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Abstract—In this paper, two ordered iterative detection meth-
ods are proposed for better signal detection performance in
massive multiple-input multiple-output (MIMO) systems. First
of all, in order to reduce error propagation in the traditional
iterative detection schemes with sequential order, the ordered
iterative detection (OID) algorithm is proposed, which achieves
a better detection performance with low complexity. Then, we
show that the convergence performance chiefly depends on the
residual component during the iterations. Therefore, a dynamic
ordering strategy is given for further performance improvement,
which leads to the modified ordered iterative detection (MOID)
algorithm. After that, we extend the proposed MOID algorithm
via deep learning network (DNN), and parameters like relaxation
factor are trained to optimal for further performance gain.

Index Terms—Massive MIMO detection, iterative detection,
iteration methods, deep neural network.

I. INTRODUCTION

As a key pillar in 5G communication networks, massive
multiple-input multiple-output (MIMO) can significantly im-
prove the spectral and energy efficiency [1]. However, the
growing number of antennas at the both sides of MIMO
systems also poses a pressing challenge upon the uplink
signal detection. It has been shown in [2] that the near-
optimal maximum-likelihood (ML) detection performance can
be achieved by the traditional zero forcing (ZF) and minimum
mean square error (MMSE) detection schemes when the
number of antennas at the base station (denoted by Nr) is
sufficiently larger than that of user equipments (denoted by
Nt). Nevertheless, the implementation of ZF or MMSE is still
challenging because of the matrix inversion with computa-
tional complexity O

(
N3

t

)
.

In order to reduce the complexity burden of linear detection,
a number of suboptimal iterative detectors are proposed, where
low complexity O

(
N2

t

)
can be achieved. Specifically, the

iterative detection based on Jacobi method in [3] passes from
one iteration to the next by approaching one component of
the vector estimation at a time. Compared to Jacobi itera-
tion, the Gauss-Seidel (GS) iteration method is a similar but
inherently sequential algorithm since each component of the
latest iteration depends on all the previously updated computed
components [4]. Based on GS, it is also shown that relaxation
factor 0 < ω < 2 has a positive effect on the convergence
if chosen wisely, and this leads to successive over relaxation
(SOR) [5] iteration.
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Nowadays, deep learning (DL) has revolutionized many
research fields, which combines the internal structure of certain
model-based algorithms with the remarkable power of deep
neural networks (DNN). In massive MIMO detection, by
unfolding projected gradient descent via DNN, the DetNet in
[6] is able to achieve better performance than MMSE detector.
On the other hand, the model-driven DL detectors try to exploit
full domain knowledge to achieve comparable performance
with few parameters optimized. For example, the OAMPNet
algorithm in [7] outperforms the original orthogonal approx-
imate message passing (OAMP) algorithm by adding only a
few trainable parameters to the constructed network.

In this paper, in order to improve the detection performance,
two ordered iterative detection algorithms are proposed, which
is well compatible to the traditional sequential iteration meth-
ods. First of all, by reducing error propagation, the proposed
OID algorithm has afforded us a better detection performance
with low complexity. Then, we show that the convergence
rate is essentially related to residual component during the
iterations. Therefore, to further speed up the convergence,
the MOID algorithm is proposed, with a dynamical ordering
strategy. Moreover, we construct a DNN by unfolding the
proposed MOID algorithm, where the relaxation factor is
optimized as a trainable parameter.

