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Abstract— In this paper, a deterministic sampling decoding
strategy for multiple-input multiple output (MIMO) systems
is studied, which performs probabilistic searching according
to a probability threshold in the lattice Gaussian distribution.
Motivated by model probabilistic twin (MPT), the randomness
in obtaining the target decoding solution is overcome by the pro-
posed probabilistic searching decoding (PSD) algorithm, which
brings considerable decoding gains in both performance and
complexity. Specifically, the decoding radius of PSD is derived
while the decoding complexity in terms of the number of visited
nodes during the searching is also upper bounded, leading to an
explicit decoding trade-off. Meanwhile, we generalize PSD by the
mechanism of candidate protection so that it enjoys a flexible
performance between the suboptimal successive interference
cancelation (SIC) decoding and the optimal maximum likelihood
(ML) decoding by adjusting the initial search size K. Methods for
further optimization and complexity reduction of the proposed
PSD algorithm are also given. Finally, simulation results based
on MIMO detection are presented to confirm the tractable and
flexible decoding trade-off of the proposed PSD algorithm.

Index Terms— MIMO detection, lattice Gaussian distribution,
model probabilistic twin, massive MIMO system, sampling decod-
ing, sphere decoding, near-ML decoding.

I. INTRODUCTION

AS ONE of the core problems of lattice decoding, the
closest vector problem (CVP) has wide applications in

signal detection for multiple-input multiple output (MIMO)
communications. However, the dramatically increased sys-
tem size also places a pressing challenge upon solving the
CVP in MIMO detection. On one hand, the conventional
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decoding schemes like lattice-reduction-aided decoding show
a substantial performance loss with the increment of system
dimension [1], [2], [3], [4], [5]. On the other hand, a number
of maximum-likelihood (ML) decoding schemes that aim
to reduce the computational complexity of sphere decoding
(SD) turn out to be impractical due to their unaffordable
complexity in large-scale systems [6], [7], [8], [9]. As for
those near-ML decoding schemes like fixed-complexity sphere
decoding (FCSD), K-best decoder, etc., they are also inappli-
cable due to the intensive complexity increment and signif-
icant performance degradation [10], [11], [12], [13]. In this
condition, a number of competitive decoding schemes have
been proposed to either improve the performance or lower the
complexity [14], [15], [16], [17], [18]. Among them, sampling
decoding has become a promising one, which performs lattice
decoding by sampling from a discrete multidimensional Gaus-
sian distribution [19], [20], [21], [22].

Typically, sampling decoding converts the conventional
decoding problem into a sampling problem, where the optimal
decoding solution with the smallest Euclidean distance natu-
rally entails the largest probability to be sampled. However,
in sharp contrast with continuous Gaussian density, it is by
no means trivial even for sampling from a low-dimensional
discrete Gaussian distribution, which means that sampling
decoding chiefly relies on how to successfully sample over
the target lattice Gaussian distribution (LGD). For this reason,
the pioneer works of sampling decoding only perform the
sampling over a discrete Gaussian-like distribution [23], [24],
[25]. On the other hand, the classic Markov chain Monte Carlo
(MCMC) methods were introduced to perform the exact sam-
pling though the mixing of the Markov chains [26], [27], [28].
Moreover, in [29], the independent Metropolis-Hastings-Klein
(IMHK) sampling algorithm with accessible convergence rate
was given and was further adopted to sampling decoding
in [30], thus leading to a tractable sampling decoding by
adjusting the number of Markov moves. Nevertheless, sam-
pling decoding suffers from inherent randomness during the
sampling. On one hand, the possibility of missing the optimal
decoding solution does always exist, rendering performance
loss inevitable. On the other hand, because of the independent
and identically distributed (i.i.d.) samplings, considerable com-
putational complexity is spent in unnecessarily repeating the
same calculations.

In this paper, to overcome the randomness during the
sampling decoding, a deterministic sampling decoding strat-
egy based on the lattice Gaussian distribution is studied
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and the probabilistic searching decoding (PSD) algorithm is
proposed. Specifically, since the optimal decoding solution
has the largest probability in the unimodal lattice Gaussian
distribution, if candidate vectors with probabilities larger than
a probability threshold can be deterministically obtained, then
the optimal decoding solution will be easily obtained. On the
other hand, although Klein mentioned a deterministic scheme
very briefly in [23], it does not seem to allow for an efficient
implementation. Meanwhile, the heuristic implementation of
deterministic sampling in [25] is hard to characterize the
decoding trade-off in theory. To summarize, our work in this
paper can be outlined in the following several fronts.

First of all, based on lattice Gaussian distribution, the con-
cept of model probabilistic twin (MPT) is given, where extra
degrees of freedom in decoding CVP can be achieved. Moti-
vated by it, the probabilistic searching decoding (PSD) algo-
rithm is proposed for a better decoding trade-off by overcom-
ing the randomness within sampling operations. Specifically,
based on the designed probabilistic searching threshold, PSD
algorithm recursively performs the searching at each decoding
layer in a backwards order, where its decoding trade-off
between performance (in terms of decoding radius d1) and
complexity (in terms of the number of visited nodes |S|) is
derived. Secondly, the mechanism of candidate protection is
introduced to upgrade the proposed PSD algorithm. This gen-
eralizes PSD to a bounded distance decoding (BDD) scheme,
where flexible performance between suboptimal decoding and
ML decoding can be achieved by simply adjusting the initial
search size K ≥ 1. We also show that PSD with candidate pro-
tection still follows the same complexity upper bound, leading
to a tractable and controllable decoding process. Finally, the
optimization of standard deviation over the finite state space
is presented to strengthen the decoding performance, and a
method for complexity reduction of PSD is also proposed
which incurs a negligible loss in decoding performance.

The rest of this paper is organized as follows. Section II
introduces lattice decoding, and briefly reviews the basics of
lattice Gaussian sampling. In Section III, motivated by model
probabilistic twin, the probabilistic searching decoding (PSD)
algorithm is proposed, followed by a comprehensive analysis
of both decoding performance and complexity. Meanwhile the
mechanism of candidate protection is also designed for PSD
to enjoy a flexible decoding trade-off between suboptimal and
optimal ML performance. In Section IV, further optimization
and complexity reduction with respect to PSD are given. Sim-
ulation results for MIMO detection are shown in Section V.
Finally, Section VI concludes the paper.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the transpose, inverse,
pseudoinverse of a matrix B by BT ,B−1, and B†, respec-
tively. We use bi for the ith column of the matrix B, bi,j

for the entry in the ith row and jth column of the matrix
B. Finally, the computational complexity is measured by the
number of arithmetic operations (additions, multiplications,
comparisons, etc.).

1Stemming from the concept of proximity factor in [5], decoding radius d
serves as an effective metric to evaluate the decoding performance of various
lattice decoding schemes [24], [25], [30], [31].

Algorithm 1 Klein’s Sampling Algorithm
Input: B, σ, c
Output: Bx ∈ Λ

1: let B = QR and y = Q†c
2: for i = n, . . . , 1 do
3: let σi = σ

|ri,i| and x̃i =
yi−

∑n
j=i+1 ri,jxj

ri,i

4: sample xi from DZ,σi,x̃i

5: end for
6: return Bx

II. PRELIMINARIES

In this section, we introduce the background and mathemat-
ical tools needed to describe and analyze the proposed PSD
algorithm based on model probabilistic twin.

