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Abstract—In this paper, we investigate the massive MIMO
detection under the framework of mean-field variational infer-
ence (VI), which leads to a better detection trade-off between
performance and complexity. First of all, by fully taking ad-
vantages of the favorable propagation characteristic of massive
MIMO, the favorable-propagation-exploited variational inference
(FPE-VI) algorithm is proposed for the low-complexity detection.
Secondly, with respect to the system with K transmitting and N
receiving antennas, the linear version of the FPE-VI detection
is studied in detail, where its convergence is ensured when
N/K > 1/(

√
2− 1)2. Thirdly, by examining the evidence lower

bound (ELBO) of the proposed FPE-VI, further optimization
via the application of discrete Gaussian distribution is presented
for extra performance gain. Finally, all the related theoretical
analysis and the improved performance-complexity trade-off of
FPE-VI are demonstrated by numerical results.

Index Terms—Massive MIMO detection, approximate infer-
ence, variational inference, favorable propagation.

I. INTRODUCTION

With the rapid evolution of massive multiple-input multiple-
output (MIMO) system, the exploded scale of the antennas
poses a tough challenge on its uplink signal detection, so that
developing the methods with low complexity but satisfactory
performance attracts the increasing attentions [1]. For this
reason, the machine learning technology [2] has brought
unprecedented boosting in massive MIMO detection, which
is equivalent to solving an inference problem on the posterior
distribution of the transmission signal.

Specifically, sum-product is a classic exact inference algo-
rithm derived from the message passing method. Employing
it on the loop-free graph leads to the belief propagation,
and there are numerous massive MIMO detection schemes
based on them [3]–[6]. Besides, the deterministic approximate
inference scheme chiefly relies on the analytical approximation
to the posterior distribution by factorizing it in a particular
way. For instance, expectation propagation (EP) algorithm
manages to find the satisfactory distribution alternatively along
the individual factors under exponential-family assumption [7].

In principle, EP is a method based on the minimization
of the reverse-formed Kullback-Leibler (KL) divergence, i.e.,
KL(p||q), where p is the true posterior and q is the approximat-
ed one. As an alternative form of the deterministic approximate
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inference, the variational inference (VI), however, aims to
minimize KL(q||p), which introduces different properties into
the approximation. Most importantly, unlike EP, the conver-
gence of VI is guaranteed with a monotonically increasing
evidence lower bound (ELBO) [2]. Nevertheless, the VI-
based massive MIMO detection still makes little progress. [8]
provides a VI framework for multiuser detection, which tries
to interpret the traditional zero forcing (ZF), minimum mean
square error (MMSE) and successive interference cancellation
(SIC) solutions in the way of VI. However, to our knowledge,
there is no any particular detection method derived from VI
framework.

In this paper, by developing the detection method from
VI perspective, the favorable-propagation-exploited variational
inference (FPE-VI) algorithm is proposed to achieve a bet-
ter detection trade-off for massive MIMO systems with K
transmitting and N receiving antennas. Typically, based on the
favorable-propagation characteristic, the mean-field variational
inference method is introduced for a low-complexity detection.
Meanwhile, the mean and variance of its linear version are
proved to be convergent when the antenna ratio N/K is greater
than 1/(

√
2− 1)2. Moreover, the initial distribution of the

transmitted signal is optimized for an improved detection per-
formance, where the discrete Gaussian probability is employed
to strengthen the convergence of VI by increasing ELBO.

