameters of

the scale and the shift of the BN layer at the lth layer C (·, θl)
of HGNet, which are learnable parameters. From Eqs.(18) to
(20), Xbn

l is determined by Xl, E[Xl], Var[Xl], ϵ, γl, βl, where
E[Xl], Var[Xl] and ϵ are constants after training. Therefore,
Xbn

l can be changed to improve the sum SE performance of
the beamforming design by online adaptively updating γl and
βl in the inference phase.

On the other hand, updating γl and βl also requires an
objective function. This can be selected to the negative value
of the sum SE as a loss function to update γl and βl via
the gradient descent algorithm. Unfortunately, the computation
of sum SE typically involves high-dimensional matrix inverse
operations, which hinders the realization of the online adaptive
real-time beamforming design. As a remedy, this work uses
information entropy as an objective function to optimize γl
and βl. This is because the information entropy is highly com-
putationally efficient, relying only on simple dot product and
summation operations without matrix inversion. In addition,
the information entropy can measure error and bias, which
ensures to learn a better model [33]. Formally, this is denoted
as

Lie = −
Qt∑
q=1

It∑
i=1

M∑
c=1

∣∣V3D
t,HGNet[q, i, c]⊗ logV3D

t,HGNet[q, i, c]
∣∣ .

(21)
In summary, by minimizing Lie to adaptively update γl and

βl online, the proposed OAU algorithm effectively solves the
above two problems. This also enables the online adaptive real-
time beamforming design for dynamic wireless environments
with the varying channels and the different numbers of APs
and users. The pseudocode of the proposed OAU algorithm is
summarized in Algorithm 1.

Algorithm 1: Proposed OAU Algorithm
Input: Trained HGNet, number of layers of HGNet L,

Ht, number of updates H , learning rate R;
Output: V3D

t,HGNet;
Initialize (E[Xl],Var[Xl], ϵ, γl, βl) ←Trained HGNet;
for h← 1 : H do

for l← 1 : L do
Xnor

l ← Calculate the BN normalization of Ht

at the lth layer C (·, θl) of HGNet by Eq.(18);
Xbn

l ← Calculate the BN output of Ht at the
lth layer C (·, θl) of HGNet by Eq.(20);

end
Lie ← Calculate the loss function by Eq.(21);
while l > 0 do

γl ← γl −R× ∂Lie/∂γl;
βl ← βl −R× ∂Lie/∂βl;
l← l − 1;

end
end
V3D

t,HGNet ← Output beamforming by feeding Ht into
HGNet that have been online adaptively updated;

Return: V3D
t,HGNet;

V. EXPERIMENTAL RESULTS

In this section, we validate the effectiveness of the proposed
HGNet with OAU algorithm. Specifically, we first introduce
the experimental environments and system parameters. Then,
we evaluate the performance of the proposed HGNet, followed
by an assessment of the proposed OAU algorithm’s perfor-
mance. As benchmarks, the following schemes are compared:
• WMMSE: WMMSE [8] is a traditional optimization

algorithm for the beamforming design. Its experimental results
after 100 iterations serve as a benchmark, as a higher number
of iterations brings the solution closer to optimality.
• Limited WMMSE (L-WMMSE): The number of itera-

tions is set to match the number of layers in HGNet, and
alignment comparisons are performed to verify the improved
performance and computational efficiency of HGNet.
• Edge-GNN: Based on GNNs, [11] proposes Edge-GNN

for cooperative beamforming design with better generalization
performance.
• SUNet: Based on CNNs, [12] proposes SUNet with high

computational efficiency to realize the beamforming design of
cell-free systems.
• HGNet w/o G (·, θl): This variant excludes the high-

generalization beamforming module G (·, θl) to specifically
assess the contribution of this module to overall performance.

