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Abstract—Sampling from the lattice Gaussian distribution has
emerged as a key problem in coding, decoding and cryptography.
In this paper, the Gibbs sampling from Markov chain Monte
Carlo (MCMC) methods is investigated for lattice Gaussian
sampling. Firstly, the error function of random scan Gibbs
sampling is derived, and we show that it is partially determined
by the selection probabilities over the sampling components.
Then, in order to minimize the error function for a better
sampling performance, a reinforcement learning mechanism is
proposed for random scan Gibbs sampling to adaptively update
the selection probabilities by learning from the random samples
generated along with the chain. Finally, simulation results based
on MIMO detection are presented to confirm the performance
gain at the expense of limited complexity cost.

Index Terms—Lattice Gaussian sampling, reinforcement learn-
ing, Markov chain Monte Carlo, lattice coding and decoding,
MIMO detection.

I. INTRODUCTION

Recently, lattice Gaussian distribution has become a com-
mon theme in various research fields. In mathematics, Ba-
naszczyk used it to prove the transference theorems for lattices
[1]. In coding, it was applied to achieve the full shaping
gain for lattice coding [2], and to achieve the capacity of the
Gaussian channel and the secrecy capacity of the Gaussian
wiretap channel, respectively [3]. In cryptography, lattice
Gaussian distribution has already become a central tool in
the construction of many primitives [4]. Meanwhile, it also
has underpinned the fully-homomorphic encryption for cloud
computing [5]. Algorithmically, lattice Gaussian sampling
with a suitable variance allows to solve the shortest vector
problem (SVP) and the closest vector problem (CVP); for
example, it has led to efficient lattice decoding for multi-input
multi-output (MIMO) systems [6].

Due to the central role of the lattice Gaussian distribution
playing in these fields, its sampling algorithms become an im-
portant computational problem. However, it is rather difficult
to perform the sampling even from a low-dimensional discrete
Gaussian distribution. To this end, Markov chain Monte Carlo
(MCMC) methods were introduced as an alternative way,
which attempts to sample from lattice Gaussian distribution
by building a Markov chain [7]. Typically, after a burn-
in stage, which is measured by the mixing time in total
variance distance, the Markov chain will step into a stationary

distribution, where samples from the target distribution can be
successfully obtained thereafter. Specifically, Gibbs sampling
from MCMC was firstly adopted to lattice Gaussian sampling,
which has an exponential convergence rate [8]. On the oth-
er hand, the independent Metropolis-Hastings-Klein (IMHK)
sampling algorithm is proposed, which not only experiences
uniform ergodicity but also entails an accessible convergence
rate [9]. In addition, by introducing auxiliary variables into
the sampling process, the sliced sampling is able to achieve a
better convergence performance than IMHK [10].

In this paper, to improve the sampling performance of
MCMC-based lattice Gaussian sampling, the random scan
Gibbs sampling is studied. We firstly show that its error
function is partially determined by the selection probabilities
over sampling components. Then, we introduce reinforcement
learning to random scan Gibbs sampling, which optimizes the
selection probabilities in the way of learning from the gener-
ated samples. Typically, with respect to random scan Gibbs
sampling, a whole framework of reinforcement learning is
established with specific ingredients such as “state”, “action”,
“policy” and “reward”. Overall, our work is a good attempt
for MCMC in cooperation with reinforcement learning, where
considerable potential can be well exploited by means of
learning.

II. GIBBS SAMPLING FOR LATTICE GAUSSIAN
DISTRIBUTION

Let matrix B = [b1, . . . ,bn] ∈ Rn×n consist of n linearly
independent column vectors. The n-dimensional lattice Λ
generated by B is defined by

Λ = {Bx : x ∈ Zn}, (1)

where B is called the lattice basis. We define the Gaussian
function centered at c ∈ Rn for standard deviation σ > 0 as

ρσ,c(z) = e−
‖z−c‖2

2σ2 , (2)

for all z ∈ Rn. When c or σ are not specified, we assume that
they are 0 and 1 respectively. Then, the discrete Gaussian
distribution over Λ is defined as

DΛ,σ,c(x) =
ρσ,c(Bx)

ρσ,c(Λ)
=

e−
1

2σ2
‖Bx−c‖2∑

x∈Zn e
− 1

2σ2
‖Bx−c‖2

(3)
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Algorithm 1 Gibbs sampling for lattice Gaussian distribution
Input: B, σ, c,x0, tmix(ε)
Output: x ∼ DΛ,σ,c

1: for t =1,2, . . . do
2: randomly choose the index i based on [α1, . . . , αn]
3: sample xi from Pi(xi|x[−i]) shown in (4)
4: update x with the sampled xi and let Xt = x
5: if t ≥ tmix(ε) then
6: output the state of Xt

7: end if
8: end for

for all x ∈ Zn, where ρσ,c(Λ) ,
∑

Bx∈Λ ρσ,c(Bx) is just a
scaling to obtain a probability distribution.