II. SYSTEM MODEL

For notational simplicity, the real-valued linear system for
massive MIMO detection with K transmitting and N receiving
antennas is considered as follows

y = Hx + n, (1)

where the transformation from the complex system model to
the real one is straightforward [1]. Here, H ∈ RN×K is the
channel matrix containing independent, identically distributed
(i.i.d.) Gaussian fading gains with unit variance and remaining
constant over each frame duration, y ∈ RN , x ∈ RK and n ∈
RN denote the transmitted signal, the corresponding received
signal and the zero-mean additive white Gaussian noise with
variance σ2

n, respectively. Then the problem of massive MIMO
detection under maximum a posteriori (MAP) criterion reads

x̂ = arg max
x∈QK

p(x|y), (2)

where Q = {±1,±3, ...,±
√
M − 1} and M represents the

index of the quadrature amplitude modulation (QAM).
In order to estimate p(x|y), the variational inference algo-

rithm in [2] is introduced to find an approximate distribution
q(x) as close to p(x|y) as possible, which corresponds to
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minimizing the KL-divergence between them

KL(q||p) =

∫
q(x) ln

{
q(x)

p(x|y)

}
dx. (3)

However, since the posterior p(x|y) itself is intractable, vari-
ational inference instead turns to maximize the ELBO

L(q) =

∫
q(x) ln

{
p(x,y)

q(x)

}
dx (4)

based on the relationship ln p(y) = L(q) + KL(q||p), where
the tractability of the complete data distribution p(x,y) =
p(y|x)p(x) is possible. Intuitively, since KL(q||p) ≥ 0, it
follows that L(q) ≤ ln p(y), where the equality holds if and
only if the approximated distribution is exactly the same as the
true posterior, i.e., q(x) = p(x|y). Moreover, with so many
choices for q(x), the mean field theory framework constrains
its distribution by the following partitioned form:

q(x) =

K∏
k=1

qk(xk), (5)

so that q(x) becomes tractable. In this way, among all the
distributions q(x) that satisfy (5), the one with the maximized
L(q) is desired. Specifically, substituting (5) into (4) gives

L(q) =

∫ ∏
k

qk

{
ln p(x,y)−

∑
k

ln qk

}
dx

=

∫
qi


∫

ln p(x,y)
∏
k 6=i

qkdx
\i

dxi−
∫
qi ln qidxi+C

(a)
=

∫
qi ln p̃(xi,y) dxi −

∫
qi ln qi dxi + C

= −KL(qi(xi)||p̃(xi,y)) + C, (6)

where the dependence of qk(xk) on xk is omitted for sim-
plicity of notation. Without loss of generality, C denotes an
arbitrary constant in the rest of this paper. Here x\i denotes all
the components of x except xi, and a new distribution p̃(xi,y)
in equality (a) is defined by its logarithm form as

ln p̃(xi,y)
4
=

∫
ln p(x,y)

∏
k 6=i

qkdx
\i. (7)

From (6), it is clear that maximizing ELBO L(q) accounts
for minimizing KL(qi(xi)||p̃(xi,y)) for i = 1, ...,K, which
occurs when these two distributions are proportional to each
other, i.e.,

qi(xi)/p̃(xi,y) = C. (8)
Therefore, the i-th optimal posterior solution q∗i (xi) can be
estimated via ln p̃(xi,y) as

ln q∗i (xi) = ln p̃(xi,y) + C =

∫
ln p(x,y)

∏
k 6=i

qkdx
\i + C

= E\i
[

ln p(x,y)
]

+ C, (9)

where a normalization would eliminate the influence of C.
This equation (9) formulates the most important update of
mean-field VI method, which indicates that ln q∗i (xi) can be
attained by taking expectation of ln p(x,y) over all factors
except qi. At this point, the i-th detection result can be
obtained as follows

x̂i = arg max
xi∈Q

q∗i (xi). (10)

III. ALGORITHM DESCRIPTION

For a massive MIMO system with a fixed K, as N
goes larger, the channel matrix H becomes more orthogonal.
Theoretically, this is referred to as the favorable propagation
characteristic [9]. Hence, its corresponding normalized Gram
matrix HTH/N would asymptotically approach an identity
matrix, i.e.,

lim
N→∞

HTH

N
≈ IK . (11)

Accordingly, we can update the system model in (1) as

z = Jx + v, (12)

with z = HTy/N , J = HTH/N and v = HTn/N 1. Then
the complete data distribution p(x, y) in (9) is converted to
p(x, z). Based on this favorable propagation, we are able to
derive the concrete form of equation (9) for detection.

