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Abstract—Sampling from the lattice Gaussian distribution
has emerged as a key problem in coding and cryptography.
In this paper, the slice sampling from Markov chain Monte
Carlo (MCMC) is adopted to lattice Gaussian sampling. Firstly,
the slice-based sampling algorithm is proposed to sample from
lattice Gaussian distribution. Then, we demonstrate that the
Markov chain arising from it is uniformly ergodic, namely,
it converges exponentially fast to the stationary distribution.
Moveover, the convergence rate of the underlying Markov chain is
investigated, and we show the proposed slice sampling algorithm
entails a better convergence performance than the independent
Metropolis-Hastings-Klein (IMHK) sampling algorithm. Finally,
simulation results based on MIMO detection are presented to
confirm the performance gain by convergence enhancement.

Index Terms—Lattice Gaussian sampling, slice sampling, M-
CMC methods, lattice coding and decoding.

I. INTRODUCTION

Recently, lattice Gaussian distribution has become a com-
mon theme in various research fields. In mathematics, Ba-
naszczyk used it to prove the transference theorems for lattices
[1]. In coding, it was applied to achieve the full shaping
gain for lattice coding [2], and to achieve the capacity of the
Gaussian channel and the secrecy capacity of the Gaussian
wiretap channel, respectively [3], [4]. In cryptography, lattice
Gaussian distribution has already become a central tool in the
construction of many primitives. Specifically, Micciancio and
Regev applied it to propose the lattice-based cryptosystems
based on the worst-case hardness assumptions [5]. Meanwhile,
it also has underpinned the fully-homomorphic encryption
for cloud computing [6]. Algorithmically, lattice Gaussian
sampling with a suitable variance allows to solve the shortest
vector problem (SVP) and the closest vector problem (CVP);
for example, it has led to efficient lattice decoding for multi-
input multi-output (MIMO) systems [7].

Due to the central role of the lattice Gaussian distribution
playing in these fields, its sampling algorithms become an
important computational problem. Unfortunately, compared
to sampling from continuous Gaussian distributions, it is by
no means trivial to perform the sampling even from a low-
dimensional discrete Gaussian distribution. To address this
issue, the Gibbs sampling from Markov chain Monte Carlo
(MCMC) methods was firstly introduced to sample from lattice
Gaussian distribution by the evolution of Markov moves [8].
Moreover, the geometric ergodicity of Gibbs sampling for
lattice Gaussian distribution was also demonstrated, implying

an exponential convergence decay [9]. On the other hand,
in [10], the independent Metropolis-Hastings-Klein (IMHK)
sampling algorithm is proposed, which not only experiences
uniform ergodicity but also entails an accessible convergence
rate.

As a foremost sampling scheme in MCMC, Metropolis-
Hastings (MH) algorithm takes advantage of a proposal dis-
tribution which suggests a possible move and employs an
acceptance-rejection rule to make the decision for the Markov
move. In this paper, to further improve the convergence
performance, the slice sampling is introduced to sample from
lattice Gaussian distribution. In particular, based on IMHK,
auxiliary variables are employed in slice sampling to speed up
the convergence rate. Moreover, the Markov chain induced by
the proposed slice sampling is demonstrated to be uniformly
ergodic while its convergence rate is proven to be superior
to that of IMHK, making it an advanced choice for lattice
Gaussian sampling.

II. IMHK SAMPLING FOR LATTICE GAUSSIAN
DISTRIBUTION

Let matrix B = [b1, . . . ,bn] ⊂ Rn consist of n linearly
independent column vectors. The n-dimensional lattice Λ
generated by B is defined by

Λ = {Bx : x ∈ Zn}, (1)

where B is called the lattice basis. We define the Gaussian
function centered at c ∈ Rn for standard deviation σ > 0 as

ρσ,c(z) = e−
‖z−c‖2

2σ2 , (2)

for all z ∈ Rn. When c or σ are not specified, we assume that
they are 0 and 1 respectively. Then, the discrete Gaussian
distribution over Λ is defined as

DΛ,σ,c(x) =
ρσ,c(Bx)

ρσ,c(Λ)
=

e−
1

2σ2
‖Bx−c‖2∑

x∈Zn e
− 1

2σ2
‖Bx−c‖2

(3)

for all x ∈ Zn, where ρσ,c(Λ) ,
∑

Bx∈Λ ρσ,c(Bx) is just a
scaling to obtain a probability distribution.

