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Abstract—In this paper, the paradigm of the traditional
iterative decoding schemes for the uplink large-scale MIMO
detection is extended by sampling in an Markov chain Monte
Carlo (MCMC) way. Different from iterative decoding whose
performance is upper bounded by the suboptimal linear decoding
scheme like ZF or MMSE, the proposed iterative random
sampling decoding (IRSD) algorithm is capable of achieving
the optimal ML decoding performance with the increment of
Markov moves, thus establishing a flexible trade-off between
suboptimal and optimal decoding performance. According to
convergence analysis, we show that the Markov chain induced
by IRSD algorithm experiences the exponential convergence, and
its related convergence rate is also derived in detail. Based
on it, the Markov mixing becomes tractable, followed by the
decoding optimization with respect to the standard deviation of
the target distribution. Meanwhile, further decoding performance
enhancement and parallel implementation are also studied so that
the proposed IRSD algorithm is well suited for various cases of
large-scale MIMO systems.

Index Terms—Large-scale multiple-input multiple-output
(MIMO) detection, massive MIMO detection, iterative methods,
sampling decoding, Markov chain Monte Carlo (MCMC).

I. INTRODUCTION

THE large-scale multiple-input multiple-output (MIMO)
system has become a promising extension of MIMO in 5G

and beyond 5G, which boosts the network capacity on a much
greater scale without extra bandwidth [1], [2], [3], [4]. However,
the dramatically increased system size also places a pressing
challenge on the signal detection in the uplink [5], [6]. To this
end, anumber of low-complexity iterative decoding schemes
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have been proposed, which approach the suboptimal linear
decoding performance via an iterative way [7], [8], [9], [10],
[11], [12]. Specifically, the iterative decoding schemes for large-
scale MIMO detection are mainly based on series expansion
and matrix splitting methods [13], [14], [15], [16]. Compared
to series expansion, iterative decoding schemes based on ma-
trix splitting like Jacobi, Richardson and Gauss-Seidel (GS)
iterations turn out to be more efficient [17]. In [18], a ran-
domized iterative decoding named as the modified random-
ized iterative detection algorithm (MRIDA) is given, which not
only achieves a faster iteration convergence but also enjoys the
global convergence.

However, all those iteration-based decoding schemes belong
to the suboptimal linear decoding. Theoretically, there is a sub-
stantial performance gap between the suboptimal linear decod-
ing and the optimal ML decoding, and the optimal ML decoding
performance can be approximated by linear decoding like zero
forcing (ZF) and minimum mean-square error (MMSE) only
when the number of received antennas at base station (BS)
(denoted by n) is sufficiently larger than the number of trans-
mitted antennas of user equipments (UE) (denoted by m), i.e.,
n�m [19]. In fact, compared to the increased number of the
received antennas at BS, the number of the transmitted antennas
at UE side has also improved accordingly. Moreover, with the
rapid increment of UE, the total number of antennas at UE
side has increased significantly. Therefore, the environment of
wireless communications has become much more complicated
than before [20], [21], so that a flexible decoding scheme that
well suits various scenarios of large-scale MIMO systems is
highly desired. Unfortunately, since the performance of iterative
decoding is upper bounded by the linear decoding performance,
those iteration-based decoding schemes fail to achieve a better
decoding performance even though numerous number of itera-
tions are carried out, rendering them rather limited in the various
cases of large-scale MIMO [22], [23].

Recently, sampling turns out to be a powerful strategy for
solving decoding problems [24], [25]. In particular, the tradi-
tional decoding problem can be cast as an equivalent sampling
problem [26], [27], [28], [29]. By doing this, the optimal de-
coding solution can be encountered by sampling from a multi-
dimensional discrete Gaussian distribution since it naturally
entails the largest sampling probability. However, decoding by
sampling heavily relies on how to successfully sample from the
target discrete Gaussian distribution [30], [31], and it is rather
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difficult in contrast to the case of sampling from the continuous
Gaussian density. Therefore, to effectively exploit the potential
behind the randomness, the methods of Markov chain Monte
Carlo (MCMC) were introduced into sampling decoding [32],
[33], [34]. Specifically, MCMC attempts to sample from the tar-
get distribution via a Markov chain, which randomly generates
the next sample conditioned on previous samples. After a burn-
in period, which is also known as the mixing time, the Markov
chain will reach into a stationary distribution, and successful
sampling from the complex target distribution can be carried
out thereafter [35].

In this paper, in order to achieve a flexible iterative decoding
scheme with tractable performance between suboptimal lin-
ear and optimal ML decoding, a general sampling decoding
framework with respect to the traditional iterative methods is
proposed, which adopts the random sampling to the iterations
in an MCMC way. First of all, the iterative random sampling
decoding (IRSD) algorithm is proposed. Without loss of gen-
eralization, it is described based on the traditional GS iteration
and we show it is capable of achieving the optimal decoding
performance with the increase of the number of Markov moves.
By doing this, a flexible decoding performance can be achieved
with the adjustable number of Markov moves. Secondly, the
convergence analysis of the Markov mixing in the proposed
IRSD algorithm is performed, where the explicit convergence
rate as well as the mixing time of the Markov chain is derived.
Then, based on the accessible mixing time, the sampling de-
coding by IRSD algorithm is optimized for a better decoding
efficiency, which leads to a better choice of the standard devi-
ation σ > 0 in the target distribution Π. Thirdly, the extensions
of the proposed IRSD algorithm to successive overrelaxation
(SOR) and Jacobi iterations are studied in detail, where fur-
ther decoding enhancement and parallel implementation can be
achieved respectively.

The rest of this paper is organized as follows. Section II in-
troduces the system model and the traditional iterative decoding
schemes, and briefly reviews the basics of MCMC methods. In
Section III, the proposed IRSD algorithm is described based
on the classic GS iteration, which results in a flexible decod-
ing performance controlled by the number of Markov moves.
Meanwhile, convergence analysis is also given to show the
accessible convergence rate and mixing time of the Markov
chain in the proposed IRSD algorithm. In Section IV, the
optimization about the standard deviation is presented for a
better decoding efficiency. In Section V, extensions of the pro-
posed IRSD algorithm to other traditional iterations like SOR
and Jacobi iterations are presented to achieve further decoding
enhancement and parallel implementation respectively. After
that, simulations of the proposed IRSD algorithm over differ-
ent iteration schemes for uplink large-scale MIMO detection
are presented in Section VI. Finally, Section VII concludes
the paper.

Notation: Matrices and column vectors are denoted by up-
per and lowercase boldface letters, and the transpose, inverse,
pseudoinverse of a matrix B by BT ,B−1, and B†, respectively.
We use bi for the ith column of the matrix B, bi,j for the entry
in the ith row and jth column of the matrix B. �x� denotes

rounding to the integer closest to x. If x is a complex number,
�x� rounds the real and imaginary parts separately. Finally,
in this paper, the computational complexity is measured by
the number of arithmetic operations (additions, multiplications,
comparisons, etc.).

II. PRELIMINARY

In this section, we introduce the system model, the tra-
ditional iterative decoding schemes as well as the classic
MCMC methods needed to describe and analyze the proposed
IRSD algorithm.