A. Lattice Decoding

Given the full n × n column-rank matrix B ∈ Rn×n, the
n-dimensional lattice Λ generated by it is defined by

Λ = {Bx : x ∈ Zn}, (1)

where B is called the lattice basis. Here we consider the
decoding of an n×n real-valued system; the extension to the
complex-valued system is straightforward [24], [32]. In the
considered MIMO systems, let x ∈ Zn denote the transmitted
signal, then the corresponding received signal c is given by

c = Bx + w (2)

where w is the noise vector with zero mean and variance
σ2

w. Typically, the conventional maximum likelihood (ML)
decoding reads

x̂ML = arg min
x∈Zn

∥Bx− c∥2 (3)

where ∥·∥ denotes Euclidean norm. Clearly, the ML decoding
in MIMO systems corresponds to CVP in lattice decoding [9].

Here, for notational simplicity and better presentation, QR-
decomposition with B = QR is applied and we express the
system model in (2) as

y = QT c = Rx + n, (4)

where Q is an orthogonal matrix and R is an upper triangular
matrix. Accordingly, the ML decoding in (3) becomes

x̂ML = arg min
x∈Zn

∥Rx− y∥2. (5)

In the classic Babai’s nearest plane algorithm, x̂i is decoded
in a backwards order layer by layer (i.e., i = n, n− 1, . . . , 1)
by direct rounding

x̂i = ⌈x̃i⌋, (6)

where

x̃i =
yi −

∑n
j=i+1 ri,j x̂j

ri,i
. (7)

In the scenario of MIMO detection, this can be interpreted as
successive interference cancelation (SIC) detection [25].

Authorized licensed use limited to: Southeast University. Downloaded on February 27,2024 at 03:46:51 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: PROBABILISTIC SEARCHING FOR MIMO DETECTION BASED ON LGD 87

Fig. 1. Illustration of a two-dimensional lattice Gaussian distribution.

Note that different from the low-complexity decoding
schemes designed for cases B ∈ Rn×m, n > m [33],
[34], [35], [36], no extra receive diversity can be exploited
under the case of B ∈ Rn×n (i.e., n = m). Therefore,
with B ∈ Rn×n, there is a substantial performance gap
between the linear-based low complexity decoding schemes
and ML decoding especially in high-dimensional MIMO sys-
tems. Since we are seeking for a better decoding scheme with
flexible and tractable decoding trade-off between performance
and complexity, the case of an n × n MIMO system is
considered throughout the context. Nevertheless, the proposed
decoding algorithm as well as the related analysis can be easily
adopted to the case n ×m (i.e., massive MIMO system) via
the following transformation

c = Bx + w = Q
[

R
0(n−m)×m

]
x + w

= [Q1 Q2]
[

R
0(n−m)×m

]
x + w, (8)

where Q = [Q1 Q2] is an n × n orthogonal matrix and R
is an m × m upper triangular matrix. The matrices Q1 and
Q2 represent the first m and last n−m orthogonal columns of
Q, respectively. Then, via a simple transformation, the system
model shown above becomes

QT c = QT Bx + QT w =
[

R
0(n−m)×m

]
x + QT w, (9)

which can be further reformatted as

y = QT
1 c = Rx + n (10)

with n = QT
1 w. Clearly, by doing this, the decoding of an

n×m system (n > m) is reduced to decoding of an m×m
system, and the proposed decoding algorithm can be applied
thereafter.

B. Lattice Gaussian Sampling

Given the lattice Λ = {Rx : x ∈ Zn}, define the Gaussian
function centered at y ∈ Rn for standard deviation σ > 0 as

ρσ,y(z) = e−
∥z−y∥2

2σ2 , (11)

for all z ∈ Rn. When y or σ are not specified, it is assumed
that they are 0 and 1 respectively. Then, the discrete Gaussian

distribution over lattice Λ (i.e., lattice Gaussian distribution)
is defined as [37]

DΛ,σ,y(x) =
ρσ,y(Rx)
ρσ,y(Λ)

=
e−

1
2σ2 ∥Rx−y∥2∑

x∈Zn e−
1

2σ2 ∥Rx−y∥2
(12)

for all x ∈ Zn, where ρσ,y(Λ) ≜
∑

Rx∈Λ ρσ,y(Rx) is a
Gaussian scalar to ensure a probability distribution. Due to the
central role of the lattice Gaussian distribution (LGD) played
in various research fields, sampling from the lattice Gaus-
sian distribution (i.e., lattice Gaussian sampling) becomes an
important but challenging problem [29], [30], [38], [39].

As an approximation of lattice Gaussian sampling, Klein’s
sampling algorithm was proposed in [23], which is able to
sample from a discrete Gaussian-like distribution. Klein’s
sampling can be viewed as a statistical variant of Babai’s
nearest plane algorithm. Specifically, x̂i is randomly chosen
from the following 1-dimensional conditional lattice Gaussian
distribution

x̂i ∼ p(x̂i) ≜ DZ,σi,x̃i
(xi = x̂i) =

e
− 1

2σ2
i

∥x̂i−x̃i∥2∑
x̂i∈Z e

− 1
2σ2

i

∥x̂i−x̃i∥2

(13)

in a backwards order with σi = σ
|ri,i| , which makes the sample

x̂ obey the following Klein’s sampling probability

PKlein(x̂) =
n∏

i=1

DZ,σn−i+1,x̃n−i+1(xn−i+1)

=
e−

1
2σ2 ∥Rx̂−y∥2∏n

i=1

∑
x̃n−i+1∈Z e

− 1
2σ2

n−i+1
∥xn−i+1−x̃n−i+1∥2

=
ρσ,y(Rx̂)∏n

i=1 ρσn−i+1,x̃n−i+1(Z)
. (14)

However, it has been demonstrated in [40] that PKlein(x)
can be close to DΛ,σ,y(x) when σ is sufficiently large. Unfor-
tunately, such a requirement is extremely stringent, rendering
it inapplicable in many cases of interest. To this end, Markov
chain Monte Carlo (MCMC) methods were introduced to lat-
tice Gaussian sampling [27], [29], which randomly generates
the next Markov state conditioned on the previous one. In this
way, after the mixing time for convergence, the distribution of
samples from the Markov chain will be statistically close to
the target distribution, where samples from the lattice Gaussian
distribution can be obtained thereafter [41].

III. PROBABILISTIC SEARCHING DECODING ALGORITHM

In this section, motivated by model probabilistic twin,
a deterministic sampling decoding scheme is proposed based
on the lattice Gaussian distribution, where decoding gains in
both performance and complexity are exploited.

A. Model Probabilistic Twin

Intuitively, the CVP given in (3) can be solved by lattice
Gaussian sampling. Since the distribution is centered at the
query point c, the closest lattice point Bx to c (i.e., equivalent
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Fig. 2. The paradigm transformation of solving the 3-dimensional decoding problem from the distance in Euclidean space to probability in lattice Gaussian
distribution.

to ∥Rx− y∥) in ML decoding criterion also accounts for the
largest probability in the lattice Gaussian distribution, i.e.,

x̂ML = arg min
x∈Zn

∥c−Bx∥2 = arg max
x∈Zn

DΛ,σ,c(x), (15)

where such an equivalent paradigm transformation is named
as model probabilistic twin (MPT).

According to model probabilistic twin in (15), the decoding
problem in (3) can be viewed as a sampling problem. By mul-
tiple samplings, the optimal decoding solution is most likely
to be returned due to its largest sampling probability. It has
been demonstrated that lattice Gaussian sampling is equivalent
to CVP via a polynomial-time dimension-preserving reduc-
tion [42]. Most importantly, the standard deviation σ > 0 is
introduced by model probabilistic twin, which brings extra
degrees of freedom in addressing CVP. Typically, it is clear
to see that model probabilistic twin always holds regardless
of the value of σ. This means σ is flexible to choose for
serving the efficient decoding. To make it clear, an illustration
of the paradigm transformation with respect to solving a 3-
dimensional decoding problem is shown in Fig. 2. Interest-
ingly, one can observe that a small σ significantly increases the
probability of the target ML decoding solution DΛ,σ,c(xML)
(i.e., DΛ,σ,y(xML)) making xML more likely to be returned.
This effectively relieves the curse of dimensionality in lat-
tice decoding so that lattice Gaussian sampling with small
σ turns out to be promising especially in high-dimensional
systems [31], [43], [44], [45].