Specifically, let gi denote the linear combination of x\i and
vi, gi

4
=
∑
k 6=i

Jikxk + vi, then zi is formed in zi = Jiixi + gi.

Owing to favorable propagation, the value of zi is dominated
by Jiixi, so that zi can be treated as conditionally independent
of x\i given xi, denoted as

zi ⊥ x\i|xi, (13)

and gi is therefore treated as the interference term in zi con-
cerning xi. Then the likelihood p(zi|x) can be approximated
by p(zi|xi), p(zi|x) ≈ p(zi|xi). At the same time, following
the mean-field partition in (5), we assume the posterior of x
to be independent Gaussian. Then it is easy to verify that gi is
also Gaussian distributed, i.e., gi ∼ N (gi|µgi , σgi). Therefore,
as a result of the conditional independence in (13), gi can be
treated as an additive Gaussian noise, leading to the likelihood

p(zi|xi) ∼ N (zi|Jiixi + µgi , σ
2
gi). (14)

To this end, the log of the complete data distribution in (9)
shows the following tractable form:

ln p(x, z) = ln p(z|x)p(x) =

K∑
k=1

ln p(zk|xk)+

K∑
k=1

ln p(xk)

= −
K∑
k=1

1

2σ2
gk

(zk−Jkkxk−µgk)2+

K∑
k=1

ln

{
Ixk∈Q
M

1
2

}
, (15)

where the prior of x, p(x), also obeys the mean-field constraint
but is non-informative:

p(x) =

K∏
k=1

p(xk) =
1

M
K
2

K∏
k=1

Ixk∈Q. (16)

Here, Ixk∈Q is the indicator function that takes value one if
xk ∈ Q and zero otherwise.

Next, according to (9), taking expectations of ln p(x, z)
over

∏K
k 6=i qk(xk) entails the i-th optimal posterior ln q∗i (xi).

Recall that E\i
[
f(xi)

]
= f(xi), E\i

[
f(xk)

]
= C if k 6= i,

and we have
ln q∗i (xi) = E\i

[
ln p(x, z)

]
+ C

1Technically, v = HTn/N ∼ N (0,
σ2
n
N2 H

TH). Owing to the property

in (11), this can be approximated by v ∼ N (0,
σ2
n
N

I).
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Algorithm 1 Favorable-Propagation-Exploited Variational In-
ference Detector (FPE-VI)
Input: z,J, σ2

v = σ2
n/N, T, δ

1: Initialize the posterior as q<0>
i (s) = 1√

M
for s ∈ Q.

2: for t = 1 to T do
3: Estimate the mean and variance for xi by µ<t>i =

∑
s∈Q

s·

q<t−1>
i (s) and σ2<t>

i =
∑
s∈Q

s2 ·q<t−1>
i (s)−µ<t>2

i .

4: Update the mean and variance for gi by
µ<t>gi =

∑K
k=1,k 6=i Jjkµ

<t>
k and σ2<t>

gi =∑K
k=1,k 6=iJ

2
jkσ

2<t>
k +σ2

v .
5: Calculate the likelihood Λ<t>i by (19).
6: if t > 1 then
7: Λ<t>i (s) = δΛ<t−1>

i (s) + (1− δ)Λ<t>i (s).
8: end if
9: Update the posterior q<t>i by (20).

