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Sampling from a lattice Gaussian distribution is emerging
as an important problem in various areas such as coding
and cryptography. The default sampling algorithm — Klein’s
algorithm yields a distribution close to the lattice Gaussian
only if the standard deviation is sufficiently large. In this
paper, we propose the Markov chain Monte Carlo (MCMC)
method for lattice Gaussian sampling when this condition is not
satisfied. In particular, we present a sampling algorithm based on
Gibbs sampling, which converges to the target lattice Gaussian
distribution for any value of the standard deviation. To improve
the convergence rate, a more efficient algorithm referred to as
Gibbs-Klein sampling is proposed, which samples block by block
using Klein’s algorithm. We show that Gibbs-Klein sampling
yields a distribution close to the target lattice Gaussian, under a
less stringent condition than that of the original Klein algorithm.

I. INTRODUCTION

The lattice Gaussian distribution is emerging as a common

theme in various areas. In mathematics, Banaszczyk [1] firstly

used it to prove the transference theorems of lattices. In

coding, it mimics Shannon’s Gaussian random coding tech-

nique, yet permits lattice decoding. Forney applied the lattice

Gaussian distribution to obtain the full shaping gain in lattice

coding [2] (see also [3]). Recently, it has been used to achieve

the capacity of the Gaussian channel [4] and to approach the

secrecy capacity of the Gaussian wiretap channel [5], respec-

tively. Sampling from the lattice Gaussian has also been used

in lattice decoding for the multi-input multi-output system [6],

[7]. In cryptography, lattice Gaussians have become a central

tool in the construction of many primitives. Micciancio and

Regev used it to propose lattice-based cryptosystems based

on the worst-case hardness assumptions [8], and recently, it

has underpinned the fully-homomorphic encryption for cloud

computing [9]. The key fact is again that a vector distributed as

a lattice Gaussian centered at c with a small standard deviation

is typically very close to c. To illustrate why this might be

useful in cryptography, note that if one knows a short basis

of the lattice, one can efficiently produce such a vector [10],

while disclosing no information on the short basis—since the

lattice Gaussian distribution does not depend on the particular

basis.

Thus, in both coding and cryptography, efficient sampling

algorithms for the lattice Gaussian as well as a good un-

derstanding on how the complexity depends on the standard

deviation is an important issue. However, in contrast to sam-

pling from the continuous Gaussian distribution, it is not at all

straightforward to sample from a discrete Gaussian distribution

over a lattice. At present, the default sampling algorithm for

lattices is due to Klein, originally proposed for bounded-

distance decoding [11] (see also [12], [13] for variations and

[4] for an algorithm for lattices of Construction A). It was

shown in [10] that Klein’s algorithm samples within a negli-

gible statistical distance from the lattice Gaussian distribution

only if the standard deviation σ ≥ ω(
√

log n)·max1≤i≤n‖b̂i‖,

where n is the lattice dimension and b̂i’s are the Gram-

Schmidt vectors of the lattice basis. Unfortunately, such a

requirement of σ can be excessive, rendering Klein’s algorithm

inapplicable to many cases of interest.
Markov chain Monte Carlo (MCMC) methods attempt to

sample from the target distribution of interest by building

a Markov chain, which randomly generate the next sample

conditioned on the previous samples. As a major algorithm

of MCMC, Gibbs sampling [14] constructs a Markov chain

which gradually converges to the target distribution by only

considering univariate sampling at each step. In this paper, we

introduce the Gibbs algorithm into lattice Gaussian sampling

and propose a more efficient block-based algorithm named

as Gibbs-Klein sampling. In contrast to conventional blocked

sampling which is computationally more demanding, the pro-

posed algorithm takes advantages of Klein’s algorithm as a

building block. The proposed algorithms are applicable in the

scenario σ < ω(
√

log n) · max1≤i≤n‖b̂i‖.
To the best of our knowledge, this is the first time that

MCMC methods are used in lattice Gaussian distributions.

