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Abstract—Sampling from the lattice Gaussian distribution is
emerging as an important problem in coding and cryptography.
In this paper, a Markov chain Monte Carlo (MCMC) algorithm
referred to as the independent Metropolis-Hastings-Klein (MHK)
algorithm is proposed for lattice Gaussian sampling, which
overcomes the restriction on the standard deviation confronted
by the Klein algorithm. It is proven that the Markov chain
arising from the proposed MHK algorithm is uniformly ergodic,
namely, it converges to the stationary distribution exponentially
fast. Moreover, the rate of convergence is explicitly calculated in
terms of the theta series, making it possible to predict the mixing
time of the underlying Markov chain.

Index Terms—Lattice Gaussian sampling, Metropolis-Hastings
sampling, MCMC methods, lattice coding and decoding.

I. INTRODUCTION

Recently, the lattice Gaussian distribution is emerging as

a common theme in various research fields. In mathematics,

Banaszczyk firstly applied it to prove the transference theo-

rems for lattices [1]. In coding, lattice Gaussian distribution

was employed to obtain the full shaping gain for lattice

coding [2], [3], and to achieve the capacity of the Gaussian

channel and the secrecy capacity of the Gaussian wiretap

channel, respectively [4], [5]. In cryptography, the lattice

Gaussian distribution has already become a central tool in the

construction of many primitives. Specifically, Micciancio and

Regev applied it to propose the lattice-based cryptosystems

based on the worst-case hardness assumptions [6]. Meanwhile,

it also has underpinned the fully-homomorphic encryption

for cloud computing [7]. Algorithmically, lattice Gaussian

sampling with a suitable variance allows to solve the shortest

vector problem (SVP) and the closest vector problem (CVP);

for example, it has led to efficient lattice decoding for multi-

input multi-output (MIMO) systems [8], [9].

Due to the central role of the lattice Gaussian distribution

playing in these fields, its sampling algorithms become an

important computational problem. Unfortunately, compared

to sampling from continuous Gaussian distributions, it is by

no means trivial to perform the sampling even from a low-

dimensional discrete Gaussian distribution. As the default

sampling algorithm for lattices, Klein’s algorithm [10] samples

within a negligible statistical distance from the lattice Gaussian

distribution if and only if the standard deviation σ is sufficient-

ly large, namely, σ ≥ ω(
√

log n) ·max1≤i≤n‖b̂i‖ [11], where

n denotes the lattice dimension, ω(·) is a function related

to n and b̂i’s are the Gram-Schmidt vectors of the lattice

basis B, thereby rendering Klein’s algorithm inapplicable to

smaller σ. To address this issue, the Gibbs algorithm rooted in

Markov chain Monte Carlo (MCMC) methods was introduced

into lattice Gaussian sampling; it is the first lattice algorithm

able to sample in the range that Klein’s algorithm cannot reach

[12]. However, the related analysis of the convergence rate for

the associated Markov chain was lacking.

Basically, MCMC methods attempt to sample from the

target distribution by building a Markov chain, which ran-

domly generates the next sample conditioned on the previous

samples. In this paper, we propose a new algorithm for lattice

Gaussian based on the independent Metropolis-Hastings (MH)

algorithm [13]. The MH algorithm makes use of a proposal

distribution which suggests a possible move and then employs

a acceptance-rejection rule to decide the next move. Therefore,

the art of designing an efficient MH algorithm chiefly lies in

choosing an appropriate proposal distribution. To this end, we

use Klein’s algorithm to generate the proposal distribution,

leading to the new independent Metropolis-Hastings-Klein

(MHK) algorithm for lattice Gaussian sampling. Moreover, the

rate of convergence is analyzed and the Markov chain associ-

ated with the proposed MHK algorithm is demonstrated to be

uniformly ergodic, which means it converges to its stationary

distribution exponentially fast. Therefore, the mixing time of

the underlying Markov chain becomes tractable.

The rest of this paper is organized as follows. Section II

introduces the lattice Gaussian distribution and briefly reviews

the basics of MCMC methods. In Section III, we propose the

independent MHK algorithm for lattice Gaussians, followed by

the demonstration of uniform ergodicity and the convergence

rate analysis in Section IV.