10: end for
Output: x̂i = arg max

s∈Q
q<T>i (s)

= ln Ixi∈Q−
1

2σ2
gi

(zi − Jiixi − µgi)2+C, (17)

which implies

q∗i (xi) ∝ exp

(
ln Ixi∈Q + Λi(xi)

)
. (18)

Here, the log-likelihood of zi given xi is defined as Λi(xi)

Λi(xi) = − 1

2σ2
gi

(zi − Jiixi − µgi)2. (19)

Since ln [Ixi∈Q(xi /∈ Q)] = ln 0 = −∞, qi(xi /∈ Q) becomes
zero, and the posterior qi(xi) naturally has a discrete form.
Consequently, letting s denote the symbol belonging to Q,
then the normalized posterior is calculated by

qi(s) =
exp(Λi(s))∑

s∈Q
exp(Λi(s))

(20)

for all s ∈ Q. Finally the symbol that gives the largest
posterior contributes the result of signal detection as x̂i =
arg max
s∈Q

qi(s).

To summarize, the proposed FPE-VI detection algorithm is
outlined in Alg.1, where a superscript <t> is noted for the t-th
iteration, T is the total iteration number, and the updating for
i = 1, ...,K can be readily implemented in parallel. The updat-
ing equations in line 4 derive from the fact that gi is a linear
combination of x\i, and thus µgi =

∑K
k=1,k 6=i JjkEqk(xk),

σ2
gi =

∑K
k=1,k 6=iJ

2
jkVarqk(xk)+σ2

v .
At line 6-8, we propose to update the current prior as the

posterior from the previous iteration for information supple-
ment since the 2nd iteration. To make it more specific, at
t = 2, recall by (18) that the previous posterior q<1>

i (xi)
is proportional to exp

(
Λ<1>
i (xi)

)
when xi ∈ Q. Then

ln q<1>
i (xi) = Λ<1>

i (xi) + C. Replace this for the prior
p(x) in (15) and we get q<2>

i (xi) ∝ exp
(

ln q<1>
i (xi) +

Λ<2>
i (xi)

)
∝ exp

(
Λ<1>
i (xi) + Λ<2>

i (xi)
)
. Carrying out

this recursively leads to q<t>i (xi) ∝ exp
(
δt−1Λ<1>

i (xi) +
δt−2Λ<2>

i (xi)+ ...+δΛ<t−1>
i (xi)+(1−δ)Λ<t>i (xi)

)
, where

a weighted form with the parameter 0 < δ < 1 is introduced to

control how much the updated prior is considered at each iter-
ation. This can be interpreted as the damping technique [10],
which is often adopted for convergence consideration. The
parameter δ is the corresponding damping factor. Moreover,
we remark that the practical implementation of the proposed
FPE-VI is similar to that of the channel hardening exploited
message passing (CHEMP) algorithm in [5]. However, these
two detection schemes are derived from totally different per-
spectives. The proposed FPE-VI detector is the approximate
inference method with specific L(q) to optimize. From this
point of view, CHEMP happens to be the special case of
variational inference detection where x is assumed to be
independent Gaussian.

IV. CONVERGENCE AND COMPLEXITY ANALYSIS

A. Convergence Analysis

We now examine the convergence of FPE-VI based on its
linear counterpart, where the nonlinear estimations in relation
to (20) can be eliminated. Note that the Gaussian random vari-
able xi is a linear transformation of gi, i.e., xi = (zi−gi)/Jii.
Then the mean and variance for xi can also be estimated by
µi = (zi−µgi)/Jii and σ2

i = σ2
gi/J

2
ii, respectively. Rewriting

them in matrix forms gives
µ<t>=D−1(z−µ<t−1>

g );σ2<t>=[D(2)]−1σ2<t−1>
g . (21)

Here D is a diagonal matrix with the diagonal elements of J,
and D(2) denotes the element-wise square of D. Clearly, by
iterations, the updates at line 4 of Alg.1 can be expressed as

µ<t>g = Jµ<t−1> −Dµ<t−1> = Eµ<t−1>,

σ2<t>
g = J(2)σ2<t−1> −D(2)σ2<t−1> + σ2

v

= E(2)σ2<t−1> + σ2
v (22)

with σ2
v = σ2

n1K×1/N and E = J−D. The overall linear
FPE-VI therefore implements (22) and (21) alternatively.