In [11], Klein’s algorithm that samples from a Gaussian-like
distribution was proposed for lattice decoding. Specifically,
by sequentially sampling from the 1-dimensional conditional
Gaussian distribution DZ,σi,x̃i in a backward order from xn
to x1, the Gaussian-like distribution arising from Klein’s
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algorithm is given by

PKlein(x) =

n∏
i=1

DZ,σi,x̃i(xi) =
ρσ,c(Bx)∏n
i=1 ρσi,x̃i(Z)

. (4)

In [12], PKlein(x) has been demonstrated to be close to
DΛ,σ,c(x) within a negligible statistical distance if

σ ≥ ω(
√

log n) ·max1≤i≤n‖b̂i‖. (5)

Unfortunately, such a requirement of σ is sufficiently large,
rendering Klein’s algorithm inapplicable to most cases of
lattice Gaussian sampling.

On the other hand, from MCMC perspective, DΛ,σ,c(x)
can be viewed as a complex target distribution lacking direct
sampling methods, and the independent Metropolis-Hastings-
Klein (IMHK) sampling that fully exploits the potential of
MCMC was therefore proposed in [10]. In particular, given the
current Markov state Xt = x, PKlein(x) from Klein’s algorithm
is used to serve as the proposal distribution q(x,y) in IMHK:

q(x,y) = PKlein(y) =
ρσ,c(By)∏n
i=1 ρσi,ỹi(Z)

, (6)

where the generation of the state candidate y is actually
independent of x. Then, regarding to the state candidate y,
the acceptance ratio α is calculated by

α(x,y) = min
{

1,
π(y)q(y,x)

π(x)q(x,y)

}
= min

{
1,

∏n
i=1 ρσi,ỹi(Z)∏n
i=1 ρσi,x̃i(Z)

}
, (7)

where π = DΛ,σ,c. In the sequel, the decision for whether
accept Xt+1 = y or not is made based on α(x,y), thus
completing a Markov move.

Theorem 1 ([10]). Given the invariant lattice Gaussian dis-
tribution DΛ,σ,c, the Markov chain established by the IMHK
algorithm is uniformly ergodic:

‖P t(x, ·)−DΛ,σ,c(·)‖TV ≤ (1− δ)t (8)

with
δ =

ρσ,c(Λ)∏n
i=1 ρσi(Z)

(9)

for all x ∈ Zn.

Clearly, the exponential decay coefficient δ is the key to
determine the convergence rate. More specifically, the conver-
gence rate of a Markov chain is dominated by its spectral gap
γ = 1−|λmax|, where |λmax| 6= 1 denotes the largest eigenvalue
of the transition matrix [13].

III. SLICE SAMPLING FOR LATTICE GAUSSIAN
DISTRIBUTION

In this section, we present the conventional slice sampling in
MCMC and give the proposed slice-based sampling algorithm
for lattice Gaussian distribution. Note that the Markov chain
that we are concerned with here has a countably infinite state
space, i.e., the lattice Λ with x ∈ Zn.

Fig. 1. Illustration of a two-dimensional lattice Gaussian distribution and a
slice (blue plane) with u ≥ 0 over it.

A. Slice Sampling

The classical slice sampling was generalized by Neal in
[14]. In principle, it relies on the fact that uniformly sampling
from the region under the curve of a density function is
actually equal to drawing samples directly from that distri-
bution. Take a multi-dimensional target distribution π(x) as
an example, auxiliary variable u ≥ 0 is introduced to sample
from target distribution π(x) by sampling from the uniform
distribution over the set S = {(x, u) : 0 ≤ u ≤ π(x)} and
marginalizing out u coordinate. To achieve this, slice sampling
alternatively updates x and u from uniform distributions
p(x | u) ∼ Uni(S) and p(u | x) ∼ Uni(0, π(x)) respectively,
thus forming a valid Markov chain with joint distribution
Π(x, u). Consequently, samples of x can be easily drawn from
the marginal distribution π(x)/Z, where Z > 0 is a constant
scalar. To summarize, it follows that

1) Sample ut from the conditional distribution

p(ut | xt−1) ∼ Uni(0, π(xt−1)). (10)