II. SYSTEM MODEL

Consider the massive MIMO system with Nt transmit and
Nr receive antennas. Let x ∈ ANt denote the transmit signal
vector, and the corresponding received signal vector y ∈ CNr

is given by
y = Hx + n. (1)

Here, A = {±1,±3, ...,±
√
M − 1} with M representing the

modulation index of the corresponding Quadrature Amplitude
Modulation (QAM), H ∈ CNr×Nt is the channel matrix, n ∈
CNr is the additive white Gaussian noise (AWGN) vector with
zero mean and variance σ2

n.
Theoretically, the optimal ML detection computes

x̂ = arg min
x∈ANt

‖y −Hx‖2, (2)

where ‖ · ‖ denotes the Euclidean norm. However, it is not
feasible for massive MIMO systems due to the exponentially
increased complexity. Therefore, traditional linear detection
like ZF or MMSE turns out to be an effective alternative
for massive MIMO systems by taking advantages of receive
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diversity when Nr ≥ Nt. Specifically, the linear MMSE
detector [2] firstly performs the following estimations

x̃MMSE =
(
HHH + σ2

nI
)−1

HHy, (3)

and the signal decision x̂MMSE is then determined by

x̂MMSE = dx̃MMSEcQ ∈ A
Nt , (4)

where d·cQ denotes the direct rounding according to the
discrete constellation ANt . However, due to the matrix in-
version in (3), the complexity of MMSE (or ZF) detector is of
order O

(
N3

t

)
, which is still unaffordable especially in high

dimensional systems.
In order to bypass the matrix inversion, a number of low-

complexity detectors based on iterative methods are proposed
to solve the following linear equation

Ax = b, (5)

which is equivalent to (3) with b = HHy ∈ CNt and the
MMSE filtering matrix A = HHH + σ2

nI ∈ CNt×Nt . In
particular, the Jacobi iteration [3] updates each component of
x in an iterative way as follows

x
(t+1)
i = x

(t)
i +

1

aii

bi − i−1∑
j=1

aijx
(t)
j −

n∑
j=i

aijx
(t)
j

 , (6)

where t indicates the iteration index, x(t)i represents the i-th
component of the iterate x(t), bi denotes the i-th component
of b, and aij ∈ R stands for the element of matrix A.

Different from Jacobi iteration, the iteration of x in GS
iteration [4] is carried out element by element in a sequential
order, where the newly updated elements of x(t+1) (i.e.,
x
(t+1)
j , 1 ≤ j < i) are also taken into account to update the

current element x(t+1)
i as

x
(t+1)
i = x

(t)
i +

1

aii

bi − i−1∑
j=1

aijx
(t+1)
j −

n∑
j=i

aijx
(t)
j

 . (7)

Besides, as an accelerated GS method with the aid of
relaxation factor 0 < ω < 2 [5], SOR iteration updates x(t+1)

i

as

x
(t+1)
i = x

(t)
i +

ω

aii

bi − i−1∑
j=1

aijx
(t+1)
j −

n∑
j=i

aijx
(t)
j

 , (8)

with the optimal ωopt computed by

ωopt =
2

1 +
√

1− ρ2(J)
. (9)

Here, ρ2(J) is the spectrum of a matrix J ∈ CNt×Nt .

Algorithm 1: OID

Input A = HHH + σ2
nI,b = HHy,x(0) = 0, T

Output near MMSE detection solution x̂(t)

1: for t = 0, 1, ..., T − 1 do
2: Select i coordinate in descending order of |aii|
3: Update x(t+1) = x(t) + ω

aii
r
(t)
i ei

4: end for
5: output x̂(t) by rounding x(t) based on constellation ANt

III. ORDERED ITERATIVE DETECTION SCHEME

Different from Jacobi iteration with parallel structure for
implementation, the iterations in GS and SOR methods are
carried out sequentially in a forwards or backwards order (e.g.,
from i = 1 to i = Nt). Nevertheless, we point out that the
order of updating the components of x also has an inherent
impact on the iteration performance [8]. For this reason, two
ordering strategies for the traditional iterative detection are
proposed in this section for better detection performance.

For a better presentation, the proposed OID and MOID are
described based on the traditional SOR iteration, where the
related extensions to GS iteration are straightforward with ω =
1. Meanwhile, the update in (8) with respect to one component
of x (i.e., xi) can be expressed in a vector way

x(t+1) = x(t) +
ω

aii
r
(t)
i ei, (10)

with the residual

r
(t)
i = bi − aHi x(t). (11)

Here, ei is the i-th coordinate basis column vector, aHi denotes
the i-th row vector of matrix A. Clearly, according to (10), by
performing the update of xi, 1 ≤ i ≤ Nt in a certain order, a
full iteration in GS or SOR method is finished, and now we
are seeking for a better way to update xi in what follows.