Theorem 1. For massive MIMO systems with fixed antenna
ratio α = N/K, the mean of the linear FPE-VI detection
converges to the solution of ZF detection if

α >
1

(
√

2− 1)2
≈ 5.83. (23)

Proof: By combing (21) and (22), the iteration of the
mean vector for x can be derived by

µ<t>=D−1(z−Eµ<t−1>)=−D−1Eµ<t−1>+D−1z. (24)

Then, according to convergence theory [11], as long as the
spectral radius of −D−1E is less than 1, i.e.,

ρ(−D−1E) < 1, (25)

µ will be convergent to the following solution

µ∗ = (I + D−1E)−1D−1z = (D + E)−1z = J−1z, (26)

which is just the result of ZF detection.
Next, with respect to the spectrum radius condition in (25),

it has the form ∣∣∣∣1− 1

N
λ(HTH)

∣∣∣∣ < 1, (27)

and can be further expressed by

λ(HTH) < 2N, (28)
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which imposes the requirement that the largest eigenvalue
of the matrix HTH should be less than 2N . According to
random matrix theory [12], the maximum eigenvalue of HTH
converges to λmax = N(1 +

√
K/N)2, when the number of

antennas K and N approach infinity. Hence, it is easy to arrive
at (23).

Theorem 2. For massive MIMO systems, the variance of the
linear FPE-VI detection converges to

σ2∗ = J̃−1σ2
v (29)

with J̃
4
= D(2) − E(2), if the matrix HTH is diagonally

dominant.

Proof: Similar to the proof for Theorem 1, the iteration
of the variance vector σ can be formulated as

σ2<t> = [D(2)]−1E(2)σ2<t−1> + [D(2)]−1σ2
v . (30)

As a result, σ would converge to

σ2∗=
{
I−[D(2)]−1E(2)

}−1
[D(2)]−1σ2

v=
{
D(2) −E(2)

}−1
σ2
v

4
= J̃−1σ2

v (31)

if the convergence matrix I − [D(2)]−1E(2) 4= I − Ẽ(2) is
diagonally dominant [11]. In (31) we define J̃

4
= D(2)−E(2),

which is made up of the components of J(2) except that
those non-diagonal ones become their corresponding opposite
numbers, i.e., J̃ij = J2

ij , if i = j; else J̃ij = −J2
ij . Since

[D(2)]−1E(2) divides each row of E(2) by J2
jj , the convergence

matrix has the form

[I− Ẽ(2)]ij =


1, if i = j,

−
J2
ij

J2
jj

, if i 6= j.

Then, the condition for it to be a diagonally dominant matrix
is ∑

j,j 6=i

∣∣∣∣JijJjj
∣∣∣∣2 < 1, ∀i, j = 1, ...,K. (32)

Considering that the diagonal elements Jjj approach to 1 when
the number of N is large, (32) can be satisfied if∑

j,j 6=i

|Jij | =
∑
j,j 6=i

∣∣∣∣hTi hj
N

∣∣∣∣ < 1, ∀i, j = 1, ...,K. (33)

This is in fact the condition for the matrix HTH to be
diagonally dominant, which has been analyzed in [13].

To describe the extent of how diagonally dominant the
matrix HTH is, we quantify this in terms of the antenna ratio
α as [13] does. Before that, with respect to the condition in
(33), we make it more flexible by relaxing the inequality to a
threshold β no smaller than 1,∑

j,j 6=i

|Jij | < β, ∀i, j = 1, ...,K;β ≥ 1. (34)

The required minimum α for HTH to be diagonally dominant
given β and N is presented in Table I. The corresponding β
for α > 1/(