A. System Model

Consider the decoding of an n×m real-valued system with
n≥m. The extension to the complex-valued system is straight-
forward [24]. Let s ∈ Xm ⊆ Z

m denote the transmitted signal,
where the corresponding received signal c is given by

c=Hs+w (1)

where w ∈ R
n is the noise vector with zero mean and variance

σ2
w, H is an n×m matrix of channel coefficients. Typically,

the conventional maximum likelihood (ML) reads

ŝml = arg min
s∈Xm

‖c−Hs‖2 (2)

where ‖ · ‖ denotes the Euclidean norm. In essence, this
problem belongs to the integer least squares (ILS) prob-
lem, and is also known as the closest vector problem (CVP)
in lattice decoding, which is NP-hard in high dimensional
systems [36], [37].

In [19], by fully taking advantages of receive diversity when
n�m, it has been shown that the near optimal decoding per-
formance can be achieved by the traditional linear decoding
schemes like ZF or MMSE. Specifically, the linear ZF decoding
returns the following solution

ŝzf = �s̃zf�Q ∈ Xm (3)

with

s̃zf =
(

HTH
)−1

HT c, (4)

where �·�Q denotes the direct rounding according to the discrete
constellation Xm. The similar operation works in MMSE de-
coding with s̃mmse =

(

HTH+ σ2
wI

)−1
HT c. More precisely,

s̃zf is the decoding solution of the following least squares
(LS) problem

s̃zf = arg min
s∈Rm

‖c−Hs‖2, (5)

which offers a good approximation to the solution of ILS prob-
lem in (2) when n�m. Nevertheless, the implementation of
ZF or MMSE decoding is still challenging due to the matrix
inversion with computational complexity O(m3).
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B. Suboptimal Linear Decoding Based on Iterative Methods

In order to bypass the matrix inversion, a number of low-
complexity decoding schemes based on iterative methods are
proposed. Specifically, the ZF decoding in (4) (or MMSE de-
coding) can be interpreted by an equivalent system model,
which decodes a linear system

As= b. (6)

Here, b=HT c ∈ R
m, the ZF filtering matrix A=HTH ∈

R
m×m is a symmetric positive matrix (so is the MMSE filtering

matrix A=HTH+ σ2
wI).

To solve the linear system in (6), the matrix splitting about
A=M+N is applied with M ∈ R

m×m and N ∈ R
m×m

so that

s=Gs+ g (7)

with G=−M−1N= I−M−1A ∈ R
m×m and g =M−1b ∈

R
m. From (7), iterative methods compute the successive ap-

proximations to the solution by repeatedly applying the follow-
ing iterations [38]

s̃ t+1 =Gs̃ t + g, (8)

where G is known as the iteration matrix. Moreover, the con-
vergence of iterative methods is guaranteed if [39]

lim
t→∞

Gt = 0, (9)

and s̃t+1 will gradually approach to s̃zf along the increment
of iterations.

Intuitively, the choices of M and N for the matrix splitting
A=M+N are key to iterative methods. In Jacobi iteration,
the matrix splitting is set with M=D and N= L+U, which
leads to the following iterations [17]

Ds̃ t+1 =−(U+ L)s̃ t + b. (10)

Here, D ∈ R
m×m, L ∈ R

m×m and U ∈ R
m×m respectively

stand for the diagonal components, the strictly lower triangular
components and the strictly upper triangular components of
matrix A as A=D+ L+U and L=UT. More precisely, the
update of s̃ t+1

i , 1≤ i≤m in Jacobi iteration is calculated by

s̃ t+1
i =− 1

di,i

⎛

⎝

i−1
∑

j=1

li,j s̃
t
j +

m
∑

j=i+1

ui,j s̃
t
j − bi

⎞

⎠, (11)

where ui,j ∈ R, li,j ∈ R and di,j ∈ R standard for the element
of matrix U, L and D respectively. As for Richardson iteration,
M and N are set as M= 1

ω I and N=A− 1
ω I respectively,

where the coefficient ω > 0 is known as the relaxation factor.
In order to achieve a faster convergence performance, Gauss-

Seidel (GS) iteration with M=D+U and N= L is intro-
duced as [40]

(D+U)s̃t+1 =−Ls̃t + b. (12)

Different from Jacobi and Richardson iterations, the iteration of
s̃ in GS is carried out element by element in a sequential order,
where the updated elements of s̃ at iteration t+ 1 (i.e., s̃ t+1

i )
are also taken into account to update the rest of elements in s̃.

Fig. 1. Illustration of the detection based on Gauss-Seidel iteration. Arrows
about s̃ti → s̃ti−1 comes from the calculation in (13) while arrows about s̃Li →
ŝi denote the direct rounding by ŝi = �s̃Li �Q ∈ X .

Typically, the update of s̃t+1
i from i=m to i= 1 in a backwards

order is calculated as

s̃ t+1
i =− 1

di,i

⎛

⎝

i−1
∑

j=1

li,j s̃
t
j +

m
∑

j=i+1

ui,j s̃
t+1
j − bi

⎞

⎠. (13)

Consequently, given the iteration results s̃L, L≥ 1, the final
decoding solution of iterative methods for the ILS problem in
(2) is outputted by the direct quantization as

ŝ= �s̃L�Q ∈ Xm. (14)

For a better understanding, the illustration of the decoding
process based on GS iteration is shown in Fig. 1. In [18], another
iteration-based decoding named as MRIDA is proposed, which
achieves a faster convergence performance than GS iteration.
Nevertheless, MRIDA still belongs to the suboptimal linear
decoding so that its performance is also upper bounded by ZF
or MMSE no matter how many iterations are carried out.

C. Markov Chain Monte Carlo Methods

As a foremost sampling scheme in MCMC, the Metropolis-
Hastings (MH) algorithm tries to sample from the target invari-
ant distribution Π(s) via a proposal distribution [35] q(x,y)1.
To be more specific, given the current state x for Markov
chain St, a state candidate y for the next Markov move St+1

is generated from the proposal distribution q(x,y). Then the
acceptance ratio α is computed by [41]

α= min

{

1,
Π(y)q(y,x)

Π(x)q(x,y)

}

, (15)

and y will be accepted as the new state (i.e., St+1 = y) with
probability α. Otherwise, x will be retained as St+1 = x. In
this way, a Markov chain {S0,S1, . . .} is established with the
transition probability P (x,y) as follows:

P (x,y) =

{

q(x,y)α if y 
= x,

1−
∑

z�=x q(x, z)α if y = x.
(16)

1q(x,y) can also be expressed as q(y | x), namely, q(x,y) � q(y | x).
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Interestingly, the proposal distribution q(x,y) in MH algo-
rithm can be any fixed distribution, but it is quite challenging to
find a suitable one with satisfactory convergence. In principle,
Gibbs sampling is a special case of MH algorithm by letting the
proposal distribution be the univariate conditional distribution,
i.e., [42]

q(x,y) = Π(si|s[−i]), (17)

where s[−i] � [s1, . . . , si−1, si+1, . . . , sm]T is leaving un-
changed during the univariate sampling about si. Clearly, with
(17), it is easy to verify that the acceptance ratio α of Gibbs
algorithm is always 1. By repeating such a procedure with a
certain scan scheme, a Markov chain {S0,S1, . . .} is estab-
lished. Apart from the random scan who randomly updates the
component of s, systematic scan proceeds the update of si in
a sequential order from sm to s1 (i.e., s[−i] = [st1, . . . , s

t
i−1,

st+1
i+1, . . . , s

t+1
m ]T ), which is more preferable in practice.