A. Ordered Iterative Detection

The first criterion we considered for the update order is
to suppress the effect of noise, so that the underlying error
propagation can be controlled in a reasonable way.

Specifically, according to (10) and (11), we have

x(t+1) = x(t) +
ω

aii
(bi − aHi x(t))ei

= x(t) − ω

aii
aHi x(t)ei +

ω

aii
biei,

(12)

where the noise is contained by the vector b as follows

b = HHy = HH(Hx + n) = HHHx + HHn. (13)

Now using (13) we have

x(t+1) =x(t) − ω

aii
aHi x(t)ei +

ω

aii
gH
i x(t)ei +

ω

aii
(hi)

Hnei︸ ︷︷ ︸
noise part

.

(14)
Here, gH

i is the i-th row vector of matrix G = HHH, hi

denotes the i-th column vector of matrix H.
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Intuitively, from (14), because a larger size of aii would
naturally lead to a smaller noise impact upon the element xi,
it is preferable to update xi in the descending order of |aii| so
that the noise in bi will be reasonably controlled. Otherwise,
the possible error propagation will happen along the sequential
updating, which is harmful to the iteration convergence. To
make it more clear, the following analysis is presented to
reveal the relationship between noise and aii.

‖ ω
aii

(hi)
Hn‖2 ≤ ω2 ‖hi‖2

|aii|2
‖n‖2

= ω2‖n‖2
∣∣(hi)

Hhi

∣∣
|aii|2

(a)
= ω2‖n‖2

∣∣aii − σ2
n

∣∣
|aii|2

∝ 1

|aii|
,

(15)

where the equality (a) comes from the fact A = HHH+σ2
nI.

Clearly, this means the upper bound of the noise part partially
depends on |aii|. More precisely, the larger |aii|, the stronger
ability for noise suppression, so that the component xi with
larger size of |aii| should be processed earlier. To summarize,
this leads to the proposed OID algorithm for massive MIMO
systems, which is outlined in details in Algorithm 1.

B. Modified Ordered Iterative Detection

Although the ordering strategy based on |aii| provides a
performance gain to the traditional iterative detection, it does
have its own restriction due to the fixed order. Because of the
cyclic traversal iteration by iteration, the update based on small
|aii| will still be carried out, which still limits the performance
gain stemming from the ordering mechanism. Therefore, to
avoid such a latent problem, a dynamic ordering strategy is
proposed, which takes the updated residual ri into account as
well.

In particular, from (10), the difference between x(t+1) and
x(t), i.e., ∆x, is determined by ω

aii
r
(t)
i , namely,

x(t+1) − x(t) = ∆x =
ω

aii
r
(t)
i ei. (16)

Therefore, from a perspective of iteration convergence, a large
size ∆x implies a large change of the iteration, which may
have a positive impact upon the convergence. Motivated by
this point, we propose to update xi in a descending order
of ‖∆x‖, which corresponds to a descending order of | r

(t)
i

aii
|.

Clearly, such a update mechanism is dynamic with the iteration
of x(t), which not only effectively avoids the problem of fixed
order but also enables a better iteration convergence.