2) Sample xt from the conditional distribution

p(xt | ut) ∼ Uni(Su), (11)

where Su = {x : π(x) ≥ u}.
Clearly, the samples of x are obtained by simply ignoring

the values of u while only uniform sampling is required over
the set Su. However, in many cases of interest, determining the
set Su may be tricky especially for multi-modal distributions.
Compared to the conventional Metropolis-Hastings (MH) sam-
pling, a salient feature of slice sampling is that the sampled
candidate x from (16) will be accepted as Xt = xt without un-
certainty. In this way, the underlying Markov chain effectively
avoids the risk of getting stuck, thus making the traverse of the
state space of the Markov chain more efficiently. Hence, if the
identity of Su can be carried out, then slice sampling becomes
preferable due to the considerable convergence gain. In fact,
as lattice Gaussian distribution DΛ,σ,c(x) is simply unimodal,
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finding the slice and sampling from it could be straightforward,
which motivates us to incorporate slice sampling into lattice
Gaussian distribution for a better sampling performance.

B. Proposed Sampling Algorithm

We now present the proposed sampling algorithm for lattice
Gaussian distribution. First of all, a Markov chain {Xt, Ut}∞t=0

with joint distribution Π(x, u) should be set up. Typically,
given the factorization of the target distribution

π(x) = DΛ,σ,c(x) = PKlein(x) · l(x) (12)

with

l(x) ,

∏n
i=1 ρσi,x̃i(Z)

ρσ,c(Λ)
, (13)

we can establish the joint distribution as

Π(x, u) = PKlein(x) · Iu<l(x)(x), (14)

where IA(x) is the indicator function of the set A. More
precisely, the conditional uniform distribution of u lies on
the interval (0, l(x)) by incorporating u and l(x) together.
By doing this, u and x are iteratively updated by respectively
sampling from uniform distribution on (0, l(x)) given x and
from PKlein(x) restricted to the set Au = {x : l(x) > u}, i.e.,

1) Sample ut from the conditional distribution

p(ut | xt−1) ∼ Uni(0, l(xt−1)). (15)

2) Sample xt from the conditional distribution

p(xt | ut) ∼ P
Aut
Klein(x), (16)

where x ∈ Aut = {x : l(x) > ut}.
Intuitively, sampling from PKlein(x) can be efficiently imple-

mented by Klein’s algorithm with complexity O(n2), whereas
the restriction of x ∈ Aut can be simply addressed by resorting
to rejection sampling. If x /∈ Aut , then repeat the sampling
until a qualified candidate is found for xt. Interestingly, the
numerator in (13) has already calculated by Klein’s algorithm
during the sampling, which means a low computational cost
by incurring rejection sampling. Note that different from
IMHK, the acceptance-rejection mechanism is absent in the
proposed slice sampling, which naturally leads to complexity
reduction and efficiency enhancement. We also emphasize that
the framework of slice sampling actually contributes several
degrees of freedom: the choice of the conditional distribution
of the auxiliary variable p(ut | xt−1), the decomposition way
of DΛ,σ,c(x), and the update schedule scheme between x and
u, which could be further investigated in future.

Here, the factorization based on Klein’s probability is ap-
plied, which offers a feasible way to merge l(x) together
with the uniform sampling of u. Clearly, Klein’s distribution
PKlein(·) is unimodal, making it easy in tackling with the slice
interval problem. Meanwhile, compared to the target distri-
bution DΛ,σ,c(·), PKlein(·) is heavier-tailed. This is helpful to
avoid getting stuck in the tails for long periods since l(xt) will
be small and set Aut will have large probability, thus resulting
in a small rejection rate. Also, for convenience, the systematic

Algorithm 1 Sliced Lattice Gaussian Sampling Algorithm
Input: B, σ, c,x0, tmix(ε);
Output: x ∼ DΛ,σ,c;

1: for t =1,2, . . . , do
2: calculate l(xt−1) according to (13)
3: uniformly draw ut from the interval (0, l(xt−1))
4: for k =1,2, . . . , do
5: sample xt from Pklein(x) shown in (4)
6: calculate l(xt) according to (13)
7: if l(xt) > ut then
8: break
9: end if

10: end for
11: if t ≥ tmix(ε) then
12: output xt
13: end if
14: end for

update scheme that updates x and u sequentially is considered
through the context.