II. LATTICE GAUSSIAN DISTRIBUTION

Let B = [b1, . . . ,bn] ⊂ R
n consist of n linearly indepen-

dent vectors. The n-dimensional lattice Λ generated by B is

defined by

Λ = {Bx : x ∈ Z
n}, (1)

where B is known as the lattice basis. We define the Gaussian

function centered at c ∈ R
n for standard deviation σ > 0 as

ρσ,c(z) = e−
‖z−c‖2

2σ2 , (2)
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for all z ∈ R
n. When c or σ are not specified, we assume that

they are 0 and 1 respectively. Then, the discrete Gaussian
distribution over Λ is defined as

DΛ,σ,c(x) =
ρσ,c(Bx)

ρσ,c(Λ)
=

e−
1

2σ2 ‖Bx−c‖2∑
x∈Zn e−

1
2σ2 ‖Bx−c‖2

(3)

for all Bx ∈ Λ, where ρσ,c(Λ) �
∑

Bx∈Λ ρσ,c(Bx).
Obviously, an intuition of DΛ,σ,c(x) suggests that a lattice

point Bx closer to c will be sampled with a higher probability.

Therefore, sampling from lattice Gaussian can be naturally

used in solving the CVP (where c is the query point) and

SVP (where c = 0) in lattices, and because of this, Klein’s

algorithm that samples from a Gaussian-like distribution was

originally designed for lattice decoding [10]. As shown in

Algorithm 1, the operation of Klein’s algroithm has polyno-

mial complexity O(n2) excluding QR decomposition. More

precisely, by sequentially sampling from the 1-dimensional

conditional Gaussian distribution DZ,σi,x̃i
in a backward order

from xn to x1, the Gaussian-like distribution arising from

Klein’s algorithm is given by

PKlein(x) =

n∏
i=1

DZ,σi,x̃i
(xi) =

ρσ,c(Bx)∏n
i=1 ρσi,x̃i

(Z)
, (4)

where PKlein(x) has been demonstrated in [11] to be close to

DΛ,σ,c(x) within a negligible statistical distance if

σ ≥ ω(
√

log n) · max1≤i≤n‖b̂i‖. (5)

As for sampling in the range σ < ω(
√

log n) ·
max1≤i≤n‖b̂i‖, MCMC methods have become an alternative

solution, where the discrete Gaussian distribution DΛ,σ,c is

viewed as a complex target distribution lacking direct sam-

pling methods. By establishing a Markov chain that randomly

generates the next state based on the previous states, MCMC

is capable of sampling from the target distribution of interest,

thereby removing the restriction on σ in lattice Gaussian

distributions [12].

As a special case of the MH algorithm, Gibbs sampling

employs 1-dimensional conditional distributions to build the

Markov chain, where all the other variables in the distribution

are unchanged in each Markov move. In [12], a flexible block-

based Gibbs algorithm was proposed for lattice Gaussian

distributions. Compared to the standard Gibbs algorithm that

constructs the Markov chain by only considering univariate

sampling at each time, it performs the sampling over multiple

elements within a block to enhance the convergence perfor-

mance of the Markov chains.

Definition 1 ([14]). A Markov chain with stationary distribu-
tion π(·) is ergodic if

lim
t→∞‖P t(x, ·)− π(·)‖TV = 0, (6)

where P t(x; ·) denotes the row of the transition matrix P for
t Markov moves and ‖ · ‖TV represents the total variation
distance.

Although ergodicity implies asymptotic convergence to s-

Algorithm 1 Klein’s Algorithm

Input: B, σ, c
Output: Bx ∈ Λ

1: let B = QR and c′ = QT c
2: for i = n, . . . , 1 do
3: let σi =

σ
|ri,i| and x̃i =

c′i−
∑n

j=i+1 ri,jxj

ri,i
4: sample xi from DZ,σi,x̃i

5: end for
6: return Bx

tationarity, it does not say anything about the rate of this

convergence. One qualitative convergence rate of our concern

in this context is referred to as uniform ergodicity.

Definition 2 ([14]). A Markov chain having stationary distri-
bution π(·) is uniformly ergodic if there exists 0 < δ < 1 and
M < ∞ such that for all x

‖P t(x, ·)− π(·)‖TV ≤ M(1− δ)t. (7)

Obviously, the value of the exponential decay coefficient

δ is the key to determine the convergence rate. As M is a

constant, a salient feature of uniform ergodicity is that the

convergence rate does not depend on the initial state x.