C. Complexity Analysis

As the traditional iterative detection schemes are completed
by updating all the Nt components of x in a sequential
order, for ease of comparison, we adopt Nt times iterations
as an outer-loop and number of outer-loops is k = T/Nt.
Note that better performance can be achieved by maximizing

Algorithm 2: MOID

Input A = HHH + σ2
nI,b = HHy,x(0) = 0, T

Output near MMSE detection solution x̂(t)

1: for t = 0, 1..., T − 1 do
2: Update the descending order o(i) by | r

(t)
i

aii
| when

t = 0, Nt, 2Nt, ...
3: Select i coordinate in descending order of o(i)
4: Update x(t+1) = x(t) + ω

aii
r
(t)
i ei

5: end for
6: output x̂(t) by rounding x(t) based on constellation ANt

TABLE I
COMPUTATIONAL COMPLEXITY OF ITERATIVE DETECTION SCHEMES

MIMO detection Multiplication Summation

SOR [12] N2
t +Nt N2

t +Nt

OID N2
t + 2Nt N2

t +Nt

MOID 2N2
t + 3Nt N2

t +Nt

| r
(t)
i

aii
| at each iteration. However, it costs O

(
N3

t

)
in an outer-

loop with the residual calculation (11) involved. To reduce
the complexity burden, we give the loosely dynamic ordering
strategy by sorting the components of x in a descending order
of | r

(t)
i

aii
| for every outer-loop, where the related details can be

found in Algorithm 2.
Considering the additional computational complexity intro-

duced by sort operation is no more than O
(
N2

t

)
and the

sort operation of |aii| can be viewed as preprocess in OID
algorithm, further reducing the complexity. To summarize, the
computational complexities of OID and MOID algorithm at
each outer-loop actually maintain O

(
N2

t

)
, which are much

lower than the classic Ordered Successive Interference Can-
cellation (OSIC) with O

(
N3

t

)
[9] and are still competitive

compared to the traditional SOR iteration. To be more specific,
the multiplication and addition as a rough measurement for
the computational complexity of iterative detection schemes
per outer-loop are listed in Table I.

IV. MOID-NET

For a better detection performance, we further upgrade the
proposed MOID algorithm with DNN, where the parameter
optimization and nonlinear projection operations are trained
via DL. Typically, model-driven DL detectors were carried
out based on AMP with complexity O (NtNr) [10], while we
now try to introduce such a lower-complexity version into the
model-based algorithm.

First of all, the complex-valued system model in (1) should
be converted to an equivalent real-valued one constrained in
the DL environment [11], where the related transformation
process is omitted due to the simplicity. Here, to reduce
the training burden, the number of layers in our network is
equivalent to the number of outer-loops k.

According to (16), the relaxation factor ω plays an important
role in the proposed MOID algorithm. However, the related
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Algorithm 3: MOID-Net

Require: A = HHH + σ2
nI,b = HHy,x

(0)
0 = 0,K, T

Ensure: near MMSE detection solution x̂k

1: for k = 0, 1...,K − 1 do
2: Update the descending order o(i) by | r

(0)
i

aii
|

3: for t = 0, 1..., T − 1 do
4: Select i coordinate according to i = o(t)

5: Update x
(t+1)
k = x

(t)
k + ωk

aii
r
(t)
i ei

6: end for
7: zk = ReLU(Wzx

(T )
k + pz)

8: xoh,k+1 = Wxzk + px

9: x
(0)
k+1 = foh(xoh,k+1)

10: end for
11: output x̂k by rounding x

(0)
k based on constellation ANt

calculation of ρ(J) in (9) involves sophisticated matrix factor-
ization, which is unaffordable in practice. Alternatively, ρ(J)
is usually approximated by [13]

ρ(J) =

(
1 +

√
Nt

Nr

)2

− 1, (17)

which suffers from requirements for a certain antenna ratio
Nt/Nr.