Additionally, according to the convergence theorem of
MCMC, the exponential convergence of MH algorithm and
Gibbs sampling can be easily verified.

Theorem 1 ([35]): For finite state space s ∈ Ω, suppose that
the transition matrix of the Markov chain is irreducible and
aperiodic with the invariant stationary distribution Π, then there
exist constants 0< � < 1 and C > 0 such that

‖P t(s, ·)−Π(·)‖TV ≤ C�t. (18)

Here, t≥ 1 denotes the index of Markov moves, ‖ · ‖TV rep-
resents the total variation distance, Π is the target invariant
distribution, P t(s; ·) indicates a row of the transition matrix P
after t Markov moves with the initial state s. Clearly, coeffi-
cient � is the convergence rate of the Markov chain, where a
smaller � corresponds to a faster convergence performance in
approaching the target distribution Π.

III. ITERATIVE RANDOM SAMPLING DECODING

In order to achieve low decoding complexity, iterative de-
coding schemes are proposed to approach the performance of
linear ZF or MMSE iteration by iteration. Nevertheless, the
performance of these iterative decoding schemes are strictly
upper bounded by ZF or MMSE decoding no matter how many
iterations are carried out, namely,

lim
t→∞

�s̃t�Q = ŝzf. (19)

In a word, these traditional iterative decoding schemes are in-
applicable when the flexible performance between suboptimal
linear and optimal ML decoding is needed. In fact, such a
performance requirement does widely exist in various cases of
large-scale MIMO systems except the case n�m. Theoreti-
cally, this is due to the fact that traditional iterative schemes
are designed to solve the LS problem in (5) rather than the ILS
problem in (2), and the solution of LS problem only offers an
approximation to that of the ILS problem [18]. To overcome
the performance limitation of the traditional iterative decoding

schemes, we adopt the random sampling into iterations, which
is capable of solving the ILS problem in (2) as

lim
t→∞

ŝt = ŝml. (20)

Different from iterative decoding, the proposed IRSD al-
gorithm tries to return the optimal decoding solution ŝml by
sampling from an invariant target distribution Π

Π(s) =
e−

1
2σ2 ‖As−b‖2

∑

s∈Xm e−
1

2σ2 ‖As−b‖2
. (21)

Typically, it is clear to see that the optimal decoding solution
ŝml of the ILS problem in (2) also has the largest sampling
probability in distribution Π, i.e.,

ŝml = arg min
s∈Xm

‖Hs− c‖2 = arg min
s∈Xm

‖As− b‖2

= arg max
s∈Xm

Π(s). (22)

Therefore, if one can sample from Π, the optimal decod-
ing solution ŝml can be obtained by sampling. Most impor-
tantly, due to its largest sampling probability, ŝml is most
likely to be sampled during the multiple independent sam-
plings, thus providing an efficient way to decode the ILS
problem in (2). Unfortunately, it is rather difficult to perform
the sampling even from a low-dimensional discrete Gaussian
distribution. For this reason, MCMC methods are applied in
the proposed IRSD algorithm, and we show that the distri-
bution induced by the Markov moves converges to the tar-
get distribution Π in an exponential way. By doing this, the
ILS problem in (2) can be effectively solved by sampling
from Π.

A. Algorithm Description

Here, for a better presentation, the proposed IRSD algorithm
is described based on GS iteration, where extensions to other it-
erative schemes are straightforward. In particular, different from
GS iteration that sequentially computes s̃t+1

i ∈ R in (13), we
update ŝt+1

i ∈ X by random sampling from a discrete Gaussian
distribution centered at s̃t+1

i , namely,

ŝt+1
i ∼ pgs(si) =

e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

∑

si∈X e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

(23)

with

s̃ t+1
i =− 1

di,i

⎛

⎝

i−1
∑

j=1

li,j ŝ
t
j +

m
∑

j=i+1

ui,j ŝ
t+1
j − bi

⎞

⎠, (24)

where σi = σ/|di,i|. More specifically, as shown in (24),
ŝt1, . . . , ŝ

t
i−1 and the updated ŝt+1

i+1, . . . , ŝ
t+1
m are applied to cal-

culate s̃t+1
i , then the random sampling in (23) is performed

to yield the updated ŝt+1
i . In this way, the update of ŝt+1

i

is carried out sequentially from i=m to i= 1, which leads
to st+1. To make it clear, this decoding process is depicted
in Fig. 2.
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Fig. 2. Illustration of the proposed IRSD algorithm. Arrows about s̃ti → ŝti
denote the sampling by (23) while arrows about ŝti → s̃ti−1 represent the
calculations in (24).

Typically, let us focus on pgs(si) in (23), and it follows that

pgs(si) =
e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

∑

si∈X e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

=
e−

1
2σ2 ‖di,isi+

∑m
j=i+1 ui,j ŝ

t+1
j +

∑i−1
j=1 li,j ŝ

t
j−bi‖2

∑

si∈X e−
1

2σ2 ‖di,isi+
∑m

j=i+1 ui,j ŝ
t+1
j +

∑i−1
j=1 li,j ŝtj−bi‖2

(25)

=
e−

1
2σ2 ‖ai,isi+

∑m
j=i+1 ai,j ŝ

t+1
j +

∑i−1
j=1 ai,j ŝ

t
j−bi‖2

∑

si∈X e−
1

2σ2 ‖ai,isi+
∑m

j=i+1 ai,j ŝ
t+1
j +

∑i−1
j=1 ai,j ŝtj−bi‖2

=
e−

1
2σ2 ‖hT

i hisi+
∑m

j=i+1 hT
i hj ŝ

t+1
j +

∑i−1
j=1 hT

i hj ŝ
t
j−hT

i c‖2

∑

si∈X e−
1

2σ2 ‖hT
i hisi+

∑m
j=i+1h

T
i hj ŝ

t+1
j +

∑i−1
j=1 hT

i hj ŝtj−hT
i c‖2

=
e−

1
2σ2 ‖hT

i (Hs−c)‖2

∑

si∈X e−
1

2σ2 ‖hT
i (Hs−c)‖2

(26)

with s= [ŝt1, . . . , ŝ
t
i−1, si, ŝ

t+1
i+1, . . . , ŝ

t+1
m ]T . Here, ai,j stan-

dards for the element of matrix A and hi denotes the i-th
column of matrix H. Intuitively, the sampling mechanism of
pgs(si) is similar to Gibbs sampling as the other m− 1 compo-
nents of s (i.e., s[−i] = [ŝt1, . . . , ŝ

t
i−1, ŝ

t+1
i+1, . . . , ŝ

t+1
m ]) are also

taken into account to update ŝt+1
i . However, due to the existence

of the term hT
i in (26), the univariate sampling of pgs(si) can not

be attributed to Gibbs sampling, which means the convergence
of the above random sampling to the target distribution Π is
not guaranteed. For this reason, the mechanism of Metropolis-
Hastings (MH) algorithm in MCMC is introduced to ensure
the convergence.