A. Experimental Setup

To characterize the varying channels of dynamic wireless
environments, four commonly used channel models have been
selected as follows.
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• Channel 1: We utilize the geometric multi-path channel
model [34], and the channel Hq

i,t ∈ CM×N of the qth AP to
the ith user at the tth period can be expressed as

Hq
i,t = βq

i,t

P∑
p=1

gqi,t,p√
P

ar
(
ϕq
i,t,p

)
aHt
(
φq
i,t,p

)
, (22)

where βq
i,t denotes the large-scale fading coefficient of the qth

AP to the ith user at the tth period. P denotes the number
of propagation paths. gqi,t,p ∼ CN (0, 1), φq

i,t,p and ϕq
i,t,p

denote the complex path gain, angles of departure and arrival,
respectively. Moreover, at and ar denote the array responses
of transceiver.

For the other two channels, we adopt the channel model in
[35] as follows

Hq
i,t = βq

i,t

(√
ϵ

ϵ+ 1
at
(
φq
i,t

)
aHr
(
ϕq
i,t

)
+

√
1

ϵ+ 1
H̄q

i,t

)
,

(23)
where φq

i,t and φq
i,t denote the LoS directions of transmit

and receive, respectively. H̄q
i,t denotes the NLoS component

following the complex Gaussian distribution CN (0, I).
• Channel 2: Rayleigh channel with ϵ = 0.
• Channel 3: Rice channel with ϵ = 3dB.
• Channel 4: We also apply the ray-tracing channel in [36]

to comprehensively validate the performance of the proposed
method. Specifically, the shooting-and-bouncing rays (SBR)
method is used as the simulation scheme for the ray-tracing
channel model. Environmental data is then imported, and the
scenario is accurately modeled using mathematical modeling
tools. Next, all possible ray paths between transmitters and
receivers are computed based on the geometrical optics and
the uniform theory of diffraction. Finally, channel parameters
such as path loss and angular spread are determined using the
electromagnetic theory. For more details, please refer to Sect.
III of [36].

Since different users may experience varying coherence
times, the practical experiments, according to [37] and [38],
set the coherence time to be the minimum of the coherence
times experienced by all users to ensure that the system works
reliably across networks. Formally, this can be expressed as

τmin = min {τi} , (24)

where τi denotes the coherence time of the ith user.
The proposed HGNet with OAU algorithm is implemented

by PyTorch. For HGNet, the Adam optimizer is selected during
the training stage. The learning rate and batch size are set to 64
and 0.1, respectively. The number of layers L for HGNet is set
to 5, where the architectural parameters of each convolution
unit C (·, θl) are set to kwl = 3, khl = 3, pwl = 1, phl = 1,
swl = 1, shl = 1, cl = 2M to satisfy Propositions 1 or 2. Since
the proposed HGNet operates under an unsupervised learning
paradigm, this requires only CSI data without beamforming
data during the training stage. For training CSI data, each
channel model generates 6400 training samples by randomly
scattering Q = 16 APs with M = 4 antennas and I = 16 users
with N = 2 antennas within a 500× 500(m2) coverage area.
For better training, a total of 25600 data for the four channel
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Fig. 3: Training loss graph.

TABLE I: Average computation time of the comparison
algorithms for different numbers of APs and users.

Algorithms Qt = 20, It = 20 Qt = 20, It = 24

WMMSE 61736.29ms 70391.51ms

L-WMMSE 1036.76ms 1292.65ms

Edge-GNN 7.78ms 9.37ms

SUNet 0.65ms 0.79ms

HGNet w/o G (·, θl) 0.58ms 0.71ms

HGNet 0.47ms 0.57ms

models are randomly scrambled by utilizing the DataLoader
database in Python. In addition, the training loss graph is
shown in Fig.3. For OAU algorithm, the optimizer is also
selected the Adam, where the learning rate R is set to 0.001.