Instead of using other computationally expensive method
to find an optimal ω, we use a DL approach to provide
an appropriate relaxation factor, which is transformed into a
layer-dependent learnable parameter ωk. Moreover, a nonlinear
projection operation is also constructed to enable the proposed
MOID-Net to outperform the original MOID algorithm in
terms of the detection performance. More specifically, the
following operations are carried out.

x
(T )
k = x

(T−1)
k +

ωk

aii
r
(T )
i ei, (18)

zk = ReLU(Wzx
(T )
k + pz), (19)

xoh,k+1 = Wxzk + px, (20)

x
(0)
k+1 = foh(xoh,k+1). (21)

where the architecture is depicted in Fig. 1. Here, T = 2Nt

denotes the total number of iterations in a layer, the weights
Wz ∈ R2Nt×2Nt , Wx ∈ R|A|·2Nt×2Nt and the bias pz ∈
R2Nt , px ∈ R|A|·2Nt are trainable parameters, ReLU(·) is
the rectified linear activation function, xoh ∈ {0, 1}|A|·2Nt

stands for the one-hot vector mapped to x ∈ ANt , foh is
the mapping function to transform the one-hot vector into the
scalar estimate [11]. Overall, the parameters of MOID-Net
optimized during the learning phase are

θ = {Wz,Wx,pz,px, ωk}. (22)

Then, the learnable parameters are trained by minimizing
the following mean squared error (MSE) loss function

l (x; x̂) =

K∑
k=1

log(k) ‖ xl − x̂k‖2, (23)

Fig. 1. The architecture of the MOID-Net detector.

where xl denotes the training label. Meanwhile, the outputs of
all layers are taken into account in the weighted structure to
alleviate the vanishing gradient problem in back-propagation
(BP) procedure [14]. For a better understanding, the MOID-
Net algorithm is summarized in Algorithm 3.

V. SIMULATIONS

In this section, the performance of the proposed OID
and MOID algorithms for massive MIMO systems are fully
investigated by simulations.

0 2 4 6 8 10 12

Eb/N0(dB)

10
-4

10
-3

10
-2

10
-1

B
E

R

GS k=2

SOR k=2

OID-GS k=2

OID-SOR k=2

OID-GS k=3

OID-SOR k=3

MOID-GS k=2

MOID-SOR k=2

MOID-GS k=3

MOID-SOR k=3

ZF

MMSE

Fig. 2. Performance comparison under 64-QAM scheme of size 128× 16.

The training procedure works on the DL library PyTorch.
We draw on 10,000 data for each SNR per bit, and train
MOID-Net with Adam Optimizer [15] using a batch size of
100. The learning rate is set as 0.002 and would decay by 0.97
after each epoch. In our simulations, the overall convergence
of the training needs nearly 100 epochs.

The detection performance is evaluated in terms of the bit
error rates (BERs). Fig. 2 demonstrates that our modifications
in traditional iterative detection are reasonable. As can be
seen, both the OID and MOID outperform the conventional
iterative algorithm in a 128×16 MIMO system with 64-QAM
while MMSE detection is applied as the baseline. To be more
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specific, MOID achieves a better convergence performance
than OID under the same number of iterations. This is in line
with the afore-mentioned analysis about the OID and MOID.

Fig. 3. Performance comparison under 64-QAM scheme of size 128 × 16
with different ω.

In Fig. 3, the choices of relaxation factor ω for the proposed
iterative algorithm schemes are investigated. We can observe
that ω has a great effect on the convergence, however, the
traditional ω∗ computed according to (9) and (17) is not ideal
in massive MIMO systems. For this reason, we propose the
MOID-Net based on DNN expansion with ω as a learnable
parameter. In Fig. 4, as expected, considerable performance
gain can be confirmed.

0 2 4 6 8 10 12

Eb/N0(dB)

10
-3

10
-2

10
-1

B
E

R

SOR k=1

SOR k=2

MOID k=1

MOID k=2

MOID-Net k=2

MOID-Net k=3

MMSE

Fig. 4. Performance comparison under 16-QAM scheme of size 128× 16.

On the other hand, Fig. 5 is give to illustrate the detection
performance comparison in a 32× 16 massive MIMO system
with 4-QAM while the antenna ratio Nr/Nt gets smaller.
Clearly, the proposed MOID and MOID-Net still work but
more iteration numbers are needed compared to the case
128× 16 with the loss of receive diversity.
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Fig. 5. Performance comparison under 4-QAM scheme of size 32× 16.
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