Unfortunately, sampling decoding based on the lattice Gaus-
sian distribution suffers from inherent randomness. On one
hand, although the probability of obtaining xML can be
improved by increasing the number of samplings, the proba-
bility of missing xML always exists, which results in inevitable
decoding performance loss. On the other hand, multiple inde-
pendent samplings require considerable computational cost but
a large number of samples can result in repetition, and an
associated increase in complexity.

B. Algorithm Description

In accordance with the lattice Gaussian distribution, one
only needs to pay attention to those candidate vectors with
probabilities larger than a probability threshold, namely, x ∈
LLGD and

LLGD = {x ∈ Zn : DΛ,σ,y(x) ≥ Pthreshold}. (16)

Because the lattice Gaussian distribution DΛ,σ,y(x) is uni-
modal, the ML decoding solution xML will be obtained for
sure if Pthreshold ≤ DΛ,σ,y(xML), namely, xML ∈ LLGD. In this
way, the randomness during the sampling can be avoided while
how to design a deterministic sampling scheme to efficiently
collect these candidate vectors belong to LLGD becomes the
key. However, this turns out to be quite challenging as the
Gaussian scalar ρσ,y(Λ) > 0 in the lattice Gaussian distribu-
tion is difficult to factorize or compute. For this reason, the
probabilistic searching decoding (PSD) algorithm is proposed,
which applies Klein’s sampling probability as an approxima-
tion of the lattice Gaussian distribution, i.e.,

L = {x ∈ Zn : PKlein(x) ≥ Pthreshold}. (17)

Specifically, the proposed PSD algorithm adopts a tree-
search structure, where recursive searching is performed layer
by layer in a backwards order from i = n to i = 1.
To concisely state the operations, the following definitions
based on the tree-search structure are made.

Define the initial search size K > 1, K ∈ R, which is
set initially to control decoding performance and complexity.
Meanwhile, given x̃i in (7), let x̂j

i denote the jth closest integer
candidate node to x̃i. Accordingly, the search size K(x̂j

i ) >
0, K(x̂j

i ) ∈ R for each integer candidate node x̂j
i is defined

as

K(x̂j
i ) ≜ K(x̂j

i ) · p(x̂j
i ) (18)

with defined normalized probability

p(x̂j
i ) ≜

e
− 1

2σ2
i

∥x̂j
i−x̃i∥2

ρσi,x̃i
(Z)

, (19)
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Fig. 3. The illustration of searching threshold, where candidate nodes x̂3
i−1

and x̂j>3
i−1 stemmed from x̂1

i are pruned.

where

ρσi,x̃i
(Z) =

∑
x̂i∈Z

e
− 1

2σ2
i

∥x̂i−x̃i∥2
. (20)

Here, x̂j
i indicates the parent node of x̂j

i at the previous
searching layer i+1. It is easy to check that the initial search
size K = K(x̂j

n). Intuitively, via the normalized probability
in (18), the search size K(x̂j

i ) of a parent node is reasonably
allocated to its children nodes. Note that several children
candidate nodes x̂j

i may have the same parent node x̂j
i .

Next, based on the search size K(x̂j
i ), the integer candidate

node x̂j
i at layer i will be saved if it satisfies the following

searching threshold

K(x̂j
i ) ≥ 1. (21)

Otherwise, the candidate node x̂j
i will be pruned while the

searching steps into the next layer i − 1 given those saved
candidate nodes. As shown in Fig. 3, candidate nodes x̂1

i−1

and x̂2
i−1 at layer i − 1 are saved to enable the searching

at the next layer. Intuitively, since the normalized probability
p(x̂j

i ) decays exponentially with the index j, all the candidate
nodes with index j > 3 are deterministically pruned if node
x̂3

i−1 fails to satisfy the searching threshold.
According to the searching threshold in (21), the searching

along the tree structure works layer by layer from i = n to
i = 1 while the survived decoding candidate vectors (i.e.,
x̂ = [x1, . . . , xn]T ) are saved by the candidate set L.

Theorem 1: The proposed PSD algorithm will return the
candidate vectors in the following set

L = {x ∈ Zn : PKlein(x) ≥ Pthreshold}. (22)

Proof: According to (18), the searching threshold
K(x̂j

i ) ≥ 1 can be expressed as

p(x̂j
i ) ≥

1
K(x̂j

i )
=

1
K · p(x̂j

i+1) · · · p(x̂j
n)

. (23)

From (23), for any candidate vector x̂ being obtained by
PSD, its normalized probability p(x̂1) of node x̂1 at the layer
i = 1 must satisfy

p(x̂1) ≥
1

K · p(x̂2) · · · p(x̂n)
, (24)

which results in the following lower bound

n∏
i=1

p(x̂n−i+1) =
n∏

i=1

e
− 1

2σ2
n−i+1

∥x̂n−i+1−x̃n−i+1∥2

∑
x̂n−i+1∈Z e

− 1
2σ2

n−i+1
∥x̂n−i+1−x̃n−i+1∥2

=
e−

1
2σ2 ∥Rx−y∥2∏n

i=1 ρσn−i+1,x̃n−i+1(Z)

= PKlein(x̂) ≥ 1
K

. (25)

Here, since the initial search size K > 1 is flexible to choose,
we can make the following definition

Pthreshold ≜
1
K

, (26)

completing the proof.
Finally, the candidate vector x̂ with the smallest Euclidean

distance ∥Rx̂−y∥ (i.e., ∥Bx̂−c∥) among L will be outputted
as the decoding solution.

Different from obtaining the candidate vectors with
DΛ,σ,y(x) ≥ Pthreshold, PSD returns the candidate vectors with
PKlein(x) ≥ Pthreshold. Such an approximation can be evaluated
in terms of decoding radius d, which serves as an effective
measurement for decoding performance [24], [30]. Theoreti-
cally, the targeted decoding solution with ∥Rxtarget − y∥ less
than the decoding radius will be correctly decoded so that a
larger decoding radius leads to a better decoding performance.
Here, with Pthreshold = 1/K, it is easy to verify that the
deterministic sampling decoding based on (16) corresponds to
enumerating all the candidate vectors within decoding radius

dLGD = σ

√
2 ln

K

ρσ,y(Λ)
(27)

while the decoding radius of the proposed PSD algorithm is

dPSD = σ

√
2 ln

K∏n
i=1 ρσn−i+1,x̃n−i+1(Z)

, (28)

which corresponds to LLGD = {x ∈ Zn : ∥Rx− y∥ ≤ dLGD}
and L = {x ∈ Zn : ∥Rx − y∥ ≤ dPSD} respectively. Let
d(Λ,y) represent the Euclidean distance between the query
point y and lattice Λ (i.e., d(Λ,y) = ∥RxML−y∥ = ∥BxML−
c∥), then the ML decoding solution xML will be obtained by
PSD if d(Λ,y) ≤ dPSD, and this leads to

K ≥

(
n∏

i=1

ρσn−i+1,x̃n−i+1(Z)

)
· e2πd2(Λ,y)/(min2

i |ri,i|). (29)

Clearly, in PSD, the Gaussian scalar ρσ,y(Λ) is approximated
by the product

∏n
i=1 ρσn−i+1,x̃n−i+1(Z) as an alternative solu-

tion. Nevertheless, PSD still follows model probabilistic twin
and is capable of achieving the optimal ML decoding at the
cost of a larger K.