Specifically, given ŝt, the sampling probability p(ŝt+1 |̂st)
can be expressed as

p(ŝt+1 |̂st) = pgs(ŝ
t+1
m ) · · · pgs(ŝ

t+1
1 ). (27)

Then, with respect to the invariant target distribution Π in (21),
the sampling probability p(ŝt+1 |̂st) in (27) can be used as the
proposal distribution qgs(x,y), namely,

qgs(x= ŝt,y = ŝt+1) = p(ŝt+1 |̂st). (28)

Therefore, at each iteration, a sampling candidate ŝt+1 is ob-
tained by sampling from the proposal distribution qgs(x,y).
After that, the acceptance ratio α in (15) is employed to make
the decision about whether accept this sampling candidate
y = ŝt+1 as the Markov state of St+1 or not. To make it clear,
we summarize the related operations of generating a Markov
state as the following three basic steps:

1) Sample from the proposal distribution qgs(x= ŝt,y =
ŝt+1) in (28) to obtain a candidate state ŝt+1 for St+1.

2) Calculate the acceptance ratio α in (15).
3) With probability α accept St+1 = ŝt+1; otherwise, reject

ŝt+1 and let St+1 = ŝt.
By doing this, in the proposed IRSD algorithm, a valid

Markov chain {S0,S1, . . .} is established in the way of MH
algorithm. From Theorem 1, we can easily arrive at the fol-
lowing result about the exponential convergence to the target
distribution Π.

Corollary 1: For finite state space s ∈ Xm, the Markov chain
induced by the proposed IRSD algorithm is irreducible and
aperiodic with the invariant stationary distribution Π, so that
there exist constant 0< � < 1 and C > 0 such that

‖P t(s, ·)−Π(·)‖TV ≤ C�t. (29)

Clearly, Corollary 1 verifies the sampling decoding by the
proposed IRSD algorithm. Among all the samples during the
Markov chain, the one with the smallest Euclidean distance
‖As− b‖ is selected as the decoding solution. From (29), the
choice of the initial starting state of S0 also plays an important
role in Markov mixing. The initial state s0 can be chosen from
Xm arbitrarily but a closer choice of s0 to the center of the
target distribution Π would be helpful to Markov mixing [43].
To this end, the output of GS iteration can be applied as a good
initial setting for the underlying Markov mixing. To summarize,
the proposed IRSD algorithm over GS iteration is outlined in
Algorithm 1. Note that the rejected samples by the judgement
based on the acceptance ratio α can also be taken into account
for the consideration of decoding diversity. Here, we claim
that the proposed IRSD algorithm is essentially different from
MRIDA in [18] as the latter aims to achieve the suboptimal
linear decoding performance with low complexity while the
former enjoys the flexible performance between suboptimal
linear decoding and optimal ML decoding.

B. Convergence Analysis

Compared to Gibbs sampling over the target distribution Π
in (21), the proposed IRSD algorithm stems directly from the
traditional iterative methods, making it easier to be analyzed
in a theoretic way. In what follows, convergence analysis with
respect to the proposed IRSD algorithm is carried out and we
show that the convergence rate of the Markov mixing in IRSD
is accessible. Most importantly, this leads to a tractable Markov
chain while further analysis and optimization can be performed
for better decoding performance and efficiency. In sharp con-
trast to the proposed IRSD algorithm, convergence analysis
about Gibbs sampling is hard to perform, rendering it a heuristic
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Algorithm 1 IRSD algorithm over GS iteration
Require: H, c, σ, L,K;
Ensure: ŝoutput;

1: use traditional GS iteration in (13) to get s̃L

2: let initial state ŝ0 = �s̃L�Q ∈ Xm

3: for t=1, …, K do
4: sample ŝt from qgs(x= ŝt−1,y = ŝt) in (28)
5: calculate the acceptance ratio α in (15)
6: generate a sample u from the uniform density U [0, 1]
7: if u≤ α then
8: ŝt is accepted
9: else

10: ŝt is rejected and let ŝt = ŝt−1

11: end if
12: end for
13: Output the sample with the smallest ‖Hŝt − c‖ as ŝoutput

sampling scheme for a long time [43], [44]. Moreover, besides
GS iteration, further extensions to other traditional iteration
schemes can be easily made by the proposed IRSD algorithm,
which offers a general sampling decoding framework for the
traditional iterations.

First of all, the proposal distribution q(x= ŝt,y = ŝt+1) in
IRSD algorithm can be expressed as

qgs(x= ŝt,y = ŝt+1) = pgs(sm) · · · pgs(s1)

=
e−

1
2σ2 ‖(D+U)̂st+1+Lŝt−b‖2

∏m
i=1

∑

si∈X e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

=
e−

1
2σ2 ‖As−LΔs−b‖2

∏m
i=1

∑

si∈X e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

(30)

with Δs= ŝt+1 − ŝt ∈ Z
n.

Lemma 1: In the Markov mixing of the proposed IRSD
algorithm, there exists constant β > 0 such that

qgs(x= ŝt,y = ŝt+1)

Π(y = ŝt+1)
≥ β · f(Δs) (31)

for all x= ŝt ∈ Xm with function f(Δs) = e−
1

2σ2 ‖LΔs‖2

and

β =

∑

s∈Xm e−
1

2σ2 ‖As−b‖2

∏m
i=1

∑

si∈Z
e
− 1

2σ2
i

‖si‖2
(32)

The proof of Lemma 1 is provided in Appendix A.
By (15) and (30), the transition probability P (x,y) of

the Markov chain in the proposed IRSD algorithm can be
derived as

P (x,y)=

⎧

⎪

⎨

⎪

⎩

min
{

q(x,y), Π(y)q(y,x)
Π(x)

}

if y 
=x,

q(x,x)+
∑

z�=x

max
{

0,q(x, z)− Π(z)q(z,x)
Π(x)

}

if y=x.

(33)

According to Lemma 1, it is straightforward to check that the
following relationship holds

P (x,y)≥ βf(Δx)Π(y)≥ δΠ(y) (34)

for all x= ŝt,y = ŝt+1 ∈ Xm, and Δx= x− y =Δs ∈
Z
n with

δ = β · min[f(Δs)]> 0, (35)

where min[·] denotes the minimum value of the function.
Clearly, δ is a constant, which is mainly determined by the given
A and b.

Based on (34), the coupling technique in MCMC is applied to
arrive at the following Theorem, which specifies the exponential
convergence rate of the Markov chain induced by the proposed
IRSD algorithm. The related proof can be found in Theorem 1
in [26], which is omitted here.

Theorem 2: Given the invariant target distribution Π, the
Markov chain established by the proposed IRSD algorithm
converges exponentially as

‖P t(s, ·)−Π(·)‖TV ≤ �t = (1− δ)t (36)

for all s ∈ Xm with δ = β · min[f(Δs)].
Obviously, �= (1− δ) is the convergence rate of the Markov

chain2. Moreover, given the value of δ in (35), the mixing time
of the Markov chain tmix(ε), which measures the time required
by a Markov chain to get close to its target distribution, can be
calculated as

tmix(ε) =
lnε

ln(1− δ)
≤ (−lnε) ·

(

1

δ

)

, ε < 1 (37)

where the bound ln(1− δ)<−δ for 0< δ < 1 is used here.
Therefore, the mixing time is proportional to 1/δ, and becomes
smaller as δ → 1. Here, we point out that the system setup also
has an impact upon the convergence rate �. Specifically, when
n�m the columns in channel matrix H are nearly orthogonal
to each other, which results in a diagonal dominant matrix A.
In this condition, both the coefficient β and the function f(Δs)
approach 1, which leads to a faster Markov mixing accordingly.