IV. CONVERGENCE ANALYSIS

A. Uniform Ergodicity

Consider the marginal distribution π(x) = DΛ,σ,c(x) with
respect to the mixed type distribution Π(x, u), clearly, such a
marginal chain {X1,X2, ...} regarding to x is still a valid
Markov chain, which is reversible (also known as detail
balance) due to

π(xt)P (xt,xt+1)= π(xt)

∫
Π(ut+1|xt)Π(xt+1|ut+1)dut+1

=

∫
Π(xt|ut+1)Π(ut+1|xt)Π(xt+1|ut+1)dut+1

=π(xt+1)

∫
Π(ut+1|xt)Π(xt|ut+1)dut+1

=π(xt+1)

∫
Π(ut|xt+1)Π(xt|ut)dut

=π(xt+1)P (xt+1,xt). (17)

Based on the sub-Markov chain {X1,X2, ...}, its transition
probability can be derived as

PSlice(xt,xt+1) =

∫
p(xt+1|ut+1)p(ut+1|xt)dut+1

=

∫
P
Aut+1

Klein (xt+1)p(ut+1|xt)dut+1

=
1

l(xt)

∫ l(xt)

0

P
Aut+1

Klein (xt+1)dut+1

(a)
=

1

l(xt)

∫ l(xt)

0

PKlein(xt+1)Iut+1<l(xt+1)(xt+1)

PKlein(Aut+1)
dut+1

=
PKlein(xt+1)

l(xt)

∫ l(xt)∧l(xt+1)

0

1

PKlein(Aut+1
)
dut+1

=
PKlein(xt+1)

l(xt)

∫ l(xt)∧l(xt+1)

0

βdut+1 (18)
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where β , 1/PKlein(Aut+1
), (a) recalls Bayes’ theorem and

“∧” yields the smaller choice between two terms.
Insight into β, it can be further expressed as

β =
1∑

x∈{x:l(x)>ut+1} PKlein(x)
. (19)

Intuitively, β = 1 happens if and only if ut+1 is selected to be
0. However, since the term l(xt) ∧ l(xt+1) in the integration
in (18) is lower bounded by

l(x) ≥
∏n
i=1 ρσi,1/2(Z)

ρσ,c(Λ)
, (20)

for all x ∈ Zn, the following relationship holds∫ l(xt)∧l(xt+1)

0

βdut+1 >

∫ l(xt)∧l(xt+1)

0

dut+1. (21)

Therefore, we can rewrite PSlice(xt,xt+1) as

PSlice(xt,xt+1)>
PKlein(xt+1)

l(xt)

∫ l(xt)∧l(xt+1)

0

dut+1

=PKlein(xt+1)

[
1 ∧ l(xt+1)

l(xt)

]
=

[
PKlein(xt+1)∧ π(xt+1)PKlein(xt)

π(xt)

]
=PKlein(xt+1) · α(xt,xt+1)

=PIMHK(xt,xt+1)

(b)

≥δ · π(xt+1), (22)

where the inequality (b) follows the fact that [5]

PKlein(x)

π(x)
=

ρσ,c(Λ)∏n
i=1 ρσi,x̃i(Z)

≥ δ (23)

for all Markov state x ∈ Zn.
Actually, PSlice(xt,xt+1) > δ · π(xt+1) for all the Markov

state is accordance with the definition of small set in literatures
of MCMC [13]. Furthermore, given (22), for a reversible
Markov chain, it is straightforward to demonstrate its uniform
ergodicity of the underlying Markov chain through coupling
technique. Here, for simplicity, the related proof is omitted
while more details about the proof can be found in [10], [15].

Theorem 2. Given the invariant lattice Gaussian distribution
DΛ,σ,c, the sub-chain {X1,X2, ...} established by the pro-
posed slice sampling algorithm is uniformly ergodic as:

‖P t(x, ·)−DΛ,σ,c(·)‖TV < (1− δ)t (24)

for all x ∈ Zn.

B. Convergence Improvement

Similar to IMHK sampling, the proposed slice sampling
for lattice Gaussian distribution is uniformly ergodic as well,
where the convergence advantage can be found from

PSlice(xt,xt+1) > PIMHK(xt,xt+1). (25)

For a better understanding, we now recall the concept of
Peskun ordering to verify the convergence improvement of the
proposed slice sampling. Specifically, with respect to sampling
from DΛ,σ,c(x), it always follows that

PSlice(Xt=x,Xt+1=y) > PIMHK(Xt = x,Xt+1 = y) (26)

for x 6= y, which means each off-diagonal element in
transition matrix PSlice is always larger than that of PIMHK.
From literatures of MCMC, such a case is known as Peskun
ordering written by

PSlice(Xt,Xt+1) � PIMHK(Xt,Xt+1). (27)

We then invoke the following Theorem to show the conver-
gence performance from Peskun ordering.