C. Decoding Trade-off Analysis and Comparison

Next, we investigate the decoding trade-off of the proposed
PSD algorithm, where its complexity is measured by the
number of visited nodes during the searching.

Lemma 1: In the PSD algorithm, for each parent candidate
node x̂j

i with K(x̂j
i ) ≥ 1, the number of its saved children

candidate nodes at decoding layer i satisfies

Ksave ≤ K(x̂j
i ) (30)
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if σ ≤ mini |ri,i|/(2
√

π). Proof: We start the proof
by considering the cases of 1 ≤ K(x̂j

i ) < 2 and K(x̂j
i ) ≥

2 respectively.
On one hand, based on the searching threshold in (23),

candidate nodes with 1 ≤ K(x̂j
i ) < 2 will be saved if

p(x̂j
i ) ≥

1
K(x̂j

i )
>

1
2
. (31)

Clearly, because of
∑

j p(x̂j
i ) = 1, there is at most one integer

candidate node satisfying (31), implying

Ksave ≤ 1 ≤ K(x̂j
i ) (32)

no matter what σ > 0 is.
On the other hand, when K(x̂j

i ) ≥ 2, according to the
searching threshold in (23), the condition shown in (30) holds
if and only if the ⌊K(x̂j

i )+1⌋th closest integer candidate node
to x̃i is definitely pruned, that is

K(x̂j
i )p(x̂

⌊K(x̂j
i )+1⌋

i ) < 1. (33)

Then, because the distance |x̂j
i − x̃i| is bounded by

(j − 1) · 1
2
≤ |x̂j

i − x̃i| ≤ j · 1
2
, (34)

(33) can be achieved if

K(x̂j
i ) · e

− 1
8σ2

i

(⌊K(x̂j
i )+1⌋−1)2

< ρσi,x̃i
(Z). (35)

Moreover, according to the following relationship [46]

ρσi,x̃i
(Z) ≥ e

− d2(Z,x̃i)
2σ2

i · ρσi
(Z) (36)

with d(Z, x̃i) denoting the Euclidean distance between x̃i and
its closest integer over Z, (35) holds if

K(x̂j
i ) · e

− 1
8σ2

i

(⌊K(x̂j
i )+1⌋−1)2

< e
− d2(Z,x̃i)

2σ2
i · ρσi

(Z) (37)

is fulfilled. Because of 0 ≤ d(Z, x̃i) ≤ 1/2, (37) becomes

σ2 <
(⌊K(x̂j

i ) + 1⌋ − 1)2 − 1

8 ln(K(x̂j
i )/ρσi

(Z))
· ∥b̂i∥2. (38)

Consequently, it is clear to verify that (38) is satisfied
when σ ≤ mini |ri,i|/(2

√
π). Using the Jacobi theta function

ϑ3 [47]

ϑ3(ν) =
+∞∑

n=−∞
e−πνn2

(39)

we may write

ρσi(Z) =
∑
x̂i∈Z

e
− 1

2σ2
i

∥x̂i∥2
= ϑ3(|ri,i|2/2πσ2)

≤ ϑ3(2) = 1.0039 ≈ 1 (40)

for σ ≤ mini |ri,i|/(2
√

π) because ϑ3(ν) is monotone
decreasing with ν > 0.

Lemma 2: In the PSD algorithm, for each parent candidate
node x̂j

i with K(x̂j
i ) ≥ 1, the summation of search sizes

of its saved children candidate nodes at decoding layer i is
decreasing

∑
j

K(x̂j
i ) < K(x̂j

i ) (41)

if σ ≤ mini |ri,i|/(2
√

π). Proof: By (18), for each parent
candidate node x̂j

i with K(x̂j
i ) ≥ 1, the summation of search

sizes of its saved children candidate nodes follows∑
j

K(x̂j
i ) = K(x̂j

i ) ·
∑

j

p(x̂j
i ) < K(x̂j

i ) ·
∑
x̂j

i∈Z

p(x̂j
i )

= K(x̂j
i ). (42)

Here, the inequality holds since partial search sizes would be
discarded as their children nodes fail to satisfy the searching
threshold.

From Lemma 1 and 2, the complexity of the PSD algorithm
can be derived as follows.

Theorem 2: In the PSD algorithm, let σ =
mini |ri,i|/(2

√
π), the number of visited nodes is upper

bounded by

|S| < nK, (43)

and the number of collected candidate vectors is upper
bounded by

|L| < K. (44)

Proof: According to (30), the number of saved candidate
nodes at each layer is upper bounded by the summation of
search sizes at the previous layer, namely,

K layer i
save =

∑
Ksave ≤

∑
K(x̂j

i ) = K layer i+1
search size. (45)

Then, by (41), it is easy to confirm that the summation of
search sizes at each layer is decreasing from layer n to 1, i.e.,

K layer 1
search size < . . . < K layer n

search size < K layer n+1
search size = K. (46)

Therefore, the number of visited nodes is upper bounded by

|S| =
∑

i

K layer i
save ≤

∑
i

K layer i+1
search size < nK. (47)

Moreover, since the number of collected searching candidates
|L| accounts for K layer 1

save , it is upper bounded by

|L| < K, (48)

thus completing the proof.
Based on Theorems 1 and 2, the explicit decoding trade-off

of the proposed PSD algorithm between decoding performance
and complexity can be derived as follows.

Theorem 3: With σ = mini |ri,i|/(2
√

π), the initial search
size K of solving CVP by the PSD algorithm is upper bounded
by

K ≤ e
2πd2(Λ,y)
min2

i
|ri,i| , (49)

which corresponds to the upper bound on the number of visited
nodes

|S| < n · e
2πd2(Λ,y)
min2

i
|ri,i| . (50)
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TABLE I
PERFORMANCE AND COMPLEXITY OF VARIOUS DECODING SCHEMES

Proof: Given the Euclidean distance d(Λ,y) between the
lattice Λ and the query point y, then CVP will be solved by
setting dPSD = d(Λ,y), which corresponds to

σ

√
2 ln

K∏n
i=1 ρσn−i+1,x̃n−i+1(Z)

= d(Λ,y). (51)

Moreover, by letting σ = mini |ri,i|/(2
√

π), it follows that

K =

(
n∏

i=1

ρσn−i+1,x̃n−i+1(Z)

)
· e

2πd2(Λ,y)
min2

i
|ri,i|

≤

(
n∏

i=1

ρσn−i+1(Z)

)
· e

2πd2(Λ,y)
min2

i
|ri,i| (52)

=

(
n∏

i=1

ϑ3(|rn−i+1,n−i+1|2/2πσ2)

)
· e

2πd2(Λ,y)
min2

i
|ri,i|

≤

(
n∏

i=1

ϑ3(2)