IV. DECODING OPTIMIZATION

We now investigate the choice of the standard deviation σ > 0
in the target distribution Π. On one hand, with the increment
of σ, the distribution Π turns out to be uniform gradually,
which results in a better convergence performance. This is easy
to understand as a uniform distribution is straightforward to
approximate [33]. However, on the other hand, a larger σ also
implies a smaller probability of ŝml in Π. For the consideration
of reliability, this means more samplings are required to obtain
the optimal decoding solution sml. To this end, how to choose
σ in a reasonable way is a key problem in the proposed IRSD
algorithm. An alternative choice coming from statistics can be
applied by letting σ2 be the variance of noises. Specifically,
from (22), the noise w =HTw in system As+w = b follows
N (0, σ2

wH
TH), which leads to

σi
noise = σw‖hi‖, 1≤ i≤m. (38)

Unfortunately, such a choice severely suffers from the stalling
problem as σw shrinks intensively with the increase of
SNR [28].

2In theory, δ offers a lower bound for the spectral gap of the transition
probability of the underlying Markov chain [26].
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Generally, in MCMC samples from the target distribution
tend to be correlated with each other so that the Markov mixing
time tmix can be used as a sampling gap to pick up the desired
independent and identically distributed (i.i.d.) random samples.
In this way, the average complexity cost (in terms of the number
of Markov moves) of obtaining a specific sample s via MCMC
can be estimated by

Caverage(s)�
tmix

Π(s)
, (39)

which offers a straightforward way to evaluate the decoding
efficiency. More specifically, the average complexity Caverage(s)
is upper bounded as follows

Caverage(s)< log

(

1

ε

)

· 1
δ
·
∑

s∈Xm e−
1

2σ2 ‖As−b‖2

e−
1

2σ2 ‖As−b‖2

≤ log

(

1

ε

)

· 1

min[f(Δs)]
·
∏m

i=1

∑

si∈Z
e
− 1

2σ2
i

‖si‖2

e−
1

2σ2 ‖As−b‖2

= log

(

1

ε

)

· 1

min[f(Δs)]
· C, (40)

where

C =

∏m
i=1

∑

si∈Z
e
− 1

2σ2
i

‖si‖2

e−
1

2σ2 ‖As−b‖2
. (41)

From (40), it is clear to see that the upper bound of Caverage(s)
chiefly depends on C in (41). In order to achieve a lower upper
bound of C, we arrive at the following result.

Theorem 3: With σ ≤min1≤i≤m |di,i|/(2
√
π), C is upper

bounded by

C ≤ e
1

2σ2 ‖As−b‖2

. (42)

Proof: First of all, by recalling the Jacobi theta function
ϑ3(τ) =

∑+∞
i=−∞ e−πτi2 with τ > 0 [45], [46], we have

m
∏

i=1

∑

si∈Z

e
− 1

2σ2
i

‖si‖2

=
m
∏

i=1

ϑ3(|di,i|2/2πσ2). (43)

Then, by simple calculation, we can get that [47]

ϑ3(2) =

+∞
∑

i=−∞
e−2πi2 =

4
√

6π + 4
√
2π

2Γ( 34 )
= 1.0039, (44)

where Γ(·) stands for the Gamma function. Since ϑ3(τ) is
monotonically decreasing with τ (i.e., limτ→∞ inf ϑ3(τ) = 1),
one can set

min1≤i≤m |di,i|2
2πσ2

≥ 2, (45)

so that the following bound holds
m
∏

i=1

ϑ3(|di,i|2/2πσ2)≤ ϑm
3 (2) = 1.0039m. (46)

In this way, the product of exponential terms
∏m

i=1 ϑ3(|di,i|2/2πσ2) in C is close to 1 even for values
of m up to hundreds (e.g., 1.0039100 = 1.4467). Therefore, if
σ satisfies the condition in (45), namely

σ ≤ min
1≤i≤m

|di,i|/(2
√
π), (47)

then we have

C ≤ 1.0039m · e 1
2σ2 ‖As−b‖2

≈ e
1

2σ2 ‖As−b‖2

, (48)

completing the proof.
Given σ ≤min1≤i≤m |di,i|/(2

√
π) in Theorem 3, a large σ is

preferred for a small value of e
1

2σ2 ‖As−b‖2

. Hence, for a lower
upper bound of C, we set

σoptimized = min
1≤i≤m

|di,i|/(2
√
π) (49)

in the proposed IRSD algorithm, thus leading to an efficient
sampling decoding. Then, it is clear to see that the upper bound
of the average complexity Caverage(s) is proportion to the Eu-
clidean distance ‖As− b‖ while the optimal decoding solution
ŝml has the smallest complexity cost to be obtained. To be more
specific, we can arrive at the following result, where the proof
is omitted due to the simplicity.

Corollary 2: The average number of Markov moves required
to solve the ILS problem in (2) by the proposed IRSD algorithm

over GS iteration is O(e
2π

min2
i

|di,i|
‖Aŝml−b‖2

).
Given Corollary 2, a flexible decoding performance trade-

off between GS iteration and ML decoding can be achieved by
adjusting the number of Markov move t. However, as shown
in Corollary 2, sufficiently large number of Markov moves is
required to achieve the ML decoding performance. Therefore,
a mild number of Markov moves is recommended in prac-
tice to obtain considerable performance gain with acceptable
number of Markov moves. More specifically, as for the com-
putational complexity of each Markov move, given (25), the
complexity of perform sampling about pgs(si) with si ∈ X is
O(m · |X |), so that the complexity of generating the sample
from the proposed distribution is O(m2 · |X |). Meanwhile,
complexity O(m2 · |X |) is required to calculate the accep-
tance ratio α while the complexity of each iteration in GS
is O(m2). Therefore, the total computational complexity of
each Markov move in IRSD algorithm over GS iteration is
O(m2 · |X |). When small constellation X (e.g., 4-QAM or 16-
QAM) is used, the computational complexity per Markov move
or iteration the proposed IRSD algorithm can be attributed to
O(m2), which is competitive compared to traditional iterative
decoding schemes.

V. FURTHER ENHANCEMENT AND PARALLEL

IMPLEMENTATION

In this section, the proposed IRSD algorithm is adopted
to successive overrelaxation (SOR) iteration and Jacobi it-
eration respectively for further decoding enhancement and
parallel implementation.

A. Decoding Enhancement by SOR

Based on GS iteration, SOR iteration is proposed for a bet-
ter convergence performance, which introduces the relaxation
factor 1< ω < 2 into the iterations as [40]

(D+ ωU)s̃t+1 = [(1− ω)D− ωL]̃st + ωb. (50)
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From (50), each element of s̃t+1 in SOR iteration is calcu-
lated by

s̃t+1
i = (1− ω)s̃ti −

ω

di,i

⎛

⎝

i−1
∑

j=1

li,j s̃
t
j +

m
∑

j=i+1

ui,j s̃
t+1
j − bi

⎞

⎠.