With respect to Gibbs sampling for lattice Gaussian distri-
bution, each coordinate of x is sampled from the following
1-dimensional conditional distribution

P (xi|x[−i])=DΛ,σ,c(xi|x[−i])=
e−

1
2σ2
‖Bx−c‖2∑

xi∈Z e
− 1

2σ2
‖Bx−c‖2

, (4)

where 1 ≤ i ≤ n denotes the coordinate index of x,
x[−i] , [x1, . . . , xi−1, xi+1, . . . , xn]T . During this univariate
sampling, the other n−1 variables contained in x[−i] are leav-
ing unchanged. There are various scan schemes to proceed the
component updating. Among them, random scan is the basic
one, which randomly chooses the coordinate index i from a set
of selection probabilities α = [α1, . . . , αn] with

∑n
i=1 αi = 1

and 0 < αi < 1. From it, the transition probability of the
Markov chain in random scan Gibbs sampling is a weighted
sum of the full conditional probabilities:

P (Xt,Xt+1) =
n∑
i=1

αiPi(xi|x[−i]), (5)

where t is the index of Markov moves. Besides random scan,
the extension to other scan strategies is possible. For example,
systematic scan proceeds the component update in a fixed
order (e.g., from xn to x1), thus completing a full iteration.
In fact, it has been shown in [11] that systematic scan can be
viewed as a special case of random scan with uniform selection
probabilities αi = 1

n , where the mixing times of these two
scan schemes do not differ by more than a polynomial factor.
Nevertheless, considerable potential does exist in random scan
by the sophisticated selection probabilities α.

Theorem 1 ([12]). Given the target lattice Gaussian distri-
bution π = DΛ,σ,c, the Markov chain induced by random
scan Gibbs sampling converges to the stationary distribution
in total variation (TV) distance as t→∞:

lim
t→∞
‖P t(x; ·)− π‖TV = 0. (6)

Algorithm 1 illustrates the random scan Gibbs sampling for
lattice Gaussian distribution. The initial Markov state xinitial
can be chosen from the state space Zn arbitrarily, while tmix(ε)
denotes the mixing time of the Markov chain.

III. ERROR FUNCTION OF RANDOM SCAN GIBBS
SAMPLING

From (5), random scan Gibbs sampling is characterized by
the selection probabilities α, which determines the percentage
of visits to a sampling component of x. In order to specify
the optimal choice of α for a better sampling performance,
a measurement known as error function is studied in the fol-
lowing, which offers an intuition about selection probabilities
from the point of view of statistic theory.

Suppose interest lies in estimating µ = Eπ(h(x)), π =
DΛ,σ,c, where E(·) stands for the expectation and h(·) ∈
L2

0(π). Here, L2(π) is the Hilbert space of square integrable
functions with respect to π so that L2

0(π) , {h(x) :
E[h(x)] = 0,Var[h(x)] <∞} denotes the subspace of L2(π)
consisting of functions with zero mean relative to π. Then the
estimation by sampling should be µ̂ = 1

T

∑T
t=1 h(Xt), which

would be sufficiently close to µ via the law of large numbers.
In order to measure the closeness between µ̂ and µ, the error
function W (α, h) in terms of the mean squared error loss is
defined as

W (α, h) = Eπ[{µ̂− µ}2]. (7)

Therefore, the optimal selection probabilities α will generate
samples such that µ̂ is as close to µ as possible on average,
which results in a minimum value W (α, h). In particular,
given h ∈ L2

0(π), the optimal choice of αopt can be expressed
as

αopt =arg min
α

W (α, h)

=arg min
α

{
lim
T→∞

Varπ

(
1

T

T∑
t=1

h(Xt)

)}

=arg min
α

{
Varπ(h(x))+2

∞∑
t=1

covπ
(
h(X0),h(Xt)

)}
(8)

where Var(·) and cov(·, ·) represent the variance and the
covariance respectively.