Different from previous works on Gibbs sampling for signal

detection of finite constellations [15]–[17], here we are con-

cerned with countably infinite state spaces and with simulating

Gaussian distributions over a lattice. It is worth pointing out

that although the underlying Markov chain converges to the

stationary distribution for all values of σ, the convergence

is expected to become very slow when σ becomes small,

since for very small σ we would solve the closest vector

problem (CVP) and shortest vector problem (SVP) with high
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Algorithm 1 Klein’s Algorithm

Input: B, σ, c
Output: Bx ∈ Λ

1: let B = QR and c′ = QT c
2: for i = n, . . . , 1 do
3: let αi =

σ
|ri,i| and x̃i =

c′i−
∑n

j=i+1 ri,jxj

ri,i
4: sample xi from DZ,αi,x̃i

5: end for
6: return Bx

probability.

The rest of this paper is organized as follows. Section II

introduces lattice Gaussian distributions and briefly reviews

Klein’s algorithm. In Section III, the conventional Gibbs and

the new Gibbs-Klein sampling algorithms are proposed for

lattice Gaussians, followed by a theoretical analysis in Section

IV. Section V presents the simulation results.

II. LATTICE GAUSSIAN DISTRIBUTIONS

Let B = [b1, . . . ,bn] ⊂ R
n consist of n linearly inde-

pendent vectors. The n-dimensional lattice Λ based on B is

defined by

Λ = L(B) = {Bx : x ∈ Z
n}, (1)

where B is known as the lattice basis. We define the Gaussian

function centered at c ∈ R
n for standard deviation σ > 0 as

ρσ,c(z) = e−
‖z−c‖2

2σ2 , (2)

for all z ∈ R
n. Then, the discrete Gaussian distribution over

Λ is defined as

DΛ,σ,c(x) =
ρσ,c(Bx)

ρσ,c(Λ)
=

e−
1

2σ2 ‖Bx−c‖2

∑
x∈Zn e−

1
2σ2 ‖Bx−c‖2

(3)

for all Bx ∈ Λ, where ρσ,c(Λ) �
∑

Bx∈Λ ρσ,c(Bx).
An intuition of DΛ,σ,c(x) suggests that the closer lattice

point Bx is to c, the higher probability it will be sampled.

Thus, lattice Gaussian sampling can be applied to solve the

CVP, and Klein’s algorithm was originally proposed for de-

coding [11]. As a randomized version of Babai’s nearest-plane

algorithm (i.e., successive interference cancellation), Klein’s

algorithm obtains a vector by sequentially sampling from a

1-dimensional conditional Gaussian distribution. As shown in

Algorithm 1, its operation has polynomial complexity O(n2)
excluding QR decomposition.

The parameter σ is key to the distribution produced by

Klein’s algorithm. Klein suggested σ = mini‖b̂i‖/
√

log n
and this was followed/adapted in [6], [7]. In this case, Klein’s

algorithm only yields a distribution that is lower-bounded

by the Gaussian distribution. On the other hand, it was

demonstrated in [10] that Klein’s algorithm actually samples

from DΛ,σ,c within a negligible statistical distance if

σ ≥ ω(
√

log n) · max1≤i≤n‖b̂i‖. (4)

However, Gaussian sampling algorithms are lacking for the

range σ < ω(
√

log n) · maxi‖b̂i‖.

III. MCMC FOR LATTICE GAUSSIAN

In this section, we introduce the concept of MCMC into

lattice Gaussian sampling for the range of σ where Klein’s

algorithm cannot reach. We further propose a more efficient

sampling algorithm named as Gibbs-Klein sampling to im-

prove the convergence rate.

A. Gibbs Sampling for Lattice Gaussian

Lattice Gaussian distribution DΛ,σ,c with σ < ω(
√

log n) ·
maxi‖b̂i‖ can be seen as a complex target distribution lacking

direct sampling methods. MCMC makes use of the conditional

distribution as a tractable alternative to work with. Here we

apply the Gibbs algorithm to sample from the original joint

distribution DΛ,σ,c.