As a parameter which measures the time required by a

Markov chain to get close to the stationary distribution, the

mixing time is defined by [15].

tmix(ε) = min{t : max‖P t(x, ·)− π(·)‖TV ≤ ε}. (8)

III. INDEPENDENT MHK ALGORITHM

In this section, we present the conventional MH sampling

in MCMC and give the proposed independent MHK algorithm

for lattice Gaussian sampling. Note that the Markov chain that

we are concerned with here has a countably infinite state space,

i.e., the lattice Λ.

In [13], the original Metropolis algorithm was extended to a

general scheme known as the Metropolis-Hastings algorithm.

Let us consider a target invariant distribution π together with

a candidate proposal distribution q(x,y). Given the current

state x for Markov chain Xt, a state candidate y for the next

Markov move Xt+1 is generated from the proposal distribution

q(x, ·). Then the acceptance ratio α is computed by

α(x,y) = min

{
1,

π(y)q(y,x)

π(x)q(x,y)

}
, (9)

and y will be accepted as the new state by Xt+1 with

probability α. Otherwise, x will be retained by Xt+1 with

probability 1−α. In this way, a Markov chain {X0,X1, . . .} is

established with the transition probability P (x,y) as follows:

P (x,y) =

{
q(x,y)α(x,y) if y 	= x,

1−∑
z �=x q(x, z)α(x, z) if y = x.

(10)

In MH algorithms, the proposal distribution q(x,y) can be

any fixed distribution from which we can easily draw samples.

To this end, many variations of MH algorithms with different
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configurations of q(x,y) were proposed and a very special

one among them is the independent MH algorithm where [16]

q(x,y) = q(y). (11)

Clearly, the candidate state y generated for Xt+1 does not

depend on the previous state x and this method originally ap-

peared as an alternative to rejection sampling and importance

sampling [13]. However, how to sample the candidate state y
tends to be difficult.

Now, we present the proposed independent MHK algorith-

m, where Klein’s algorithm is used to generate the multi-

dimensional proposal distribution. As shown in Algorithm 2,

it consists of three basic steps:

1) Sample from the independent proposal distribution
through Klein’s algorithm to obtain the candidate state y for
Xt+1,

q(x,y) = q(y) =
ρσ,c(By)∏n
i=1 ρσi,ỹi

(Z)
, (12)

where y ∈ Z
n.

2) Calculate the acceptance ratio α(x,y)

α(x,y) =min

{
1,
π(y)q(y,x)

π(x)q(x,y)

}
=min

{
1,
π(y)q(x)

π(x)q(y)

}
, (13)

where π = DΛ,σ,c.

3) Make a decision for Xt+1 based on α(x,y) to accept
Xt+1 = y or not.

In principle, the Markov chain produced by the proposed

algorithm is inherently reversible with respect to π, since

π(x)P (x,y) = π(x)q(x,y)α(x,y)

= min{π(x)q(y), π(y)q(x)}
= π(y)P (y,x), (14)

where the assumption y 	= x is sufficient because the above

equation holds trivially in the case of y = x. Meanwhile, for

π = DΛ,σ,c, it is also easy to verify that the underlying Markov

chain is irreducible and aperiodic. Because ergodicity always

holds for any Markov chain that are irreducible, aperiodic and

reversible [15], we arrive at the following Lemma:

Lemma 1. Given the invariant lattice Gaussian distribution
DΛ,σ,c, the Markov chain induced by the independent MHK
algorithm is ergodic:

lim
t→∞‖P t(x; ·)−DΛ,σ,c(·)‖TV = 0 (15)

for all states x ∈ Z
n.

IV. CONVERGENCE ANALYSIS

In this section, we firstly demonstrate that the proposed

independent MHK algorithm is uniformly ergodic. Then, the

exponential decay coefficient δ is analyzed, leading to a

quantitative estimate of the mixing time of the Markov chain.

Algorithm 2 Independent Metropolis-Hastings-Klein Algo-

rithm for Lattice Gaussian Sampling

Input: B, σ, c,X0

Output: samples from the target distribution π = DΛ,σ,c

1: for t =1,2, . . . , do
2: let x denote the state of Xt−1

3: generate y by the proposal distribution q(x,y) in (12)

4: calculate the acceptance ratio α(x,y) in (13)

5: generate a sample u from the uniform density U [0, 1]
6: if u ≤ α(x,y) then
7: let Xt = y
8: else
9: Xt = x

10: end if
11: if Markov chain has reached stationarity then
12: output the state of Xt

13: end if
14: end for

A. Uniform Ergodicity

Lemma 2. In the independent MHK algorithm for lattice
Gaussian sampling, there exists δ > 0 such that

q(x)

π(x)
≥ δ, (16)

for x ∈ Z
n.