However, it is difficult to figure out αopt who minimizes the
error function shown above. Alternatively, we try to minimize
the maximum error over the possible function h ∈ L2

0(π) by
optimizing the selection probabilities α

αalt = arg min
α

{
sup

h∈L2
0(π),‖h‖=1

W (α, h)

}
, (9)

where the requirement of ‖h‖ = 1 (i.e., Var(h) = 1) is added
for standard normalization over h(·). Intuitively, compared to
αopt in (8), αalt is actually a suboptimal solution. As shown
in (8), Varπ(h(X)) in W (α, h) is independent of selection
probabilities α. Besides Varπ(h(X)), W (α, h) is actually a
sum of the first t-lag covariances. Hence, the formation of
αalt in (9) can be simplified as

αalt=arg min
α

{
sup

h∈L2
0(π),‖h‖=1

[∞∑
t=1

covπ
(
h(X0),h(Xt)

)]}
. (10)

To further specify the covariance items in (10), we now
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invoke the following Lemma in [13].

Lemma 1. Let X0,X1, . . . be samples generated by random
scan Gibbs sampling under stationary distribution and i the
random variable representing the index randomly chosen from
the selection probabilities α. For h ∈ L2

0(π), then it follows

covπ(h(X0, h(Xt)) = Var[E(· · ·E(E(h(x)|i,x−i)|x)| · · · )]
(11)

with t conditional expectations taken alternatively on {i,x−i}
and x.

It is noteworthy that the infinite sum asymptotic covariance
in (10) is unnecessary in practice. Due to the convergence of
Markov moves, the term covπ(h(X0), h(Xt)) decays grad-
ually along with t, where only a few order approximation is
sufficient to offer a good metric estimation. Here, the first order
is applied and we can easily arrive at the following result

W(α,h)≈Varπ(h(x)) + 2covπ
(
h(X0), h(X1)

)
=Varπ(h(x))+2

n∑
i=1

αiVarπ(E(h(x|x−i))), (12)

which leads to an approximation of the desired selection
probabilities α in (10)

α∗=arg min
α

{
sup

h∈L2
0(π),‖h‖=1

[
n∑
i=1

αiVarπ(E(h(x|x−i)))

]}
.

(13)
The expression α∗ in (13) provides a straightforward way to

seek the desired choice of selection probabilities. Specifically,
to compute the term Varπ(E(h(x|x−i))) in (13), the generated
samples along with the chain can be employed to obtain the
approximations, i.e.,

α̂∗ =arg min
α

{
sup

h∈L2
0(π),‖h‖=1

[
n∑
i=1

αiV̂ar(E(h(x|x−i)))

]}
.

(14)
Note that because of

Varπ(E(h(x|x−i)))=Eπ[E2(h(x)|x−i)]−[Eπ[E(h(x)|x−i)]]2

=Eπ[E2(h(x)|x−i)]−[E(h(x))]2 (15)

where (15) holds according to the law of total probability
for expectation (i.e., E[E(A|B)] = E(A)), the approximation
V̂ar(E(h(x|x−i))) can be estimated by

V̂ar(E(h(x|x−i)))=Êπ[E2(h(x)|x−i)]− [Ê(h(x))]2 (16)

in practice.
Since the generation of samples along with the chain is

also determined by the choice of selection probabilities α,
the update of α should be carried out alternately along with
the samples rather than be performed only once. Typically,
given (14), let α be updated every M iterations while each
iteration contains n-times univariate sampling to contribute the
samples. Then, based on the samples, V̂ar(E(h(x|x−i))) can
be calculated to optimize α by (14). Here, the iteration of
random scan Gibbs sampling is comparable to the Markov

move of systematic scan Gibbs sampling, who updates all the
n components of x by univariate sampling during a single
Markov move.

Theoretically, such a Markov mixing with dynamical up-
dating α corresponds to adaptive MCMC [14], where α
gradually converges to α̂∗. Although the underlying chain
interrupted by the update of α is not Markov, convergence
in total variation norm is still obtained as the adaptive chain
is approaching a chain induced by the random scan Gibbs
sampling characterized by selection probabilities α [15]. In
practice, one can update α for a few times (which can be
viewed as a burn-in stage while the convergence to the target
distribution is still maintained) and then continue the Markov
chain with a fixed α.

IV. REINFORCEMENT LEARNING-AIDED RANDOM SCAN
GIBBS SAMPLING

In order to effectively determine the optimized α, we intro-
duce reinforcement learning into random scan Gibbs sampling,
which dynamically updates α in a learning way. As one of
the basic machine learning paradigms, reinforcement learning
has been widely applied in various research fields, which
enables an agent to learn an optimal or near-optimal policy
that maximizes the defined “reward function” [16]. Typically,
it resorts to a framework which defines the interaction between
the agent and the environment in terms of “states”, “actions”,
“rewards”, “policy” while the agent learns to achieve the goal
in the uncertain and complex environment.