Gibbs sampling employs 1-dimensional conditional distri-

butions to construct the Markov chain [14], where all other

variables in the distribution are unchanged in each step. In this

way, we sample n random variables from the corresponding

n univariate conditionals in a certain order instead of directly

generating an n-dimensional vector. Samples drawn from the

target joint distribution will be generated when the Markov

chain reaches the stationary distribution.

Specifically, in Gibbs sampling, each coordinate of x is sam-

pled from the following 1-dimensional conditional distribution

P (xt+1
i |xt

[−i]) =
e−

1
2σ2 ‖Bxt+1−c‖2

∑
xt+1
i ∈Z

e−
1

2σ2 ‖Bxt+1−c‖2
, (5)

where 1 ≤ i ≤ n denotes the coordinate index of x,

xt
[−i] � [xt

1, . . . , x
t
i−1, x

t
i+1, . . . , x

t
n]

T , and t is the time index

of the Markov chain. It is noteworthy that there are many scan

schemes in Gibbs sampling and we apply the random-scan in

this paper, which means the index i is randomly chosen at

each step. The extension to other scan strategies is possible.

By repeating such a procedure, an underlying Markov chain

xt+1 = [xt
1, . . . , x

t
i−1, x

t+1
i , xt

i+1, . . . , x
t
n]

T is induced, whose

transition probability between two adjacent states is defined by

the univariate Gibbs sampler,

P (xt;xt+1) = P (xt+1
i |xt

[−i]). (6)

Clearly, every two adjacent states of x differ from each other

by only one coordinate and it is easy to see that DΛ,σ,c stays

invariant under such transitions. Algorithm 2 gives the opera-

tion of Gibbs sampling for lattice Gaussian distributions. The

initial random variable x0 can be chosen from Z
n arbitrarily

or from the output of a suboptimal algorithm, while the time

bound T is large enough to reach the stationary distribution

DΛ,σ,c.

With the transition probabilities (6), we may form the

infinite transition matrix P, whose (i, j)-th entry P (si; sj)
represents the probability of transferring to state sj from the

previous state si. Denote by Pt the transition matrix after

t steps. We group in the following theorem standard results

about Gibbs sampling [18].
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Algorithm 2 Gibbs sampling for lattice Gaussian

Input: B, σ, c,x0

Output: x ∼ DΛ,σ,c as T → ∞
1: for t =1, . . . , T do
2: randomly choose coordinate index i from {1, 2, . . . , n}
3: sample xi from P (xt

i|xt−1
[−i])

4: update xt = [xt−1
1 , . . . , xt−1

i−1, xi, x
t−1
i+1, . . . , x

t−1
n ]T

5: if Markov chain has reached stationarity then
6: output xt

7: end if
8: end for

Proposition 1. Given the invariant distribution DΛ,σ,c, the
Markov chain induced by the Gibbs sampler is irreducible,
aperiodic and reversible (hence positive recurrent), and con-
verges to the stationary distribution in the total variation (TV)
distance as t → ∞:

lim
t→∞‖P t(x; ·)−DΛ,σ,c‖TV = 0, (7)

for all states x ∈ Z
n, where P t(x; ·) denotes the row of Pt

corresponding to initial state x.
According to Proposition 1, if time permits to reach the

stationary distribution, the proposed Gibbs sampler will draw

samples from DΛ,σ,c no matter what value σ takes, which

means the obstacle encountered by Klein’s algorithm is over-

come.

B. Gibbs-Klein Sampling for Lattice Gaussian

Although the afore-mentioned Gibbs sampler will converge

to the stationary distribution eventually, the way it functions by

individually sampling only one component each time leads to

slow convergence. Especially, for lattice bases whose compo-

nents are highly correlated with each other, the Markov chain

induced by the standard Gibbs sampling can be trapped for a

long time. To hasten convergence of the Markov chain, a new

sampling algorithm combining Gibbs and Klein algorithms is

proposed in the sequel.