B. Experimental Results for HGNet

To verify the effectiveness of the proposed HGNet on the
varying channels and different numbers of APs and users,
the average SE and computation time of these compared
algorithms are shown in Figs.4-5 and Table I, respectively.
Specifically, Fig.4 shows all users of each test sample exposed
to the same channel model, where each channel model con-
tains 640 test samples. In contrast, Fig.5 presents all users
of each test sample under different channel models, in which
each channel model randomly selects a quarter of all users.
Due to the fact that all users in each test sample contain
four channel models simultaneously, Fig.5 directly shows the
average results of the different comparison algorithms over the
640 test samples. Since the average computation time is the
same for all users exposed to the same and different channel
models under the same number of APs and users condition,
Table I only shows the average computation time for different
numbers of APs and users for simplification. For Edge-GNN,
SUNet, HGNet and HGNet w/o G (·, θl), the number of APs
and users is fixed at Qt = 16, It = 16 in the training stage.
These trained deep learning methods during the inference stage
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Fig. 4: Comparative results of average sum SE for all users of each test sample under the same channel model.
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Fig. 5: Comparative results of average sum SE for all users of each test sample under different channel models.

are then generalized to the Qt = 20, It = 20 scenario, where
the number of APs is equal to the number of users, and to
the Qt = 20, It = 24 scenario, where the number of APs is
unequal to the number of users, respectively. As WMMSE and
L-WMMSE are traditional optimization algorithms without
similar deep learning training and inference stages, it is applied
directly in the Qt = 20, It = 20 and Qt = 20, It = 24
scenarios. By comparing the average SE of HGNet and
HGNet w/o G (·, θl) in Figs.4-5, we observe that the high-
generalization beamforming module G (·, θl) effectively im-
proves the sum SE of the varying channels. This is because the
high-generalization beamforming module G (·, θl) effectively
extracts the valuable features for the varying channels. In
addition, as can be seen from Table I, the average computation
time of HGNet is also lower than that of HGNet w/o G (·, θl),
since the high-generalization beamforming module G (·, θl)

discards some sensitive features for the varying channels,
thereby reducing computational complexity.

It can be seen from Figs.4-5 that the sum SE of HGNet
is higher than those of L-WMMSE, SUNet and Edge-GNN,
approaching that of WMMSE. The reasons are as follows.
WMMSE with sufficient iterations provides the best sum
SE performance, because it yields a stable solution for the
beamforming design. However, as can be seen from Table I,
its average computation time is 61736.29ms and 70391.51ms
in the Qt = 20, It = 20 and Qt = 20, It = 24 scenarios,
which is difficult to satisfy the real-time beamforming design.
Reducing WMMSE’s iterations to match HGNet’s layers, the
average computation time of L-WMMSE is 1036.76ms and
1292.65ms for the same scenarios, but it is still about 2000
times higher than HGNet. Moreover, the average sum SE
of L-WMMSE is also lower than that of HGNet due to
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Fig. 6: Average sum SE of the proposed OAU algorithm for varying iterations H .

TABLE II: Average computation time of the proposed OAU
algorithm for varying iterations H .

Algorithms Qt = 20, It = 20 Qt = 20, It = 24

OAU,H = 0 0.58ms 0.71ms

OAU,H = 5 0.65ms 0.79ms

OAU,H = 10 0.72ms 0.88ms

OAU,H = 15 0.78ms 0.95ms

OAU,H = 20 0.84ms 1.04ms

insufficient iterations. Compared to WMMSE and L-WMMSE,
Edge-GNN and SUNet reduce the average computation time
by utilizing GNNs and CNNs to improve the computational
efficiency, respectively, but they are designed in a fixed channel
distribution configuration. When encountering the varying
channels, the average sum SE of Edge-GNN and SUNet is
degraded, since the deep learning assumption that the training
and the inference stages have the same distribution for better
generalization performance is violated. On the contrary, in
addition to utilizing convolution units to improve the com-
putational efficiency, HGNet designs the high-generalization
beamforming module G (·, θl) to extract the valuable features
for the varying channels, which effectively improves the
sum SE performance of the varying channels. Consequently,
HGNet achieves a higher sum SE with a computation time of
less than 1ms.