)
· e

2πd2(Λ,y)
min2

i
|ri,i|

≈ e
2πd2(Λ,y)
min2

i
|ri,i| , (53)

where the inequality in (52) recalls the following relationship

ρσ,y(Λ) ≤ ρσ(Λ), (54)

and the equality only holds when y ∈ Λ [37]. Then, using
(43), the complexity is upper bounded by

|S| < n · e
2πd2(Λ,y)
min2

i
|ri,i| , (55)

completing the proof.
To make it clear, the comparisons over various decod-

ing schemes about decoding radius (i.e., d) and the num-
ber of visited nodes (i.e., |S|) are summarized in Table I.
Note that K in sampling decoding serves as the number
of sampling times while K in the proposed PSD algorithm
is the initial search size. Nevertheless, their decoding radii
and complexities can be well characterized by K for a
fair comparison. As can be seen clearly, under the same
value of K, PSD outperforms sampling decoding schemes
due to the larger decoding radius and the lower complexity

cost, namely, dPSD > dIMHK, Randomized, Klein and |S|PSD <
nK = |S|IMHK, Randomized, Klein. More specifically, given the fact
that the computational complexity of randomized sampling
decoding is O(Kn2) (i.e., with fixed nK visited nodes), the
computational complexity of PSD is much smaller than it (i.e.,
with |S| < nK visited nodes) by removing the randomness,
which is upper bounded by O(Kn2). To make it more specific,
we express the computational complexity of the proposed PSD
algorithm as

CPSD < CRSD = O(Kn2). (56)

Meanwhile, since the number of visited nodes in PSD is upper
bounded by |S| < nK, we can easily bound the computational
complexity per visited node as

Cper node < O(n). (57)

Nevertheless, we have to point out that such a bound is rather
loose while the actual complexity per node could be much
smaller. This is because the upper bound |S| < nK that we
use is quite loose, which can be verified in the simulation
results. To this end, finding a more rigorous bound on Cper node
is one of our works in future.

We point out that PSD only performs the decoding based on
Klein’s sampling probability PKlein(x) rather than lattice Gaus-
sian distribution DΛ,σ,y(x). To make it specific, the Gaussian
scalar ρσ,y(Λ) with σ = mini |ri,i|/(2

√
π) in MIMO systems

is presented in Fig. 4 by Monte Carlo methods, where x ∈ Xn

belongs to QAM modulation. As can be seen clearly, due to
the Gaussian scalar ρσ,y(Λ) < 1, great decoding potential
can be exploited by deterministic searching over the lattice
Gaussian distribution, leading to a much larger decoding radius
dLGD than that of PSD. Accordingly, this corresponds to the
complexity upper bound K ≤ ρσ,y(Λ) · e2πd2(Λ,y)/ min2

i |ri,i|

for solving CVP, which is much lower than that of PSD in
(49). Note that ρσ,y(Λ) improves along with the increment of
SNR. This is because the received signal y is getting close
to the lattice Λ = Rx as the effect of noise is constrained
accordingly.

Here, the Lenstra-Lenstra-Lovász (LLL) reduction can
be applied as a preprocessing stage for the proposed

Authorized licensed use limited to: Southeast University. Downloaded on February 27,2024 at 03:46:51 UTC from IEEE Xplore.  Restrictions apply. 



92 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

Fig. 4. The Gaussian scalar ρσ,y(Λ) in various uncoded MIMO systems.

PSD algorithm, which effectively improves mini |ri,i| (i.e.,
mini ∥b̂i∥) through the matrix transformation (also reducing
maxi |ri,i| at the same time) [5], [48]. Although LLL reduction
is applied to increase the decoding radius, it is easy to check
that the complexity by means of the number of visited nodes
in PSD still obeys the upper bound |S| < nK. Similarly, the
upper bound |L| < K for the number of collected candidate
vectors holds as well, thus leading to a better decoding trade-
off. On the other hand, the computational complexity of LLL
reduction is O(n3 log n) [49], and the complex version of
LLL can be applied for the further complexity reduction [50].
Therefore, LLL reduction can be applied as a preprocessing
stage for the proposed PSD algorithm.

D. Generalization by Candidate Protection

An important question about the proposed PSD algorithm
is the choice of the probability threshold Pthreshold = 1/K,
which should be lower than DΛ,σ,y(xML) (i.e., DΛ,σ,y(xML) ≥
Pthreshold). Clearly, if Pthreshold = 1/K is well chosen, then xML
will be efficiently returned. Unfortunately, a precise choice
of Pthreshold = 1/K is difficult in practice. What’s more,
PSD only works if DΛ,σ,y(xML) ≥ Pthreshold while no eligible
candidate vector will be outputted if DΛ,σ,y(xML) < Pthreshold,
rendering it only eligible for a sufficiently large search size
K. Undoubtedly, this severely restricts the applications of
PSD. To this end, we generalize PSD with arbitrary choice of
K ≥ 1 (i.e., 1 ≥ Pthreshold > 0) via the designed mechanism
named as candidate protection, where flexible performance
between suboptimal decoding (i.e., DΛ,σ,y(xML) < Pthreshold)
and optimal decoding (i.e., DΛ,σ,y(xML) ≥ Pthreshold) can be
achieved by adjusting K.

Specifically, among candidate nodes with small search size
K(x̂j

i ), candidate protection aims to rescue the most valuable
candidate vector along the searching branch, and the searching
solution consists of the closest candidate nodes x̂1

i′s in the rest
of layers tends to be the most reliable choice. Specifically,
as for candidate node x̂j

i with small search size

2 > K(x̂j
i ) ≥ 1, (58)

Fig. 5. The illustration of candidate protection, where node x̂2
i−1 invokes

candidate protection to directly output a candidate vector x̂ to set L.

candidate protection is activated to obtain the closest integer
nodes x̂1

i−1, . . . , x̂
1
1 in the rest of searching layers, which

directly yields a candidate vector x̂:

x̂ = [

←−decoding order︷ ︸︸ ︷
x̂1

1 . . . , x̂1
i−1︸ ︷︷ ︸

candidate protection

x̂j
i︸︷︷︸

2>K(·)≥1

, x̂j
i+1, . . . , x̂j

n︸ ︷︷ ︸
K(·)≥2

]T . (59)

For a better understanding, Fig. 5 illustrates the operations of
candidate protection.

We point out that the searching threshold K(x̂j
i ) ≥ 1 is

smoothly compatible with candidate protection as the latter
tries to activate a few candidate nodes discarded by the
former. Intuitively, the proposed candidate protection extends
the initial search size from K > 1 to K ≥ 1, and it is easy to
verify that the decoding performance of Babai’s nearest plane
algorithm (i.e., SIC) will be achieved when K = 1. More
specifically, candidate protection can be simply carried out
through Babai’s nearest plane algorithm since [x̂1

1, . . . , x̂
1
n]T

is just the decoding result of it.
Remark 1: For PSD with candidate protection, flexible

decoding performance can be achieved from Babai’s nearest
plane algorithm (i.e., K = 1) and ML decoding (i.e., K =
e2πd2(Λ,y)/ min2

i |ri,i|).
Another way to evaluate the decoding performance of the

proposed PSD algorithm is based on the decoding radius dPSD.
In particular, the gain in squared decoding radius of PSD over
Babai’s nearest plane algorithm is defined as follows in [24]:

G ≜
d2

PSD

d2
SIC

=
2
π
· ln K∏n

i=1 ρσn−i+1,x̃n−i+1(Z)

≥ 2
π
· ln K∏n

i=1 ρσn−i+1(Z)
≈ 2

π
· ln K (60)

for σ ≤ mini |ri,i|/(2
√

π), where the decoding radius
of Babai’s nearest plane algorithm is known as dSIC =
mini |ri,i|/2. Therefore, we have K ≤ e

π
2 G, which reveals

the trade-off between K and G. For fixed performance gain
G, the PSD algorithm has polynomial complexity with respect
to the system dimension n, which offers a valuable way to
guide the choice of K.

To summarize, at each searching layer, PSD with candidate
protection operates in the following two steps:
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Fig. 6. Illustration of the proposed PSD algorithm with normalized probability and candidate protection, where K(x̂j
i ) ≥ 1. The dashed lines stemmed from

K(x̂j
i ) < 2 denote the closest candidate nodes x̂1

i−1, . . . , x̂1
1 in the rest of the layers, which are retained to directly yield a decoding candidate vector x̂.