The idea of blocked sampling is to sample a block of

components of x at each step [19]. Intuitively, this will lead

to a faster convergence rate, which is already shown in [14].

However, sampling a block is generally more costly than

componentwise sampling. We propose to use Klein’s algorithm

for block sampling; this leads to the Gibbs-Klein.

At each step of the Markov chain, the proposed Gibbs-Klein

sampling randomly picks up a block of m components of x
to update. For convenience, an n × n permutation matrix E
is applied before blocking so that the blocks are updated in a

fixed order.

Specifically, if E is random, then Gibbs-Klein sampling

on m randomly chosen components will be equivalent to

sample m consecutive components of z in a fixed order, where

z = E−1x and B̃ = BE. For simplicity, we always consider

the block formed by the first m components of z, namely

zblock = [z1, . . . , zm]T . After QR-decomposition B̃ = QR

Algorithm 3 Gibbs-Klein sampling for lattice Gaussian

Input: B, σ, c,m,x0;

Output: x from a distribution close to DΛ,σ,c as T → ∞
1: for t =1, . . . , T do
2: randomly generate a permutation matrix E
3: Let B̃ = BE and z = E−1x
4: Let B̃ = QR and c′ = QT c
5: for i = m, . . . , 1 do
6: let αi =

σ
|ri,i|

7: let z̃t−1
i =

c′i−
∑m

j=i+1 ri,jz
t
j−

∑n

j
′
=m+1

r
i,j

′ zt−1

j
′

ri,i

8: sample zti from D
Z,αi,z̃

t−1
i

9: end for
10: update zt = [ztblock; z

t−1
[−block]]

T

11: return xt = Ezt

12: if Markov chain has reached stationarity then
13: output xt

14: end if
15: end for

and calculating c′ = QT c, zi in the block is sampled from

the following 1-dimensional distribution with the backward

order from zm to z1:

P (zt+1
i |zt[−i]) = DZ,αi,z̃t

i
, (8)

where αi = σ
|ri,i| , zt[−i] = [zt+1

i+1 , . . . , z
t+1
m , ztm+1, . . . , z

t
n]

T

and z̃ti =
c′i−

∑m
j=i+1 ri,jz

t+1
j −∑n

j′=m+1
ri,j′z

t
j′

ri,i
. Algorithm 3

gives the proposed Gibbs-Klein sampling, where zt+1 =
[zt+1

block; z
t
[−block]] is obtained after each step, and zt[−block] =

[ztm+1, . . . , z
t
n]

T . The implementation given in Algorithm 3 is

not so efficient due to repeated QR decompositions; Optimiz-

ing for better efficiency will be pursued in the future. Note

that the extension to other scan strategies is also possible.

IV. ANALYSIS OF GIBBS-KLEIN SAMPLING

In this section, we show that the proposed Gibbs-Klein

sampling algorithm can induce a reversible Markov chain

within a negligible error. From (8) and by induction, the

sampling probability of zt+1
block conditioned on zt[−block] is given

by

P (zt+1
block | zt[−block]) =

m∏
i=1

P (zt+1
m+1−i|zt[−(m+1−i)]). (9)

The following lemma gives a closed-form expression of this

conditional probability within a negligible error and the proof

follows [10].

Lemma 1. For a given invariant distribution DΛ,σ,c, the
transition probability P (zt+1

block | zt[−block]) of Gibbs-Klein algo-
rithm is within negligible statistical distance of the following
distribution

D′ =
e−

1
2σ2 ‖B̃z

t+1−c‖2

∑
zt+1

block
∈Zm e−

1
2σ2 ‖B̃z

t+1−c‖2
(10)
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if σ≥ω(
√

logm)·max1≤i≤m‖ri,i‖, where zt+1=[zt+1block;z
t
[−block]].