Theorem 3 ([16]). Suppose P1 and P2 are reversible transi-
tion matrices with the same invariant distribution and P2 ≥
P1. Then, for all any function f ∈ L2

0(π) = {f ∈ L2(π) :
E{f} = 0}, we have

v(f,P1) ≥ v(f,P2). (28)

Here, L2(π) denotes the set of all function f(·) that are
square integrable with respect to π and v(f,P) is defined as
sampler’s asymptotic efficiency by

v(f,P) = lim
n→∞

1

n
var

{
n∑
t=1

f(Xt)

}
, (29)

where X0, . . . ,Xt establish the corresponding Markov chain.
Clearly, from Theorem 3, the proposed slice sampling has
a smaller asymptotic variance of sample path averages than
IMHK for every function that obeys the central limit theorem
(CLT). Theoretically, the insight behind Peskun ordering is
that a Markov chain has smaller probability of remaining in the
same position explores the state space more efficiently. Hence,
convergence performance is improved by shifting probabilities
off the diagonal of the transition matrix, which corresponds to
decreasing the rejection probability of the proposed moves.
Moreover, in [17], Mira shows that if two transition matrices
are Peskun ordered, then the corresponding eigenvalues are
also ordered, i.e.,

|λmax,1| ≥ |λmax,2|, (30)

where convergence rate in uniform ergodicity is exactly char-
acterized by the largest eigenvalue |λmax| 6= 1. Therefore,
we can easily arrive at the following result to show the
convergence gain of the proposed slice sampling.

Corollary 1. The proposed slice sampling algorithm is more
efficient than the IMHK algorithm due to a better convergence
rate by

|λmax|Slice ≤ |λmax|IMHK ≤ 1− δ (31)

for all x ∈ Zn.

Hence, the mixing time of the Markov chain induced by
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Fig. 2. Bit error rate versus the number of Markov moves for the uncoded
8× 8 MIMO system using 16-QAM.

slice sampling is given by

tmix(ε) =
lnε

ln |λmax|Slice
< (−lnε) ·

(
1

1− |λmax|Slice

)
, ε < 1

(32)
where we use the bound lnc < c− 1 for 0 < c < 1.

From (18), the superiority of the proposed slice sampling
over IMHK is partially determined by β > 1. More specifi-
cally, it is straightforward to see that PKlein(Aut+1

) decreases
with the improvement of σ. This is actually in line with the
fact that a larger σ corresponds to a faster convergence rate.

V. SIMULATIONS

In this section, the performances of MCMC-based sampling
schemes are exemplified in the context of MIMO decoding. By
sampling from DΛ,σ,c, the closest lattice point Hx in MIMO
detection problem

c = Hx + w. (33)

will be returned with the highest probability, which implies an
effective approach to lattice decoding. More precisely, when
MCMC method is applied for sampler decoding, its decoding
performance can be evaluated by CVP decoding complexity
(i.e., the number of Markov move), which is defined by [15]

Ccvp ,
tmix

DΛ,σ,c(xcvp)
, (34)

where a smaller Ccvp naturally corresponds to a better decod-
ing performance. Because of this, we examine the decoding
error probabilities to assess the convergence rates. Here, the
ith entry of the transmitted signal x, denoted as xi, is a
modulation symbol taken independently from an M -QAM
constellation X with Gray mapping. The channel matrix H
contains uncorrelated complex Gaussian fading gains with unit
variance and remains constant over each frame duration and
w is the Gaussian noise with zero mean and variance σ2

w.
In Fig. 2, the BERs of MCMC sampling detectors are

evaluated against the number of Markov moves (i.e., iterations)

in a 8 × 8 uncoded MIMO system with 16-QAM. The SNR
is fixed as Eb/N0 =15 dB. The standard deviation is set as
σ = mini ‖b̂i‖/(2

√
π) for both slice sampling and IMHK

sampling while we apply σ = 3 for Gibbs sampling (The
performance of σ = 2 for Gibbs sampling can be found in
[15], which is not as good as that of σ = 3). Clearly, the
performances of all the MCMC detectors improve with the
number of Markov moves. With the increasing number of trial
samples, better decoding performance can be obtained by the
proposed slice sampling algorithm. Here, LLL reduction is
applied to output the better initial state for Gibbs sampler. As
for IMHK and slice samplers, LLL can be further adopted to
the Markov moves for a better decoding performance.
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