C. Experimental Results for OAU Algorithm

To verify the effectiveness of the proposed OAU algorithm
on the varying channels and the different numbers of APs and
users, the average sum SE and computation time for varying
iterations H are shown in Fig.6 and Table II, respectively.
When the number of iterations H is set to 0, the proposed
OAU algorithm is not applied to update the parameters of

HGNet. This is used as a comparative baseline for other
different numbers of iterations H . As can be seen from Fig.6,
the average sum SE gradually increases as H rises from 0 to
15, and does not increase significantly from 15 to 20. This
improvement occurs because the proposed OAU algorithm
iteratively updates the parameters of HGNet to improve the
sum SE performance. As can be seen from Table II, with
increasing the number of iterations H from 0 to 20, the average
computation time becomes higher compared to the number of
iterations H = 0. This is attributed to the fact that the proposed
OAU algorithm consumes time to update the parameters of
HGNet. In summary, the number of iterations of the proposed
OAU algorithm can be selected as 15, which achieves a better
sum SE performance and an average computation time of less
than 1ms.

Fig.7 and Table III show the average sum SE and com-
putation time of the proposed OAU algorithm with different
numbers of update parameters of HGNet for varying iterations
H , respectively. Specifically, the parameters in HGNet that can
be updated by the proposed OAU algorithm is categorized into
three groups: (1) BN layers, (2) CLs, and (3) a combination
of BN layers and CLs. For simplicity, this paper refers to
the approach of updating only the BN layers with fewer
parameters (3%) as OAU algorithm. Since CLs contain more
parameters of HGNet, updating only the parameters of CLs
is termed as M-OAU algorithm. Updating both BN layers and
CLs, which encompass all parameters of HGNet, is referred to
as A-OAU algorithm. As shown in Fig.7 and Table III, when
the number of iterations H for M-OAU and A-OAU algorithms
is less than 15, their average sum SE is lower than that of
OAU algorithm with H = 15, while their average computa-
tion time is significantly higher. This indicates that updating
more parameters with fewer iterations does not necessarily
outperform updating fewer parameters with more iterations,
since training a larger number of parameters to a desired state
requires sufficient iterations. As H gradually increases, both
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Fig. 7: Average sum SE of proposed OAU algorithm with different numbers of update parameters for varying iterations H .

TABLE III: Average computation time of the proposed OAU
algorithm with different numbers of update parameters for

varying iterations H .

Algorithms Qt = 20, It = 20 Qt = 20, It = 24

M-OAU,H = 5 3.08ms 4.23ms

M-OAU,H = 10 5.61ms 7.76ms

M-OAU,H = 15 8.13ms 11.27ms

M-OAU,H = 30 15.69 ms 21.83ms

A-OAU,H = 5 3.15ms 4.31ms

A-OAU,H = 10 5.75ms 7.93ms

A-OAU,H = 15 8.33ms 11.51ms

A-OAU,H = 40 20.97ms 29.31ms

OAU,H = 15 0.78ms 0.95ms

M-OAU and A-OAU algorithms exhibit further improvements
in the sum SE performance. For example, the average sum SE
of M-OAU algorithm with H = 30 and A-OAU algorithm
with H = 40 is higher than that of OAU algorithm with
H = 15. However, the average computation time for M-OAU
algorithm with H = 30 and A-OAU algorithm with H = 40
in the Qt = 20, It = 20 and Qt = 20, It = 24 scenarios is
15.69ms, 20.97ms, 21.83ms, 29.31ms, respectively. This poses
a challenge in meeting real-time demands at the millisecond
scale. In summary, the proposed OAU algorithm updating
about 3% of the parameters of HGNet further improves the
sum SE performance with an average computation time in the
order of milliseconds.

VI. CONCLUSION

In this paper, HGNet with OAU algorithm is proposed to
enable the online adaptive real-time beamforming design for
dynamic wireless environments with the varying channels and
the different numbers of APs and users in cell-free systems.

HGNet utilizes the residual structure of CNNs to adapt to the
varying numbers of APs and users. Meanwhile, HGNet de-
signs the high-generalization beamforming module to extract
the valuable features of the varying channels for improving
the generalization sum SE performance. Moreover, the OAU
algorithm provides an online adaptive update mechanism for
HGNet’s parameters, enabling the online adaptive real-time
beamforming design. Numerical results show that the proposed
HGNet with OAU algorithm achieves a higher sum SE with
a computation burden in the order of milliseconds, effectively
meeting the demands of the real-time beamforming of cell-free
systems in dynamic wireless environments.