√
2− 1)2 under systems with N = 32, N = 48,

and N = 64 are β < 1.68, 2.13, and 2.50, respectively, where
the matrix HTH can still be treated as diagonally dominant.
What is more, note that when the condition is fulfilled, the
matrix J̃ is also diagonally dominant and can reduce to D(2).
Therefore the variance vector for the interference term σ2

g

TABLE I
REQUIRED MINIMUM ANTENNA RATIO α

β = 1 β = 3 β = 5 β = 7 β = 9

N = 32 9.2282 3.4032 2.0836 1.5042 1.1761

N = 48 11.6135 4.2107 2.5716 1.8510 1.4459

N = 64 13.6334 4.8918 2.9807 2.1433 1.6732

TABLE II
THE NUMBER OF MULTIPLICATIONS IN EACH ITERATION FOR i = 1, ...,K

Estimate µ<t>i K
√
M σ2<t>

i K
√
M +K +

√
M

Update µ<t>gi
K2 σ2<t>

gi
2K2

Calculate Λ<t>i 3K
√
M Damping 2K

√
M

Update q<t>i 2K
√
M Sum 3K2 + 9K

√
M +K +

√
M

Order O(K2)

would converge to D(2)[D(2)]−1σ2
v = σ2

v . This inspires a
simplification on the computation of σ2

g : directly set σ2
g = σ2

v ,
leading to further complexity reduction on FPE-VI algorithm.

Remark 1. α > 1/(
√

2− 1)2 is generally sufficient for both
the mean and variance of linear FPE-VI to be convergent.

B. Complexity Analysis

In this section, the computational complexity of the pro-
posed FPE-VI detaction is discussed. For those procedures
implemented in each iteration, Table IV-B lists all the related
multiplication times. Here are some remarks about this table:
Firstly, for some results that can be stored to reuse, the
computations on them are counted only once. A numerical
division operation is assumed to have the same complexity
as a multiplication. Moreover, the required multiplication for
a diagonal matrix product is reduced owing to the diagonal
structure. For example, HN×KDK×K needs only N × K
times multiplications. As for the preprocessing to obtain the
system in (12), the complexity is of order O(NK2) due to
the calculation of HTH. Therefore, the overall complexity of
the FPE-VI detection is dominated by the preprocessing step
and can be written as of order O(NK2 + K2T ). Once the
transfer to the system in (12) is done, the complexity of FPE-
VI is independent of the number of receiving antennas N and
thus the antenna ratio α, since it operates on the converted
Gram matrix (HTH)K×K . On the whole, for a fixed K,
the larger the antenna ratio α is, the more noticeable the
favorable propagation phenomenon is, and consequently the
more advantages the FPE-VI detection can take from both the
complexity and performance.

V. FURTHER ENHANCEMENT

In the sequel, we go through the ELBO of FPE-VI for
further improvement. The ELBO L(q) in (4) has the following
form:

L(q)=

∫
q(x) ln p(x)dx︸ ︷︷ ︸

La

+

∫
q(x) ln p(z|x)dx︸ ︷︷ ︸

Lb

+H(q), (35)

where H(q) = −
∫
q(x) ln q(x)dx is the entropy of q(x).

Specifically, the first term La is a constant
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La =

∫
q(x) ln

K∏
k=1

Ixk∈Q
M

1
2

dx = −K
2

lnM, (36)

with the second term

Lb =

∫ ∏
k

qk
∑
k

ln p(zk|xk)dx =
∑
k

∫
qk ln p(zk|xk)dxk

=
∑
k

∫
qk

(
ln

1√
2πσgk

− (zk − Jkkxk − µgk)2

2σ2
gk

)
dxk

= −1

2
ln(2π)K |Σg|+

∑
k

Eqk [Λk]. (37)

Here Σg is a diagonal matrix whose diagonal is
[σ2
g1
, ..., σ2

gK ]T . Adding up these terms leads to

L(q) = −1

2
ln |Σg|+

∑
k

Eqk [Λk] + H(q) + C, (38)

which monotonically increases by iterations.
So far for FPE-VI, the initial probability of x is set as a

uniform distribution

p(xk) =
1√
M
, k = 1, ...K, (39)

corresponding to the value of La = −(K lnM)/2. Clearly,
a more reasonable initial prior would contribute to a larger
La, thus improving the convergence at the beginning. Since
the posterior is discrete-Gaussian-distributed, we might as well
choose the prior of x as a discrete Gaussian distribution either.
To this end, a remained question is how to determine the mean
µ̄ and variance σ̄2 of this initial distribution p̂(x):

p̂k(s) =
exp

(
− 1

2σ̄2 (s− µ̄k)2
)