(51)

Clearly, with ω = 1, the expression of s̃t+1
i in (51) is the same

with that in (13), so that GS iteration can be viewed as a
special case of SOR iteration. Compared to GS iteration which
applies s[−i] = [ŝt1, . . . , ŝ

t
i−1, ŝ

t+1
i+1, . . . , ŝ

t+1
m ] to update st+1

i ,
besides s[−i], sti is also taken into account for updating st+1

i

in SOR iteration.
Therefore, based on (51), random sampling can be well

adopted as

ŝt+1
i ∼ psor(si) =

e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

∑

si∈X e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

(52)

with

s̃t+1
i = (1− ω)ŝti −

ω

di,i

⎛

⎝

i−1
∑

j=1

li,j ŝ
t
j +

m
∑

j=i+1

ui,j ŝ
t+1
j − bi

⎞

⎠

(53)

and σi =
ωσ
|di,i| , where the rest of operations keep the same with

the aforementioned IRSD algorithm over GS iteration.
For a better understanding, we denote the s̃t+1

i in (53) and
(24) as s̃t+1

i−sor and s̃t+1
i−gs respectively. Then, the relationship

between them can be revealed as

s̃t+1
i−sor = s̃t+1

i−gs + (ω − 1)(s̃t+1
i−gs − ŝti). (54)

From (52), s̃t+1
i stands for the center of the 1-dimensional

discrete Gaussian distribution. According to (54), when s̃t+1
i−sor

is applied there is a center shift introduced by the difference
s̃t+1
i−gs − ŝti, which makes the distribution center get far away

from ŝti. Theoretically, a reasonable center shift is helpful to the
Markov mixing due to a larger sampling probability p(ŝt+1

i 
=
ŝti) (i.e., a smaller sampling probability p(ŝt+1

i = ŝti)), so that
the underlying Markov moves become more dynamic in state
space exploration.

To be more specific, the proposed distribution in IRSD over
SOR can be obtained as

qsor(x= ŝt,y = ŝt+1) = psor(sm) · · · psor(s1)

=
e−

1
2σ2 ‖Aŝt+1−((1−1/ω)D+L)Δs−b‖2

∏m
i=1

∑

si∈X e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

(55)

with Δs= ŝt+1 − ŝt ∈ Z
n. Intuitively, with Δs= 0, it fol-

lows that

qsor(x= ŝt,y = ŝt) =
e−

1
2σ2 ‖Aŝt−b‖2

∏m
i=1

∑

si∈X e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

>
e−

1
2σ2 ‖Aŝt−b‖2

∏m
i=1

∑

si∈Z
e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

≥ e−
1

2σ2 ‖Aŝt−b‖2

∏m
i=1

∑

si∈Z
e
− 1

2σ2
i

‖si‖2
, (56)

and qsor(x= ŝt,y = ŝt) achieves a smaller lower bound than
qgs(x= ŝt,y = ŝt), i.e.,

e−
1

2σ2 ‖Aŝt−b‖2

∏m
i=1

∑

si∈Z
e
− 1

2σ2
i

‖si‖2
<

e−
1

2σ2 ‖Aŝt−b‖2

∏m
i=1

∑

si∈Z
e
− 1

2σ2
i

‖si‖2
, (57)

where the above inequality holds due to a larger σ naturally

leads to an increased
∑

si∈Z
e
− 1

2σ2
i

‖si‖2

. Then, according to
(33), it is clear to see that the transition probability Psor(x,y)
with x= y has a smaller lower bound than Pgs(x,y) with
x= y, so as to a larger upper bound of the transition probability
Psor(x,y) with x 
= y than Pgs(x,y) with x 
= y.

Therefore, by carefully adopting the random sampling into
SOR iteration in the same way, the induced Markov chain
becomes more dynamic in state space exploration, which is
beneficial to the Markov mixing. Moreover, this can also be
interpreted by Hirschfeld-Gebelein-Rényi (HGR) maximal cor-
relation, where a less correlation between two consecutive sam-
ples corresponds to a better convergence performance [42].
Nevertheless, we point out that such a center shift introduced
by s̃t+1

i−gs − ŝti should be controlled carefully with a mild choice
of ω, otherwise the convergence may be impeded even with
an increased sampling probability p(ŝt+1

i 
= ŝti). For this rea-
son, here we apply the choice ω = 2

1+
√

1−[ρ(I−D−1A)]2
(i.e.,

ρ(A) is the spectral radius of matrix A) in [38], where fur-
ther investigation about this point will be carried out as a
future work.

B. Parallel Implementation by Jacobi

The proposed IRSD algorithm can be easily extended to
Jacobi iteration. In particular, based on (11), random sampling
is performed as

ŝt+1
i ∼ pjacobi(si) =

e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

∑

si∈X e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

(58)

with

s̃t+1
i =− 1

di,i

⎛

⎝

i−1
∑

j=1

li,j ŝ
t
j +

m
∑

j=i+1

ui,j ŝ
t
j − bi

⎞

⎠, (59)

where the rest of operations keep the same with the aforemen-
tioned IRSD algorithm. Interestingly, it is clear to see that the
update of s̃t+1

i only depends on ŝt, which allows a parallel
structure in sampling decoding [48], [49].
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Accordingly, the related proposed distribution in IRSD can
be derived as

qjacobi(x= ŝt,y = ŝt+1) = pjacobi(sm) · · · pjacobi(s1)

=
e−

1
2σ2 ‖Aŝt+1−(U+L)Δs−b‖2

∏m
i=1

∑

si∈X e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

(60)

with Δs= ŝt+1 − ŝt ∈ Z
n. Then, based on Lemma 1 and

Theorem 2, we can arrive at the following results, where the
proof is omitted due to the simplicity.

Corollary 3: The proposed IRSD algorithm over Ja-
cobi iteration has a slower convergence performance than the
IRSD algorithm over GS iteration due to a smaller conver-
gence coefficient δ = β · min[fjacobi(Δs)] with fjacobi(Δs) =

e−
1

2σ2 ‖(U+L)Δs‖2

, where

min[fjacobi(Δs)]< min[fgs(Δs)]. (61)

Although the Jacobi-based IRSD algorithm has a slower
convergence performance than the GS-based IRSD algorithm,
it allows parallel implementation, which greatly facilitates its
application in practice. Moreover, for a better decoding per-
formance, a damped parameter ω = n/(n+m) is adopted into
Jacobi iteration to update its iteration matrix as [22]

s̃t+1 = (1− ω)s̃t + ωD−1(b−Rs̃t). (62)

Therefore, based on damped Jacobi, we can simply update it by
the proposed IRSD as

ŝt+1
i ∼ pdamped jacobi(si) =

e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

∑

si∈X e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

(63)

with

s̃t+1
i = (1− ω)ŝti −

ω

di,i

⎛

⎝

i−1
∑

j=1

li,j ŝ
t
j +

m
∑

j=i+1

ui,j ŝ
t
j − bi

⎞

⎠.

(64)

To summarize, the proposed IRSD algorithm over SOR or Ja-
cobi iteration is outlined in Algorithm 2. We point out that IRSD
algorithm can also be extended to other traditional iterative
decoding schemes like Newton iteration, Richardson iteration
and so on to achieve the flexible decoding performance, which
is omitted here due to the simplicity. In addition, the multiple-
try mechanism of MCMC may also be applied in the proposed
IRSD to improve the decoding performance, which will be
considered as a future work [31], [50], [51].