Proof: According to (8) and (9), we have

P (zt+1
block|zt[−block]) =

m∏
i=1

DZ,αm+1−i,z̃t
m+1−i

(zt+1
m+1−i)

=
e−

1
2σ2

∑m
i=1(cm+1−i−

∑m
j=m+1−i rm+1−i,jz

t+1
j )

2

∏m
i=1

∑
zt+1
m+1−i∈Z

e−
1

2σ2 (cm+1−i−
∑m

j=m+1−i rm+1−i,jz
t+1
j )

2

=
e−

1
2σ2 ‖c−rzt+1

block
‖2

∏m
i=1

∑
zt+1
m+1−i∈Z

e−
1

2σ2(rm+1−i,m+1−iz
t+1
m+1−i−cm+1−i+

∑m
j=m+2−irm+1−i,jz

t+1
j )2

=
ρL(r),σ,c(z

t+1
block)∏m

i=1 ρσ(rm+1−i,m+1−iZ+ ξ)
, (11)

where ci = c′i − ∑n
j′=m+1 ri,j′ z

t
j′ , c = [c1, . . . , cm]T ,

ξ =
∑m

j=m+2−i rm+1−i,jz
t+1
j − cm−i+i and r is the m×m

segment of R with r1,1 to rm,m in the diagonal. Clearly, the

effect of the subvector zt[−block] is hidden in ci. In [20], it has

been demonstrated that if σ > ηε(L(r)), then∏m
i=1 ρσ(ri,iZ+ ξ)∏m

i=1 ρσ(ri,iZ)
∈
((

1− ε

1 + ε

)m

, 1

]
(12)

which means
∏m

i=1 ρσ(ri,iZ + ξ) can be substituted by∏m
i=1 ρσ(ri,iZ) within negligible errors when ε is sufficiently

small.

As shown in [10], ηε(Λ) with negligible ε is upper bounded

as ηε(Λ) ≤ ω(
√

log n) · max1≤i≤n‖b̂i‖. Therefore, if σ ≥
ω(

√
log m) · max1≤i≤m‖ri,i‖, P (zt+1

block | zt[−block]) shown in

(11) can be rewritten as

P (zt+1
block|zt[−block]) 


ρL(r),σ,c(z
t+1
block)∏m

i=1 ρσ(ri,iZ)
, (13)

where “
” represents equality up to a negligible error. Because

the denominator is independent of zt+1
block, zt[−block] and c, it can

be viewed as a constant and the output has a lattice Gaussian

distribution DL(r),σ,c(z
t+1
block).

Then we arrive at the following proposition.

Proposition 2. Suppose σ ≥ ω(
√
logm) · max1≤i≤m ‖̂̃bi‖

at each step so that the negligible statistical distance is
absorbed by numerical errors. Then, within numerical errors,
the Markov chain induced by the Gibbs-Klein sampler is
irreducible, aperiodic and reversible (hence positive recurrent)
and converges to the stationary distribution in the total vari-
ation distance as t → ∞:

lim
t→∞‖P t(x; ·)−DΛ,σ,c‖TV = 0 (14)

for all states x ∈ Z
n.

Proof: Let si and sj be two adjacent states in Gibbs-

Klein sampling. For block size m, every two adjacent states

in Gibbs-Klein sampling differ from each other by at most m
components. For convenience, we express them as

si = [xblock(i),x[−block]] and sj = [xblock(j),x[−block]], (15)

where xblock(i) and xblock(j) denote the m components belong-

ing to si and sj , respectively. Then, the transition probability

of Gibbs-Klein sampling is

P (si; sj) = P (xt+1 = sj |xt = si)

= P (xt
block(i) → xt+1

block(j)|xt
[−block])

(a)
= P (xt+1

block(j)|xt
[−block])


 e−
1

2σ2 ‖Bsj−c‖2

∑
xt+1

block
∈Zm e−

1
2σ2 ‖Bxt+1−c‖2

, (16)

where (a) is due to the fact that xt+1
block is sampled only

conditioned on xt
[−block].