ρQ(µ̄k, σ̄2)
, (40)

where ρQ(µ̄k, σ̄
2)
4
=
∑
s∈Q exp

(
− 1

2σ̄2 (s−µ̄k)2
)

is a positive
scalar to ensure a probability distribution. Note that zi is
treated as the combination of two terms: zi = Jiixi + gi.
Therefore, at the initialization stage, in order to give a rough
initial value about the mean µ̄, gi can be ignored, leading to

µ̄ = D−1z. (41)

This inversion needs only K times divisions thanks to the
diagonal structure of D. As for the choice of σ̄2, notice that
La becomes

L̂a(q) =
∑
QK

∏
k

qk ln
∏
k

p̂k =
∑
k

∑
s∈Q

qk(s) ln p̂k(s)

=
∑
k

∑
s∈Q

qk(s)
[
− ln ρQ(µ̄k, σ̄

2)− 1

2σ̄2
(s− µ̄k)2

]
4
= −

∑
k

[
ln ρQ(µ̄k, σ̄

2) +
1

2
· γk(qk)

σ̄2

]
, (42)

where we have defined γk(qk)
4
=
∑
s∈Q

(
s − µ̄k

)2
qk(s).

Intuitively, as σ̄2 → 0, it follows that p̂k(s 6= sµ̄k) → 0,
where sµ̄k is the symbol closest to µ̄k, resulting in a negative
infinite value of L̂a(q). When σ̄2 → +∞, this comes to the
uniform case and thus L̂a(q) approaches the −(K lnM)/2
in (36). Besides, ln ρQ(µ̄k, σ̄

2) is monotonically increasing
with respect to σ̄2 > 0 due to its positive partial derivative

∂ ln ρQ/∂σ̄
2 = (1/ρQ)

∑
s∈Q

(s−µ̄k)2

2σ̄4 e−
(s−µ̄k)2

2σ̄2 > 0, and the
decreasing monotonicity of γk(qk)/2σ̄2 is obvious. Hence,

2 4 6 8 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o
r 

R
a
te

Linear FPE-VI

MMSE

0 5 10 15 20

Iterations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

V
a
lu

e
s

estimated ,  = 3

*,  = 3

estimated ,  = 5

*,  = 5

estimated ,  = 8

*,  = 8

estimated ,  = 10

*,  = 10

Fig. 1. Investigations on the linear version of the proposed FPE-VI, where
16-QAM modulation is used with N = 64, Eb/N0 =10 dB. The left picture
illustrates the performance comparison between the linear FPE-VI and MMSE
versus β, and the right shows the difference between the estimated variance
by linear FPE-VI and the variance σ∗ in (29) versus iterations.
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Fig. 2. Performance comparison between the proposed VI detectors, MMSE
and some other inference methods for 64×32 and 128×32 massive MIMO
systems using 16-QAM.

when e
−(s−µ̄k)2

2σ̄2 /ρQ = qk(s) for ∀s ∈ Q, L̂a(q) reaches its
maximum. This solution is intractable, but using numerical
method to find σ̄2 that gives nearly satisfactory performance
is possible and clearly a more reasonable way.