• Calculate the search size K(x̂j
i ) by (18).

• Obtain candidate nodes x̂j
i by (21). If 2 > K(x̂j

i ) ≥ 1,
invoke Babai’s nearest plane algorithm to directly return
a decoding candidate vector x̂.

Overall, an illustration of the proposed PSD algorithm is
presented in Fig. 6 with more details. Furthermore, the pro-
posed PSD algorithm is outlined in Algorithm 2 for a better
understanding.

Interestingly, even with candidate protection, the complexity
|S| as well as the number of collected candidate vectors |L|
in PSD still maintains the same upper bound as before.

Theorem 4: Given the initial search size K ≥ 1, the
number of candidate vectors collected by PSD with candidate
protection is upper bounded by

|L| < K (61)

with the number of visited nodes bounded by

|S| < nK (62)

for σ = mini |ri,i|/(2
√

π). Proof: Theoretically, the
collected candidate vectors x̂ come from searching threshold
and candidate protection respectively. For notational simplic-
ity, here we represent the search size K(xj

i ) in two different
ways: 2 > K(xprotection

i ) ≥ 1 and K(xsearching
i ) ≥ 2.

In particular, the summation of the search sizes at each layer
is decreasing, which can be expressed as

K = K(xj
n) >

∑
K(xprotection

n ) +
∑

K(xsearching
n )

>
∑

K(xprotection
n ) +

∑
K(xprotection

n−1 ) +
∑

K(xsearching
n−1 )

> · · ·

>

n∑
i=2

[∑
K(xprotection

i )
]

+
∑

K(xsearching
2 ). (63)

Based on candidate protection, only one decoding candidate
vector will be saved for each K(xprotection

i ), 2 ≤ i ≤ n, which

means the number of collected candidate vectors generated by
candidate protection from searching layer n to 2 is bounded
by

|Lprotection| ≤
n∑

i=2

[∑
K(xprotection

i )
]
. (64)

Besides, the number of candidate vectors survived from
the searching threshold corresponds to the number of saved
candidate nodes at layer i = 1, i.e., K layer 1

save , which is upper
bounded by

|Lsearching| = K layer 1
save ≤

∑
K(xsearching

2 ) (65)

according to (45). Therefore, based on (63), (64) and (65),
we have

|L| = |Lsearching|+ |Lprotection| < K. (66)

Consequently, as all the visited nodes are taken into account to
generate |L| decoding candidate vectors, the number of visited
nodes is bounded as

|S| < n|L| < nK, (67)

completing the proof.
Note that the initial search size K only offers a complexity

upper bound (i.e., |S| < nK) while the real complexity
could be much less than this. More importantly, the decoding
performance of PSD in terms of decoding radius can be
explicitly evaluated along with the increment of complexity,
which is meaningful especially in high-dimensional systems.

Regarding the complexity, as shown in Algorithm 2, given a
sufficient search size K, the number of elementary operations
(additions, subtractions, and multiplications) for calculating
(7), (13) and (18) for a visited node x̂j

i at searching layer
1 ≤ i ≤ n are 2(n − i) + 1, 15 and 1 respectively, which
leads to 2(n− i) + 17 in total. After that, the judgement will
be made about whether to save the node x̂j

i based on the
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Algorithm 2 Probabilistic Searching Decoding Algorithm
Input: K,R,y, σ = mini |ri,i|/(2

√
π), L = ∅

Output: Rx ∈ Λ
1: invoke Function 1 with i = n to decode layer by layer
2: add all the candidates x̂’s generated by Function 1 to L
3: output x̂ = arg min

x∈L
∥y −Rx∥ as the decoding solution

value of K(x̂j
i ). Here, j = 3 is considered in the calculation

while the demonstration later in Section IV will show it is
sufficient. Note that for a small size K, the mechanism of
candidate protection will be invoked, which means a lower
number of elementary operations for each visited node. For
example, when K = 1, the proposed PSD algorithm just
accounts for SIC decoding. Therefore, a different search size
K corresponds to a different number of elementary operations
for each visited node. Nevertheless, we can see that the com-
plexity of each visited node is upper bounded by 2n+15 while
the total complexity of the proposed PSD algorithm is less than
O(Kn2) according to (56) and (62) in Theorem 4.

Similar to the traditional sphere decoding, the proposed PSD
algorithm also employs the tree-search structure. However, the
difference between these sphere decoding-based works [7],
[8], [9], [10], [11], [12], [51], [52] and the proposed PSD
algorithm can mainly be found in the following two aspects.
On one hand, the proposed PSD algorithm performs the
enumeration in terms of probability over Klein’s sampling
probability, which serves as an approximation of the lattice
Gaussian distribution DΛ,σ,y(x). For this reason, PSD belongs
to a deterministic sampling decoding strategy with respect
to the lattice Gaussian distribution. As shown in Table I,
it outperforms all the previous sampling decoding schemes
with a better decoding trade-off [23], [24], [25], [30]. On the
other hand, the introduced parameters σ and K (as shown
in (26), 1/K denotes the probability threshold) from the
lattice Gaussian distribution offer a more interpretable way
to reveal the decoding trade-off of PSD, where the clear com-
plexity upper bound is accessible given the decoding radius.
To the best of our knowledge, the probabilistic tree-search
based sphere decoding algorithms may also carry out the
searching based on other probability criteria, but the sampling
probability from the lattice Gaussian distribution shown in
(12) has not been involved. Meanwhile, compared to these
existing methods, a clear mathematical characterization about
the performance and complexity is provided by the proposed
PSD algorithm, which is flexibly adjusted by the initial search
size K.

Nevertheless, we point out that PSD is performed in a
sequential order from xn to x1, which does not allow parallel
implementation. By contrast, recent works on parallel sphere
schemes have been proposed in [51], [52], [53], and [54].
By adopting a massively parallel design into the nonlinear
processing, they provide a promising solution for the problem
of MIMO detection in 6G [55]. This could be useful for the
development of sampling decoding, and how to incorporate
it with sampling decoding will be an interesting direction for
future work.

Function 1 Searching at Layer i Given [x̂n, . . . , x̂i+1]
1: compute x̃i according to (7)
2: compute probability p(x̂j

i ) by (13) with j ∈ [1, 2, 3]
3: compute search size K(x̂j

i ) according to (18)
4: for each specific integer candidate x̂j

i do
5: if K(x̂j

i ) < 1 then
6: prune x̂j

i from the tree-search decoding
7: else
8: save x̂j

i to form the decoding result [x̂n, . . . , x̂i+1, x̂
j
i ]

9: if 2 > K(x̂j
i ) ≥ 1 then

10: decode the rest of layers by SIC to get a candidate x̂
11: else if K(x̂j

i ) ≥ 2 then
12: if i = 1 then
13: output the candidate x̂
14: else
15: invoke Function 1 to decode the next layer i−1
16: end if
17: end if
18: end if
19: end for

IV. OPTIMIZATION AND COMPLEXITY REDUCTION

In this section, further optimization and complexity reduc-
tion methods are given to make the proposed PSD algorithm
well suited to the finite state space of x in implementation.

A. Optimization With Respect to σ

For the proposed PSD algorithm, the choice of the standard
deviation σ is recommended as mini |ri,i|/(2

√
π) so that

K ≥ 1 is adjustable to provide a tractable and flexible
decoding trade-off. However, the assumption x ∈ Zn should,
in a practical MIMO detection application, be replaced by a
finite state space, i.e., x ∈ Xn. Therefore, it is possible to
further optimize σ by this relaxation for a better decoding
performance.