Proof. Using (3) and (4), we have

q(x)

π(x)
=

ρσ,c(Bx)∏n
i=1 ρσi,x̃i

(Z)
· ρσ,c(Λ)

ρσ,c(Bx)

=
ρσ,c(Λ)∏n

i=1 ρσi,x̃i
(Z)

(17)

(a)

≥ ρσ,c(Λ)∏n
i=1 ρσi

(Z)
(18)

where (a) follows from the bound ρσi,x̃(Z) ≤ ρσi
(Z) �∑

j∈Z
e
− 1

2σ2
i

j2

[6].

As can be seen clearly, the right-hand side (RHS) of (18)

is completely independent of x, meaning it can be expressed

by a constant δ determined by basis B, center c and standard

deviation σ. Therefore, the proof is completed.

We then arrive at the main Theorem to show the uniform

ergodicity of the proposed algorithm.

Theorem 1. Given the invariant lattice Gaussian distribution
DΛ,σ,c, the Markov chain established by the independent MHK
algorithm is uniformly ergodic:

‖P t(x, ·)−DΛ,σ,c(·)‖TV ≤ (1− δ)t (19)

for all x ∈ Z
n.

Proof. To start with, let us recall the coupling technique [17]

shown below,

‖L(X)− L(Y)‖TV ≤ P (X 	= Y), (20)
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where X and Y denote two random multivariables defined

over the state space Z
n with probability distributions L(X)

and L(Y) respectively.

According to (20), the variation distance ‖·‖TV between two

random variables is upper bounded by the probability that they

are unequal. Therefore, assume two Markov chain copies {Xt}
and {X′

t} and each of them marginally follows the updating

rules by P (x, ·) and π(·) for all t, then we have

‖P t(x, ·)− π(·)‖TV ≤ P (Xt 	= X′
t). (21)

On the other hand, based on (12) and (13), the transition

probability P (x,y) of the independent MHK algorithm are

given by

P (x,y)=

⎧⎪⎨⎪⎩
min

{
q(y), π(y)q(x)

π(x)

}
if y 	=x,

q(x)+
∑
z �=x

max
{
0,q(z)− π(z)q(x)

π(x)

}
if y=x.

(22)

Using (16) in Lemma 2, it is straightforward to check that

the following relationship holds

P (x,y) ≥ δπ(y) (23)

for all cases of x,y ∈ Z
n, which indicates all the Markov

transitions have a component of size δ in common. More

specifically, from the perspective of coupling, it means every

Markov move gives probability at least δ of making X and

X′ equal, that is,

P (X = X′) ≥ δ. (24)

Therefore, during t consecutive times Markov move, the

probability of X and X′ not equaling to each other can be

derived as

P (Xt 	= X′
t) = (1− P (X = X′))t ≤ (1− δ)t, (25)

and according to (21), we obtain

‖P t(x, ·)− π(·)‖TV ≤ (1− δ)t, (26)

completing the proof.

Obviously, given the value of δ, the mixing time of the

Markov chain can be calculated by (8) and (26), that is

tmix(ε) =
lnε

ln(1− δ)
< (−lnε) ·

(
1

δ

)
, ε < 1 (27)

where we use the bound ln(1 − δ) < −δ for 0 < δ < 1.

Therefore, the mixing time is proportional to 1/δ, and becomes

O(1) if δ → 1.

B. Convergence Rate

Lemma 2 shows that the ratio q(x)/π(x) in the independent

MHK sampling algorithm is lower bounded by a constant

δ, thereby permitting the proof of uniform ergodicity. We

further derive an explicit expression of the exponential decay

coefficient δ due to its significant impact on the convergence

rate, for the special case c = 0.
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Fig. 1. Exponential decay coefficient δ of the E8 lattice in the case of c = 0.