From the reinforcement learning point of view, the sam-
ples along with the chain, i.e., {X(j−1)M+1, . . . ,XjM},
1 ≤ j ≤ J account for the agent “state”, where J is the
number of times to update α. The sampling operations to
generate these samples based on (4) correspond to the “ac-
tion”. Given the state {X(j−1)M+1, . . . ,XjM}, the summation∑n
i=1 αiVarπ(E(h(x|x−i))) in (13) can be used to describe

the “reward” as

R = −
n∑
i=1

αiVarπ(E(h(x|x−i))), (17)

which is calculated through the approximation way as

R̂ = −
n∑
i=1

αir(i) (18)

with r(i) = V̂ar(E(h(x|x−i))). Clearly, a large summation∑n
i=1 αiV̂ar(E(h(x|x−i))) naturally results in a small reward

R̂(α). Finally, the selection probabilities α serve as the “pol-
icy”, which determines the learning agent’s way of behaving
at a given time. Over all, this establishes a framework of
reinforcement learning for random scan Gibb sampling while
the policy α is the learning target of the agent.

On the other hand, given the reward R̂ in (18), the learning
mechanism has a strong motivation to assign a large enough
value (i.e., αi ≈ 1) to the smallest value r(i), so as to make
the reward as large as possible. Unfortunately, this breaks the
Markov mixing of Gibbs sampling as the univariate sampling
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Algorithm 2 Reinforcement learning-aided MCMC algorithm
for lattice Gaussian sampling
Input: B, σ, c,xinitial, τ,M, J,α0, T
Output: x ∼ DΛ,σ,c

1: for j = 1, . . . , J do
2: for m =1. . . ,M do
3: for k = 1, . . . , n do
4: randomly choose the index i based on αj−1

5: sample xi from P (xi|x[−i]) shown in (4)
6: end for
7: end for
8: for i = 1, . . . , n do
9: compute r(i) = V̂ar(E(h(x|x−i))) in (16)

10: update Qj(i) based on (20)
11: end for
12: update αj based on (19)
13: end for
14: for t = 1, . . . , T do
15: for k = 1, . . . , n do
16: randomly choose the index i based on αJ

17: sample xi from P (xi|x[−i]) shown in (4)
18: end for
19: output the state of Xt = x
20: end for

concerns only one coordinate of x, which is harmful to the
realization of lattice Gaussian sampling. To this end, although
a few choices of i are highly preferred with large values αi, the
other choices of i also should be visited reasonably. Actually,
this is similar to the exploration-exploitation dilemma in
reinforcement learning: the agent has to exploit what it already
knows in order to obtain the reward, but it also has to explore
to make better action selections in the future.

In order to flexibly adjust the trade-off within α, following
the softmax algorithm in the classic scenario of multi-arm
bandit, we use Boltzmann distribution to characterize the
policy α, i.e.,

αi =
e−

Q(i)
τ∑n

i=1 e
−Q(i)

τ

(19)

with initial selection probabilities α0 = [ 1
n , . . . ,

1
n ]. Here, τ >

0 is known as the temperature and a larger τ means a more
uniform distribution of α, Q(i) is the average reward with
respect to coordinate index i. For j-th time to update α (i.e.,
αj), Qj(i) updates itself by

Qj(i) =
Qj−1(i) · (j − 1) + r(i)

j
(20)

with Q0(i) = 0 for 1 ≤ i ≤ n. According to (19), a small
αji is assigned regarding to a large value V̂ar(E(h(x|x−i))),
so as to improve the reward R̂. Then, based on the updated
αj , the underlying chain continues and another M iterations
are carried out to get samples for updating Qj+1(i). Other
allocation schemes about α also work, and the reason we use

Boltzmann distribution is due to its flexibility by tuning τ .
To summarize, the proposed reinforcement learning-aided

MCMC algorithm for lattice Gaussian sampling is outlined
in Algorithm 2. As can be seen, the optimization of α by
reinforcement learning from steps 1 to 13 works as a burn-in
process for the Markov mixing. After that, from step 14 to
20, random scan Gibbs sampling continues but with a fixed
selection probabilities αJ . We point out the convergence in
total variation norm to the target lattice Gaussian distribution
is guaranteed in both these two stages. Overall, the total
number of iterations of the proposed reinforcement learning-
aided MCMC algorithm is K = J ·M + T , and it is flexible
in choosing M as well as the number of times to update α
(i.e., J). The larger M , the more precise of the approximation
V̂ar(E(h(x|x−i))). Accordingly, a large M will lead few
changes in the update of α, thus leading to a small size of J .
Additionaly, restricted classes of function h is also helpful
to the efficient computation and here we apply the linear
function h(x) =

∑n
i=1 αixi with respect to Gaussian variates

by following the setup in [17].