Specifically, let σ = mini |ri,i|√
2 log α

with α > 1. Then α becomes

the parameter to be considered. Moreover, with σ = mini |ri,i|√
2 log α

,
it has been demonstrated in [23] that

n∏
i=1

ρσi,x̃i
(Z) ≤ e

2n
α (1+O(α−3)), (68)

where the term O(α−3) in (68) could be negligible if α is
large. Assume α satisfies this weak condition; by relaxation,
(22) can be expressed as

e−
2n
α · α−∥Rx−y∥2/minir

2
i,i ≥ 1

K
, (69)

which leads to the following decoding radius

dopt = miniri,i ·
√

logα(Ke−2n/α). (70)

In order to exploit the decoding potential, parameter α can
be optimized to maximize the above decoding radius. Hence,
setting the derivative of logα(Ke−2n/α) with respect to α be
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Fig. 7. Bit error rate versus average SNR per bit for the uncoded 12× 12
MIMO system using 64-QAM.

zero, the optimum αo given the initial search size K can be
determined by

K = (eαo)2n/αo . (71)

From (71), it is easy to check that the optimum αo monoton-
ically decreases with the increment of K, which means the
choice of σ = mini |ri,i|√

2 log αo
should be improved with the increase

of K as well. Note that such an optimization about σ is only a
compromise by relaxation, and σ = mini |ri,i|/(2

√
π) is still

a better choice for x ∈ Zn.

B. Complexity Reduction

In principle, sufficient candidate nodes x̂j
i with j =

1, 2, 3, . . . for each parent node x̂j
i should be taken into

account given the searching threshold. However, in practice,
only limited candidate nodes need to be considered, and we
now investigate the required size of index j.

From (19), the normalized probability of the jth candidate
node at searching layer i is written as

p(xj
i )=

e
− 1

2σ2
i

((j−1)/2+d)2

/ρσi,x̃i
(Z) when j is odd,

e
− 1

2σ2
i

( j
2−d)2

/ρσi,x̃i
(Z) when j is even,

(72)

where 1
2 ≥ d = |x1

i − x̃i| ≥ 0. Therefore, the summation
of the normalized probability of the first 2N candidate nodes
with respect to x̃i can be expressed as

P2N =
N∑

j=1

(
e
− 1

2σ2
i

(j−1+d)2

+ e
− 1

2σ2
i

(j−d)2
)

/ρσi,x̃i
(Z). (73)

Because of
∑

x̂j
i∈Z p(x̂j

i ) = 1, with σ = mini |ri,i|/(2
√

π)
the normalized probability associated with nodes other than
those 2N candidate nodes can be derived as

1− P2N =
∑

j≥N+1

(
e
− 1

2σ2
i

(j−1+d)2

+ e
− 1

2σ2
i

(j−d)2
)

/ρσi,x̃i
(Z)

<
∑

j≥N+1

2 · e
− 1

2σ2
i

(j−1)2

/ρσi,x̃i
(Z)

Fig. 8. Bit error rate versus average SNR per bit for the uncoded 16× 16
MIMO system using 64-QAM.

<
∑

j≥N+1

2 · e
− 1

2σ2
i

[(j−1)2− 1
4 ]

/ρσi
(Z)

≈
∑

j≥N+1

2 · e−2π[(j−1)2− 1
4 ]

= O
(
e−2πN2

)
, (74)

which implies that the tail bound (74) decays exponentially
fast (e2π ≫ 1).

Remark 2: From (74), with σ = mini |ri,i|/(2
√

π), only
limited number of children candidate nodes need to be con-
sidered due to the negligible probability p(xj

i ), j > 3.
Therefore, j = 3 is recommended for the complexity

reduction in the proposed PSD algorithm unless the initial
search size K is sufficiently large. This is also well suited to
practical cases with finite state space x ∈ Xn.

V. SIMULATION

In this section, the performance and complexity of the
proposed PSD algorithm are evaluated in MIMO detection.
Specifically, given the system model in (2), the ith entry
of the transmitted signal x, denoted as xi, is a modulation
symbol taken independently from an M -QAM constellation
X with Gray mapping. Meanwhile, we assume a flat fading
environment, where the square channel matrix B contains
uncorrelated complex Gaussian fading gains with unit variance
and remains constant over each frame duration. Let Eb repre-
sents the average energy per bit at the receiver. Then the signal-
to-noise ratio (SNR) Eb/N0 = n/(log2(M)σ2

w) where M is
the modulation order and σ2

w is the noise variance. Besides,
PSD is enhanced by LLL reduction and MMSE augmentation,
as well as optimizing σ through choosing αo via (71). As a fair
comparison, all the other decoding schemes are also strength-
ened by LLL reduction. Meanwhile, the sampling decoding
schemes are also enhanced by MMSE augmentation [24].

Fig. 7 shows the bit error rate (BER) of the proposed
PSD algorithm compared with other decoding schemes in a
12× 12 uncoded MIMO system with 64-QAM. Here, lattice-
reduction-aided SIC (i.e., Babai’s nearest plane) decoding
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Fig. 9. Bit error rate versus average SNR per bit for the uncoded 10× 10
MIMO system using 16-QAM.

serves as a performance baseline while ML decoding is imple-
mented by the Schnorr-Euchner (SE) strategy. Meanwhile,
the increasing radii algorithm (IRA) in [56], the probabilistic
tree pruning sphere decoding (PTPSD) in [57] with pruning
probability Pϵ = 0.1 and the improved K-best sphere decoder
(IKSD) from [58] are also shown as a comparison. Note that
the nonlinear SIC detection has a better decoding performance
than these traditional schemes such as ZF and MMSE. Clearly,
compared to the fixed candidates algorithm (FCA) in [59]
and iterative list decoding in [60] with 30 samples, sampling
decoding algorithms such as Klein’s sampling decoding [23],
randomized sampling decoding [24] and IMHK sampling
decoding [30] offer not only the improved BER performance
but also the promise of smaller sample size K. It is clear
that PSD outperforms all the sampling decoding schemes for
the same value of K, which agrees with the results shown
in Table I. More importantly, the complexity cost of PSD is
much less than those of sampling decoding schemes, which is
illustrated in Fig. 11, Fig. 13 and Fig. 14 in detail. Observe that
with K = 100, the performance of PSD suffers negligible loss
compared with ML. Therefore, with a moderate K, near-ML
performance can be achieved.

In order to show the performance comparison with different
initial search sizes K, Fig. 8 is given to illustrate the BER
performance of PSD in a 16 × 16 uncoded system with 64-
QAM. According to (22), a larger K leads to a larger decoding
radius, which corresponds to a better decoding performance.
More specifically, as shown in (23), a larger K naturally
corresponds to a looser searching threshold, which allows
more candidate vectors to be obtained. Therefore, as can be
seen clearly, with the increment of K, the BER performance
improves gradually to the ML decoding performance. It is
interesting to see that in Fig. 7 near-ML decoding performance
can be achieved with K = 100 while in Fig. 8 near-ML
decoding performance requires K = 500. This is because
the larger system dimension has a deeper tree-structure to
search, which requires a higher initial search size K of the
proposed PSD algorithm to explore. Note that according to
Theorem 5, the number of visited nodes and the number of

Fig. 10. Bit error rate versus average SNR per bit for the uncoded 16× 16
MIMO system using 64-QAM under local scattering spatial correlation model.

collected candidate vectors are upper bounded by |S| < nK
and |L| < K respectively, and the complexity increment with
respect to K is mild as expected, thus resulting in a promising
trade-off between performance and complexity.