Specifically, we have,

q(x)

π(x)
=

ρσ,0(Λ)∏n
i=1 ρσi,x̃i

(Z)

(a)

≥
∑

x∈Zn e−
1

2σ2 ‖Bx‖2∏n
i=1 ρσi(Z)

(b)
=

ΘΛ(
1

2πσ2 )∏n
i=1 ΘZ(

1
2πσ2

i
)

(c)
=

ΘΛ(
1
s2 )∏n

i=1 ϑ3(
1
s2i
)
= δ. (28)

Here, for notational simplicity, s =
√
2πσ and si =

√
2πσi =

s/‖b̂i‖ are applied in the equations. In (a), the inequality

ρσi,x̃(Z) ≤ ρσi
(Z) is used again. Theta series ΘΛ and Jacobi

theta function ϑ3 are applied in (b) and (c) respectively, where

ΘΛ(τ) =
∑
λ∈Λ

e−πτ‖λ‖2

, (29)

ϑ3(τ) =

+∞∑
n=−∞

e−πτn2

(30)

with ΘZ = ϑ3 [18].

Now, we consider some lattices whose theta series are more

understood.

Lemma 3. The coefficient δ =
ΘΛ( 1

s2
)∏n

i=1 ϑ3(
1

s2
i

)
for an isodual

lattice Λ has a multiplicative symmetry point at s = 1, and
asymptotically converges to 1 on both sides when s goes to 0
and ∞.

Proof. According to the Jacobi’s formula [19]

ΘΛ(τ) = |det(B)|−1

(
1

τ

)n
2

ΘΛ∗

(
1

τ

)
, (31)

where det(·) denotes the determinant of a matrix and Λ∗ is

the dual lattice of Λ, we have

ΘΛ

(
1

s2

)
= snΘΛ(s

2), (32)
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Fig. 2. Exponential decay coefficient δ of the Leech lattice in the case of
c = 0.

ϑ3

(
1

s2i

)
= siϑ3(s

2
i ). (33)

An isodual lattice is one that is geometrically similar to its

dual. Here, we note that the theta series ΘΛ of an isodual

lattice Λ and that of its dual Λ∗ are the same, i.e., ΘΛ(τ) =
ΘΛ∗(τ), and the volume of an isodual lattice |det(B)| naturally

equals 1. Then from (32) and (33), the symmetry with respect

to s = 1 can be obtained as follows,

ΘΛ(
1
s2 )∏n

i=1 ϑ3(
1
s2i
)

=
snΘΛ(s

2)∏n
i=1 siϑ3(s2i )

=
ΘΛ(s

2)∏n
i=1

1

‖b̂i‖ϑ3(s2i )

=
ΘΛ(s

2)
1

|det(B)| ·
∏n

i=1 ϑ3(s2i )

=
ΘΛ(s

2)∏n
i=1 ϑ3(s2i )

. (34)

By definition, it is straightforward to verify that

ΘΛ(
1
s2 )∏n

i=1 ϑ3(
1
s2i
)
→ 1, when s → 0. (35)

Then because of the symmetry,
ΘΛ( 1

s2
)∏n

i=1 ϑ3(
1

s2
i

)
will also asymp-

totically approach 1 when s → ∞, completing the proof.

Examples of the coefficient δ for the isodual E8 and Leech

lattice are shown in Fig. 1 and Fig. 2, respectively. It is worth

pointing out that δ has a minimum at the symmetry point

s = 1, namely σ2 = 1
2π . On the other hand, as for non-isodual

lattices, D4 lattice is applied to give the illustration, where the

symmetry still holds but centers at s = 0.376. Therefore, with

the exact value of δ, the explicit estimation of mixing time for

the underlying Markov chain can be obtained.

ACKNOWLEDGMENT

This work was supported in part by FP7 project PHYLAWS

(EU FP7-ICT 317562).

−20 −15 −10 −5 0 5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

s2=2πσ2(dB)

δ

δ in D4 lattice

Fig. 3. Exponential decay coefficient δ of the D4 lattice in the case of c = 0.
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lattice codes for the Gaussian wiretap channel,” IEEE Trans. Inform.
Theory, vol. 60, no. 10, pp. 6399–6416, Oct 2014.

[6] D. Micciancio and O. Regev, “Worst-case to average-case reuctions
based on Gaussian measures,” in Proc. Ann. Symp. Found. Computer
Science, Rome, Italy, Oct. 2004, pp. 372–381.

[7] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
STOC, 2009.
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