V. SIMULATIONS

In this section, the performance of the proposed reinforce-
ment learning-aided MCMC algorithm for lattice Gaussian
sampling is exemplified in the scenario of the uplink signal
detection in MIMO communications.

Specifically, simulation results for an n× n MIMO system
with a square channel matrix containing i.i.d. Gaussian entries
are presented. The i-th entry of the transmitted signal x,
denoted as xi, is a modulation symbol taken independently
from a Q2-QAM constellation X ∈ Z with Gray mapping.
Meanwhile, it is assumed a flat fading environment, where
the channel matrix H contains uncorrelated complex Gaussian
fading gains with unit variance and remains constant over each
frame duration. Let Eb represent the average power per bit at
the receiver, then Eb/N0 = n/(log2(M)σ2

w) holds where M
is the modulation level and σ2

w is the noise power. Then, we
can construct the system model as

c = Hx + w, (21)

and this decoding problem of x̂ = arg min
x∈Xn

‖c−Hx‖2 can be

solved by sampling over the discrete Gaussian distribution

PΛ(H),σ,c(x) =
e−

1
2σ2
‖Hx−c‖2∑

x∈Xn e
− 1

2σ2
‖Hx−c‖2

(22)

because the optimal solution has the largest probability making
it most likely be encountered by sampling. For this reason,
we examine the decoding error probabilities to compare the
sampling performance of Markov chains.

In Fig. 1, the bit error rates (BERs) of the proposed
reinforcement learning-aided MCMC sampling detectors are
evaluated against the number of iterations in a 8× 8 uncoded
MIMO system with 16-QAM. Here, we use LLL reduction-
aided SIC decoding serves as a performance baseline for a
better comparison, where the trade-off coefficient 1/4 < η < 1
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Fig. 1. Bit error rate versus average SNR per bit for the uncoded 8 × 8
MIMO system using 16-QAM.

in Lovász condition is set as 0.99 for a relatively orthogonal
lattice basis. Based on it, the decoding result of SIC-LLL i.e.,
xSIC-LLL serves as the starting point of the following MCMC
sampling schemes. On the other hand, the performance of ML
decoding, which is realized by sphere decoding (SD) to solve
the closest vector problem (CVP) in (21) by enumerations
is also given as a baseline. Clearly, there is a substantial
performance gap between lattice reduction-aided decoding
scheme and sampling decoding schemes. Specifically, with the
standard deviation σ = mini ‖ĥi‖ /(2

√
π), under the same

number of iterations K = 50, systematic scan Gibbs sampling
is comparable to the random scan Gibbs sampling with equal
selection probabilities α = [ 1

n , . . . ,
1
n ]. This is in line with

the fact that systematic scan can be viewed as a special case
of random scan with even choices of being visited. Although
systematic scan is preferred due to easy implementation in
hardware, random scan has more potential to be exploited by
optimizing the selection probabilities α.

Clearly, the proposed reinforcement learning-aided MCMC
sampling achieves a better decoding performance than the
standard random scan Gibbs sampling under the same it-
erations. This is because the selection probabilities α are
optimized via the criterion of error function, which is imple-
mented according to reinforcement learning by learning from
the random samples generated along with the chain. Here,
we set M = 10, J = 2, T = 30 for the case of K = 50,
and M = 20, J = 3, T = 40 for the case of K = 100,
and τ = 1 for both cases. To calculate V̂ar(E(h(x|x−i)))
in (16), all the samples generated by the univariate sampling
at each Markov moves are employed. As expected, with
the increase of Markov moves, the decoding performance
improves gradually as the chain is more and more approaching
the target distribution. On the other hand, we also observe
that the reinforcement learning-aided MCMC sampling is not
significantly slower than the standard random scan. This is

easy to understand because the former only performs the
update of α for J times while other operations except the
update are the same with random scan Gibbs sampling. In
particular, with EbN0 = 14dB, the reinforcement learning-
aided MCMC sampling takes 0.186 second when selection
probabilities α are updated while 0.0151 second are used
by the operations of each standard iteration. Considering the
limited cost of update, the extra complexity within it turns out
to be negligible.
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