VI. SIMULATION RESULTS

In this section, the performance of the proposed IRSD algo-
rithm for uplink large-scale MIMO systems is investigated by
simulations in full details.

In Fig. 3, the choice of the initial state s0 in the proposed
IRSD over GS iteration is studied in both 32× 128 and 64×
128 large-scale MIMO systems with 16-QAM. Specifically,

Algorithm 2 IRSD algorithm over SOR or Jacobi iteration
Require: H, c, σ, L,K;
Ensure: ŝoutput;

1: use SOR in (51) or Jacobi in (11) to get s̃L

2: let ŝ0 = �s̃L�Q ∈ Xm

3: for t=1, …, K do
4: sample ŝt from qsor(x= ŝt−1,y = ŝt) in (55)

or sample ŝt from qjacobi(x= ŝt−1,y = ŝt) in (60)
5: calculate the acceptance ratio α in (15)
6: generate a sample u from the uniform density U [0, 1]
7: if u≤ α then
8: ŝt is accepted
9: else

10: ŝt is rejected and let ŝt = ŝt−1

11: end if
12: end for
13: Output the sample with the smallest ‖Hŝt − c‖ as ŝoutput

Fig. 3. Bit error rate versus average SNR per bit for large-scale MIMO
system with 16-QAM, where solid and dashed curves denote 32× 128 and
64× 128 respectively.

two choices ŝ0 = 1 and ŝ0 = �s̃L�Q, L= 3 in IRSD over GS
iteration are evaluated respectively in terms of the bit error
rates (BERs), where the standard deviation σoptimized in (49) is
applied. Besides, the BER performance of GS iteration with
L= 3, L= 50 and MMSE are also shown for a better compar-
ison. As expected, although GS iterative detection with L= 50
achieves a better BER performance than that with L= 3, its
detection performance is exactly upper bounded by MMSE
detector no matter how many iterations are carried out. For
this reason, IRSD algorithm is proposed to bridge the detection
performance between iterative decoding schemes and ML de-
coding. As can be seen clearly, in both 32× 128 and 64× 128
systems, IRSD over GS iteration are able to significantly im-
prove the BER performance of GS iterative detection. Mean-
while, in 32× 128 system under the same number of Markov
moves K = 3, IRSD over GS iteration with ŝ0 = �s̃L�Q, L= 3
achieves a better BER performance than that with ŝ0 = 1. This
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Fig. 4. Bit error rate versus average SNR per bit for large-scale MIMO
system with 16-QAM, where solid and dashed curves denote 32× 128 and
64× 128 respectively.

is accordance with the fact that a better choice of ŝ0 is helpful
to the Markov mixing. Similarly, the same observation can also
be found in 64× 128 system with K = 10, implying that the
output yielded by the traditional GS iterative detector provides
a good initial setup for the sampling detection in IRSD. There-
fore, it is highly recommended in practice and we will apply
ŝ0 = �s̃L�Q, L= 3 as a default setup for IRSD algorithm in
the following simulations. Also, the GS iterative detection in
the following simulations are all applied with iteration number
L= 3 by default.

In Fig. 4, the choice of the standard deviation σ > 0 in the
proposed IRSD over GS iteration is studied in both 32× 128
and 64× 128 large-scale MIMO systems with 16-QAM. In
particular, two choices σnoise in (38) and σoptimized in (49) are
evaluated respectively. Clearly, in 32× 128 system with the
same number of Markov moves K = 3, nearly the same BER
performance can be achieved by the proposed IRSD over GS
iteration with both σnoise and σoptimized. However, in 64× 128
system with K = 10, the performance difference between these
two choices can be found, where IRSD with σoptimized achieves
a better BER performance than that with σnoise. Moreover, the
BER performance of IRSD with σnoise becomes fluctuated with
the increase of SNR, which is due to the stalling effect since the
value of σnoise is getting smaller and smaller. Meanwhile, for a
better comparison, the BER performance of Gibbs sampling is
also presented with standard deviation σw. It is clear to see that
under the same number of Markov moves the proposed IRSD
over GS outperforms Gibbs sampling in both 32× 128 and
64× 128 systems. Besides the performance gain, compared to
Gibbs sampling, the proposed IRSD algorithm has an accessible
convergence rate, making it promising in the related analysis
and optimization. For notational simplicity, in following simu-
lations, we apply σoptimized as the standard deviation in IRSD-
based detection schemes by default.

In Fig. 5, the performance comparison with respect to the
proposed IRSD over GS iteration with Markov moves K =
3 is illustrated in 16× 128 large-scale MIMO systems with
16-QAM and 64-QAM respectively. For a better understanding,

Fig. 5. Bit error rate versus average SNR per bit for 16× 128 large-scale
MIMO system.

the traditional GS iteration with K = 3, MMSE and ML detec-
tion (implemented by the classic sphere decoding [52]) are also
shown. In particular, in both cases of 16 and 64-QAM, small
performance gaps between MMSE and ML detection can be ob-
served. Due to the favorable propagation of the channel matrix
H when the dimensions satisfy n�m, near ML performance
can be approximated by the traditional linear detection schemes
like MMSE, where GS iteration provides a low complexity
implementation of MMSE. Nevertheless, the proposed IRSD
over GS iteration outperforms MMSE and GS iteration with a
better detection performance, where ML performance can be
exactly achieved by it with K = 3. For a better understanding,
in Fig. 6, the performance comparison with respect to the pro-
posed IRSD over GS iteration with Markov moves K = 3 is
presented with respect to 32× 128 large-scale MIMO systems
with 4-QAM and 16-QAM respectively. Clearly, the condition
n�m is unfulfilled in a 32× 128 large-scale MIMO system
so that the performance gaps between MMSE and ML detection
become substantial. Moreover, such a performance gap will get
larger when the number of transmitted antennas is increased
subsequently. On the other hand, compared to the traditional
GS iteration who is limited by the linear MMSE performance,
we can also find that near ML detection performance can be
achieved by the proposed IRSD over GS iteration with K = 3.

In Fig. 7, the performance comparison with respect to the
proposed IRSD over GS iteration with different numbers of
Markov moves K = 1, 2, 3 is illustrated in a 32× 128 uncoded
large-scale MIMO system with 16-QAM and 64-QAM respec-
tively. For a better comparison, the BER performance of GS
iterative detection with L= 3 and MMSE detection are also
shown. Clearly, by sampling detection, the BER performance of
IRSD over GS iteration significantly outperforms GS iterative
detection and MMSE. As expected, with the increase of the
number of Markov moves K, the BER performance of IRSD
over GS iteration improves gradually in both cases of 16-QAM
and 64-QAM. This is in line with the convergence result given
in Corollary 1. More precisely, as shown in Corollary 2, a better
sampling approximation can be achieved with the increment of
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Fig. 6. Bit error rate versus average SNR per bit for 32× 128 large-scale
MIMO system.

Fig. 7. Bit error rate versus average SNR per bit for 32× 128 MIMO
system, where solid and dashed curves denote 16-QAM and 64-QAM
respectively.

K, which leads to a better detection result accordingly. On the
other hand, we point out that the performance gain of IRSD
becomes marginal with the increase of K. For this reason, a
mild choice of K is recommended for the sake of complexity.