Fig. 9 shows the bit error rate (BER) of the proposed PSD
algorithm under correlated channels in a 10 × 10 uncoded
MIMO system with 16-QAM. Specifically, the correlated
channel matrix is given by R

1
2
corHT

1
2
cor. Here, Rcor ∈ Cn×n

is the receive correlation matrix, Tcor ∈ Cn×n is the transmit
correlation matrix, and H ∈ Cn×n is an independent, identi-
cally distributed (i.i.d.) complex Gaussian with zero-mean and
unit variance elements. Without loss of generality, we assume
in this work that the antennas at both transmitter and receiver
sides are equally separated while the correlation matrices Rcor

and Tcor follow the model in [61], i.e.,

Rcor = Tcor =


1 ρ ρ4 · · · ρ(n−1)2

ρ 1 ρ · · ·
...

ρ4 ρ 1 · · · ρ4

...
...

...
. . . ρ

ρ(n−1)2 · · · ρ4 ρ 1

 ,

where the normalized correlation coefficient ρ is employed to
adjust the degree of correlation. Note that a totally uncorrelated
scenario corresponds to ρ = 0 while a fully correlated scenario
implies ρ = 1. Here, we set ρ = 0.2, which results in weak
correlated channels. As can clearly be seen, the proposed PSD
algorithm works as usual under correlated channels. This is
in accordance with the fact that PSD is designed given the
random matrix B, making it suitable for various scenarios
of MIMO systems. As expected, with the increment of K,
the detection performance of the proposed PSD improves
gradually, implying a flexible and tractable detection trade-off.
On the other hand, with the increase of ρ, it is clear to see
that the underlying channel matrix becomes more correlated
so that the detection of both ML and PSD detection continues
to deteriorate. Nevertheless, the performance gap between
PSD and ML detection still decreases accordingly with the
increment of K. For a better illustration, the performance
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Fig. 11. Number of visited nodes |S| versus initial search size K for
16× 16 uncoded MIMO using 64-QAM at SNR per bit = 17dB.

curves of PSD with K = 20, 30 and ML decoding under
ρ = 0.4 and ρ = 0.6 are also added.

To further illustrate the proposed PSD algorithm in cor-
related channel models, Fig. 10 is presented to show the
bit error rate (BER) of the proposed PSD algorithm in a
16 × 16 uncoded MIMO system with 64-QAM under the
local scattering spatial correlation model in [62]. In particular,
in the local scattering spatial correlation model, the uniformly
distributed deviations are applied with θ ∼ U [−

√
3σφ,

√
3σφ],

and we set the nominal angle φ = 10◦ with angular standard
deviation (ASD) σφ = 30◦, where the correlation matrices are
normalized with matrix trace equal to n = 16. As can be seen
clearly in Fig. 10, the BER performance of the proposed PSD
algorithm improves gradually with the increment of K due
to the larger decoding radius derived in (28), which leads to
a flexible detection performance adjusted by K. Meanwhile,
compared to the i.i.d. Gaussian channel model shown in Fig. 8,
we can observe that both the BER performance of ML and
PSD degrade accordingly. This is due to the fact that a
higher degree of channel correlation is introduced by the local
scattering spatial correlation model. Note that the traditional
ZF detection is able to achieve the ML detection performance
if the channel matrix is orthogonal. Nevertheless, PSD still
achieves near-ML performance by improving K.

In Fig. 11, the comparison regarding the average numbers
of visited nodes number |S| obtained by PSD for 16 ×
16 uncoded MIMO systems using 64-QAM is given. Note that
the 16×16 uncoded MIMO detection corresponds to CVP with
dimension n = 32. As a comparison, the number of visited
nodes of traditional sampling decoding schemes is |S|IMHK =
|S|randomized = |S|Klein = nK. On the contrary, as shown in
Theorem 4, the number of visited nodes of the proposed PSD
algorithm is upper bounded by |S| < nK. Specifically, with
the increment of K, |S| improves gradually as more qualified
candidate vectors are obtained by searching threshold and
candidate protection. Clearly, even with the optimized σ by
relaxation, |S| is always much smaller than nK (i.e., |S| <
nK = |S|IMHK, Randomized, Klein), which enables a more efficient
decoding than these traditional sampling decoding schemes.
Meanwhile, in Fig. 12, the collected candidate vectors |L|

Fig. 12. Number of collected candidate vectors |L| versus initial search size
K for 16× 16 uncoded MIMO using 64-QAM at SNR per bit = 17dB.

obtained by the proposed PSD for 16 × 16 uncoded MIMO
systems using 64-QAM is given as well. Specifically, with
the increment of K, |L| improves gradually as more qualified
candidate vectors are obtained by searching threshold and
candidate protection. Clearly, even with the optimized σ by
relaxation, both |S| and |L| are always much smaller than the
nK and K respectively.

Fig. 13 shows the complexity comparison (in flops) of the
proposed PSD algorithm with other decoding schemes in dif-
ferent system dimensions, where the flops evaluation scenario
that we use comes from [63]. Clearly, in the uncoded MIMO
system with 64-QAM, PSD needs a much lower number of
flops than other decoding schemes under the same size K.
This benefit comes from the adaptation of the tree-structure
searching with limited number of visited nodes, which reduces
the computation in sampling procedures by removing all
repetitions and unnecessary calculations. Specifically, the flops
cost of PSD with K = 50 is less than that of randomized
sampling decoding with K = 15. More importantly, with the
increase of K, the decoding performance improves gradually
but the complexity increment is mild. This is different from the
traditional sphere decoding schemes like IRA and PTPSD as
their complexities grow rapidly with the increase of the system
dimension. Consequently, better BER performance and a lower
complexity requirement make PSD very promising for MIMO
detection.

Following the same scenario in Fig. 13, as a complement
to illustrate the computational cost, Fig. 14 is given to show
the complexity comparison in average elapsed running times.
In particular, the uncoded MIMO system takes 64-QAM at
SNR per bit = 17dB, and the simulation is conducted by MAT-
LAB R2019a on a single computer, with an Intel Core i7 pro-
cessor at 2.7GHz, a RAM of 8GB and Windows 10 Enterprise
Service Pack operating system. As can be seen clearly, the
average elapsed running time of SIC-LLL decoding scheme
increases slightly with the increase of the system dimension.
On the contrary, the optimal ML decoding from [9] takes
an exponentially increasing average elapsed running time.
Although a part of the complexity of ML decoding can
be reduced by IRA and PTPSD, the complexities of these
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Fig. 13. Complexity comparison in flops for the uncoded MIMO system
using 64-QAM at SNR per bit = 17dB.

Fig. 14. Complexity comparison in average time cost for the uncoded MIMO
system using 64-QAM at SNR per bit = 17dB.

traditional sphere decoding schemes increase rapidly, making
them unaffordable especially in high dimensional systems.
As expected, under the same K, PSD has a lower average
elapsed running time than randomized sampling decoding and
IKSD algorithm, making it suitable to implement in MIMO
systems.

VI. CONCLUSION

In this paper, to overcome the randomness in sampling
decoding, a probabilistic searching decoding (PSD) algorithm
is proposed based on the lattice Gaussian distribution, which
achieves a better decoding performance and less complexity
cost in MIMO systems. Based on the standard deviation
introduced by model probabilistic twin, the search space of
decoding is significantly reduced while a searching threshold
is designed to facilitate efficient decoding. Meanwhile, by fully
taking advantages of the extra degree of freedom, the explicit
decoding trade-off between performance and complexity of
PSD is also derived. Moreover, the mechanism of candidate
protection is proposed, which generalizes PSD to provide a
flexible performance between suboptimal and ML decoding.

Finally, further optimization and complexity reduction meth-
ods are also given for the proposed PSD algorithm.
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