To show the Markov chain is irreducible, we note that given

a state s one can attain with positive probability in one step

any state s′ which shares >= (n − m) components with s.

Now, if s and s′ have, say, d < n−m components in common,

there is always a positive probability that after each step they

get exactly one more component in common. So we can go in

n−d steps from one to the other. But as soon as m >= 2, we

can assume that at the first step we get two more components

in common, and then one at each further step, so we can go

with positive probability in n− d− 1 steps.

On the other hand, it is clear to see that the number of

steps required to move between any two states (can be the

same state) is arbitrary without any limitation to be a multiple

of some integer. Put another way, the chain is not forced into

some cycle with fixed period between certain states. Therefore,

the Markov chain is aperiodic.

As for reversibility, it is no hard to check that the following

relationship holds

DΛ,σ,c(si)P (si; sj) 
 DΛ,σ,c(sj)P (sj ; si) (17)

with the same expression

e−
1

2σ2 ‖Bsi−c‖2

∑
x∈Zn e−

1
2σ2 ‖Bx−c‖2

· e−
1

2σ2 ‖Bsj−c‖2

∑
xt+1

block
∈Zm e−

1
2σ2 ‖Bxt+1−c‖2

, (18)

within negligible errors. Thus, the conclusion follows, com-

pleting the proof.

The advantages of Gibbs-Klein sampling are two-fold:

compared with the conventional Gibbs sampling which only

processes a single variate each time, it is more efficient to

sample multiple variates in a block, improving the convergence

rate; on the other hand, it overcomes the limitation of Klein’s

sampling which requires large values of σ and extends lattice

Gaussian sampling to the more general case.

V. SIMULATION RESULTS

In this section, the performances of various sampling

schemes are exemplified in the context of MIMO decoding.

Specifically, we examine the decoding error probabilities to

assess the convergence rates. By sampling from DΛ,σ,c, the

closest lattice point will be returned with the highest proba-

bility, which implies an effective approach to lattice decoding.
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Fig. 1. Bit error rate versus the number of iterations for the uncoded 4× 4
MIMO system using 16-QAM.

Fig. 1 depicts the bit error rates (BER) of different Gibbs

samplers in a 4×4 uncoded MIMO system with 16-QAM. This

corresponds to lattice dimension n = 8. The performances

of zero-forcing (ZF) and maximum-likelihood (ML) decoding

are also shown as benchmarks. We assume a flat fading

environment with fixed SNR (Eb/N0=15 dB). The channel

matrix H consists of uncorrelated complex Gaussian fading

gains with unit variance. Hx can be viewed as a lattice point

in lattice Λ = L(H) and detecting the transmitted signal x
corresponds to solving the CVP. Due to the finite constellation

size, the implementation for discrete Gaussian sampling given

in [6] is followed.

Klein chose σ = min1≤i≤n‖b̂i‖/
√

log n and derived poly-

nomial complexity O(n‖Bx−c‖2/mini‖b̂i‖2

) for his algorithm to

find the closest lattice point when it is not far from c [11]. His

derivation is essentially based on the assumption of a Gaussian

distribution. However, we now know this choice of σ does not

satisfy the smoothing condition and thus his sampler does not

really produce Gaussian samples [10].

Here, we follow Klein’s choice of σ and apply the proposed

Gibbs and Gibbs-Klein samplers to produce Gaussian samples

from the lattice. For a fair comparison, when the block size

is m, we run block sampling for n/m times, and count this

as a full iteration. This corresponds to one run of Klein’s

original algorithm which samples n components. As shown

in Fig. 1, the decoding performance of all the sampling

schemes improve with the number of iterations. With the

same number of iterations (hence the same complexity), the

decoding performance improves with the block size, which

implies a faster convergence rate.
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