APPENDIX A

PROOF OF PROPOSITION 3

To facilitate the analysis of the generalization
error of G (·, θl) in HGNet, let RTin [G,G′] =
E

x∼Tin
[ℓ (G (x, θl) ,G′ (x, θ′l))] denote the generalization

error risk of a pair G (·, θl) and G′ (·, θ′l) on the target
domain Tin, where ℓ (·) denotes a error function. Note
that the generalization error risk of G (·, θl) on Tin is
RTin [G, 0] = E

x∼Tin
[ℓ (G (x, θl) , 0)], and RTin [G] = RTin [G, 0]

for simplification. Moreover, let G∗ (·, θ∗l ) denote the ideal
G (·, θl). By utilizing the triangular inequality, the following
inequality can be obtained as

RTin [G] ≤ RTin [G∗]+RTin [G∗,G]+RTin
[G∗,G]−RT in

[G∗,G] ,
(25)

where Tin =
∑T

t=1 κtSttr denotes a mixture of T varying
channels closest to the target domain Tin with

∑T
t=1 κt = 1.
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By bringing Tin =
∑T

t=1 κtSttr to Eq.(25),

RTin [G] ≤RTin [G∗] +
T∑

t=1

κtRSt
tr
[G∗,G]

+

T∑
t=1

κtRTin [G∗,G]−
T∑

t=1

κtRSt
tr
[G∗,G] ,

(26)

Lemma 1: (Lemma 5.3 in [32]) With the previous definitions
1 and 2, the following inequality is held as

RTin [G∗,G] ≤ RSt
tr
[G∗,G] + dG-MMD

(
Sttr, Tin

)
.

Based on Lemma 1, Eq.(26) is rewritten as

RTin [G] ≤RTin [G∗] +
T∑

t=1

κtRSt
tr
[G∗,G]

+

T∑
t=1

κtdG-MMD
(
Sttr, Tin

)
,

(27)

where
∑T

t=1 κtRSt [G∗,G] and
∑T

t=1 κtdG-MMD (Sttr, Tin) are
applied to the triangular inequality, i.e.,

T∑
t=1

κtRSt
tr
[G∗,G] ≤

T∑
t=1

κtRSt
tr
[G∗] +

T∑
t=1

κtRSt
tr
[G]

≤ RT [G∗] +
T∑

t=1

κtRSt
tr
[G] ,

(28)

T∑
t=1

κtdG-MMD
(
Sttr, Tin

)
≤

T∑
t=1

κtdG-MMD
(
Sttr, Tin,

)
+

T∑
t=1

κtdG-MMD
(
Tin, Tin

)
≤ sup

t,t′∈T
dG-MMD

(
St

′

tr ,Sttr
)
+ dG-MMD

(
Tin, Tin

)
.

(29)

By bringing Eqs.(28) and (29) into Eq.(27),

RT [G] ≤ sup
t,t′∈T

dG-MMD

(
St

′

tr ,Sttr
)
+ dG-MMD

(
Tin, Tin

)
+ϖ + ϱ,

(30)

where ϖ =
∑T

t=1 κtRSt
tr
[G] denotes the mixture weight of

the generalization error for known source domains Sttr, t ∈ T .
ϱ = RT [G∗] + RT [G∗] denotes the combined error of ideal
G∗ (·, θ∗l ).

Lemma 2: (Theorem 29 in [39]) With the previous defini-
tions 1 and 2, let T̂in and T̂in denote the D data sampled
from Tin and Tin, respectively. Then for all δ ∈ (0, 1), with
probability at least 1− δ, the following inequality is held as

dG-MMD
(
Tin, Tin

)
≤ dG-MMD

(
T̂in, T̂in

)
+ 2

√
log
(
2
δ

)
2D

+
2

D

(
T∑

t=1

κtE

[√
tr
(
kŜt

tr

)]
+ E

[√
tr
(
kT̂in

)])
,

where kŜt
tr

and kT̂in
denote kernel functions computed on

samples from Ŝttr and T̂in, respectively.
By bringing Lemma 2 into Eq.(30), we complete the proof

of Proposition 3.
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