VI. SIMULATION RESULTS

This section presents some numerical results for the pro-
posed VI detectors, compared to the traditional MMSE de-
tector and some inference algorithms. Explorations on the
linear FPE-VI according to aforementioned analysis is given
in Fig.1. In the left picture, we compare the linear FPE-VI
and MMSE detector versus the parameter β in the relaxed
condition (34). Before the β reaches 6, it is still possible
for the linear FPE-VI to converge to the MMSE detection.
Note that the larger the β is, the less likely J is going to
be diagonally dominant. Their corresponding antenna ratios
computed by the method in [13] can be found by looking up
the Table I. The right picture presents the difference between
the estimated variance by linear FPE-VI and the variance σ∗ in
(29) at some specific β. When β increases to 8, this gap rises
and grows considerably large when β = 10. On the whole, the
condition on β with respect to the mean is more strict than
that for the variance.

In Fig.2, the proposed FPE-VI detectors are compared with
some other inference methods, including the GTA detection
in [3], the Gaussian AMP algorithm in [4], and the EP in [7].
The damping factors are set as δ = 0.4 for 64 × 32 system
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Fig. 3. Performance comparison between the proposed FPE-VI detector,
MMSE and some other inference methods for 128×32 and 128×16 massive
correlated MIMO systems using 16-QAM.

and δ = 0.3 for the 128× 32 one. Under 64× 32 scheme, all
the FPE-VI detectors suffer from disadvantages in the antenna
ratio. Among them, the FPE-VI initialized with the discrete
Gaussian distribution, FPE(d), significantly outperforms the
pure FPE-VI with the same number of iterations. Meanwhile,
the reduced FPE-VI with σ2

g = σ2
v , denoted by rFPE, shows

some minor performance loss. Still, the FPE-VI(d) struggles to
outperform the linear MMSE by extending the total iteration
to 10. As for the 128 × 32 scheme, a faster convergence of
FPE-VI can be seen by this increased antenna ratio, in addition
to its comparable performance against the EP detector, while
it seems difficult for the GTA to overcome the performance
bottleneck of the MMSE detection. Moreover, under this
circumstance, it is possible for the proposed FPE-VI detectors
to outperform the nonlinear MMSE-SIC detection.

Fig. 3 further shows the BER of the proposed FPE algorithm
under correlated channels in 128 × 32 and 128 × 16 MIMO
system with 16-QAM. Without loss of generality, we follow
the model in [14] with a normalized correlation coefficient ρ to
adjust the degree of correlation. Note that a totally uncorrelated
scenario corresponds to ρ = 0 while a fully correlated scenario
implies ρ = 1. Here, we set ρ = 0.02, which results in weak
correlated channels. As can be seen, the proposed FPE-VI still
shows a comparable performance as the EP detection while the
other two methods already begin to deteriorate under this weak
correlated case. The upper of Fig.4 plots the running time of
the related detectors with antenna ratio α = 2. The nonlinear
MMSE-SIC detection requires the most running time due to
its obligation in successive implementation. The reduced FPE-
VI shortens the running time while even the FPE-VI(d) still
implements faster than the EP and MMSE. Therefore, the
advantage of FPE-VI detector in terms of time complexity
is significant. The ELBO value of FPE-VI is also presented
in the lower of Fig.4, where each individual term in (35) is
shown as well. Clearly, the ELBO is monotonically increasing
over the iterations, which verifies the convergence of FPE-VI.

VII. CONCLUSION

In this paper, the favorable-propagation-exploited varia-
tional inference (FPE-VI) algorithm is proposed for low-
complexity massive MIMO detection. The convergence of its
linear counterpart is demonstrated with an antenna ratio α
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Fig. 4. Running time of the proposed FPE-VI detectors, MMSE, and EP
for 16QAM massive MIMO system, where the antenna ratio α = 2 and all
the iterative methods are implemented by 5 iterations (upper). The evolution
of the ELBO value in FPE-VI over iterations, conducted under the 64 × 32
massive MIMO system using 16QAM, with fixed Eb/N0=8dB (lower).

greater than 1/(
√

2− 1)2. Moreover, according to the related
analysis on evidence lower bound, its initial distribution is also
optimized by adopting discrete Gaussian distribution, therefore
achieving a better performance-complexity trade-off.
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