In Fig. 8 another performance comparison about IRSD over
GS iteration with different numbers of Markov moves K is
presented regarding to a 32× 128 uncoded large-scale MIMO
system with 16-QAM. Similarly, the BER performance of IRSD
over GS iteration improves with the increment of K. Theoreti-
cally, compared to 32× 128 system, less receive diversity gain
can be exploited by 64× 128 system due to the larger number of
transmitted antennas, making the related uplink signal detection
more difficult. To this end, more number of Markov moves is
needed to achieve a better BER performance than the tradi-
tional MMSE detection. Nevertheless, considerable detection
gain still can be obtained with a moderate size of K.

Fig. 9 is given to evaluate the detection performance of the
proposed IRSD algorithm over GS iteration under different

Fig. 8. Bit error rate versus average SNR per bit for 64× 128 large-scale
MIMO system with 16-QAM.

Fig. 9. Bit error rate versus average SNR per bit for 32× 128 large-scale
MIMO system with imperfect CSI using 16-QAM.

cases of channel state information (CSI), where a 16× 128
uncoded large-scale MIMO system using 64-QAM is applied.
Specifically, ̂H=H+ΔH stands for the imperfect CSI at the
receiver side, where ΔH∼ CN (0, σ2

eI) denotes the channel
estimation errors with σ2

e =
m

np·Ep
[53]. Here, np and Ep in-

dicate the number and the power of pilot symbols respectively,
and we set σ2

e = 0, 0.05, 0.1 respectively for the comparison.
Undoubtedly, σ2

e = 0 corresponds to a perfect CSI as before.
Compared to the results of perfect CSI, the BER performance
of all the detection schemes under imperfect CSI degrade grad-
ually with the increase of σ2

e . Nevertheless, it is clear to see
that the proposed IRSD algorithm still works under imper-
fect CSI while significant performance gain can be achieved
with K = 5.

As we claimed, the proposed IRSD algorithm is well suited
to various traditional iteration methods for a better decoding
performance. In Fig. 10, the performance comparison with re-
spect to the proposed IRSD over SOR iteration is presented in
a 64× 128 uncoded large-scale MIMO system with 16-QAM.
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Fig. 10. Bit error rate versus average SNR per bit for 64× 128 large-scale
MIMO system with 16-QAM.

Fig. 11. Bit error rate versus average SNR per bit for 32× 128 large-scale
MIMO system with 16-QAM.

Besides GS iterative detection and MMSE detection, IRSD over
GS iteration is also added for a better comparison. As can be
seen clearly, with the increment of the number of Markov moves
K, both the BER performance of IRSD over GS and SOR
iterations improve gradually. As expected, under the same K,
the BER performance of IRSD over SOR achieves a better BER
performance than that of IRSD over GS. This is accordance with
our analysis in Section V since IRSD over SOR iteration can be
viewed as an enhancement version of IRSD over GS iteration.

In Fig. 11, the performance comparison with respect to the
proposed IRSD over damped Jacobi iteration is shown in a
32× 128 uncoded large-scale MIMO system with 16-QAM.
As shown in (58), the traditional Jacobi iteration can be eas-
ily adopted to the IRSD over Jacobi iteration. Since damped
Jacobi offers a faster iteration convergence than the traditional
Jacobi, it is better to adopt the damped Jacobi rather than the
traditional Jacobi into IRSD. Specifically, the BER performance
of IRSD over damped Jacobi iteration improves gradually with
the increment of K. It is clear that the detection performance

Fig. 12. Bit error rate versus average SNR per bit for 32× 128 large-scale
MIMO system with 16-QAM and normalized correlation index ψ.

of IRSD over damped Jacobi iteration is not as good as that
of IRSD over GS iteration under the same number of Markov
moves. Nevertheless, as we pointed out, IRSD over damped
Jacobi iteration allows a parallel decoding structure, which is
beneficial to the implementation in practice.

In Fig. 12, the performance comparison with respect to the
proposed IRSD algorithm under correlated channels of large-
scale MIMO systems is investigated. Specifically, following the
setups of correlation channels in [54], the correlated channel
matrix is set by R

1
2
corHT

1
2
cor, where Rcor ∈ C

n×n and Tcor ∈
C

m×m denotes the receive correlation matrix and the trans-
mit correlation matrix respectively. Note that the normalized
correlation coefficient 1≥ ψ ≥ 0 is employed to adjust the cor-
relation degree within them. More precisely, a totally uncor-
related scenario corresponds to ψ = 0 while a fully correlated
scenario implies ψ = 1. As can be seen clearly, with ψ = 0.02,
the detection performance of GS iteration, MMSE, IRSD over
GS iteration and IRSD over SOR iteration slightly degrade
compared to the i.i.d. case with ψ = 0. Accordingly, with the
increase of ψ, these detection performance are getting worse
gradually. However, the decoding gain brought by the proposed
IRSD still can be clearly confirmed. Meanwhile, as expected,
under the same K, IRSD over SOR iteration achieves a better
BER performance than IRSD over GS iteration.

VII. CONCLUSION

In this paper, based on MCMC methods, a general sampling
decoding framework over the traditional iteration methods is
proposed for the uplink detection of large-scale MIMO systems.
Compared to these iterative decoding schemes, the proposed
IRSD algorithm is able to achieve a flexible performance be-
tween suboptimal and optimal decoding, which is adjusted by
the number of Markov moves. Compared to Gibbs sampling, the
proposed IRSD algorithm entails an accessible convergence rate
with tractable mixing time. Based on it, further optimization,
enhancement and extension with respect to IRSD algorithm can
be carried out for better decoding performance and efficiency,
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making the proposed IRSD algorithm well suited to various
cases of large-scale MIMO systems.

APPENDIX A
PROOF OF LEMMA 1

Proof: Using (30) and (21), we have

qgs(x,y)

Π(y)
=

e−
1

2σ2 ‖As−LΔs−b‖2

∏m
i=1

∑

si∈Xe
− 1

2σ2
i

‖si−s̃t+1
i ‖2

·
∑

s∈Xme
− 1

2σ2‖As−b‖2

e−
1

2σ2 ‖As−b‖2

(a)

≥
∑

s∈Xm e−
1

2σ2 ‖As−b‖2

∏m
i=1

∑

si∈X e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

· e− 1
2σ2 ‖LΔs‖2

(b)

≥
∑

s∈Xm e−
1

2σ2 ‖As−b‖2

∏m
i=1

∑

si∈Z
e
− 1

2σ2
i

‖si−s̃t+1
i ‖2

· e− 1
2σ2 ‖LΔs‖2

(c)

≥
∑

s∈Xm e−
1

2σ2 ‖As−b‖2
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i=1

∑

si∈Z
e
− 1

2σ2
i

‖si‖2
· e− 1

2σ2 ‖LΔs‖2

=β · e− 1
2σ2 ‖LΔs‖2

, (65)

where (a) follows the triangle inequality

‖As− LΔs− b‖ ≤ ‖As− b‖+ ‖LΔs‖, (66)

(b) and (c) hold due to the fact that [55]
∑

si∈X
e−

1
2σ2 ‖si−s̃t+1

i ‖2

≤
∑

si∈Z

e−
1

2σ2 ‖si−s̃t+1
i ‖2

≤
∑

si∈Z

e−
1

2σ2 ‖si‖2

. (67)
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