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Abstract—Distributed signal processing based on the decentral-
ized architecture plays an important role in the next generation
of wireless communications. In this paper, we propose a model-
driven distributed WMMSE algorithm (MDD-WMMSE) for
downlink massive MIMO systems. The proposed MDD-WMMSE
is model-driven, which is designed based on a distributed version
of the traditional WMMSE algorithm. Specifically, each distribut-
ed unit (DU) in it has a local private network and calculates
in parallel, while the related distributed training is achieved
by simply exchanging the local information. Simulation results
show that the proposed MDD-WMMSE achieves competitive
performance compared to the centralized WMMSE algorithm
but with much lower complexity.

Index Terms—Distributed precoding, massive MIMO, deep
unfolding, distributed learning.

I. INTRODUCTION

The celebrated weighted minimum mean squared error
(WMMSE) algorithm [1], [2] has been widely applied in
the downlink massive multiple-input multiple-output (MIMO)
systems due to its rapid convergence to the stationary point
of the maximum weighted sum rate problem. Moreover, with
respect to WMMSE, a lot of deep learning methods have
been proposed. Among them, some black box networks such
as deep neural network (DNN) [3] and convolutional neural
network (CNN) [4] have been applied to approach the perfor-
mance of WMMSE with lower complexity. Meanwhile, anoth-
er model-driven learning method named as deep unfolding is
also applied to build more explainable networks by unfolding
the iterations of some reformulated WMMSE algorithms [5],
[6], which is also be extended to the rate-splitting multiple
access (RSMA) scheme [7].

However, as the system dimension increases, the traditional
centralized architecture becomes unaffordable due to the high
demands for communication bandwidth and computing power
of the central unit (CU) [8]. To solve it, some distributed
precoder networks based on decentralized architecture have
been proposed. In particular, two distributed network based on
horizontal federated learning (FL) and vertical FL are designed
in [9] for precoder design in cell-free MIMO systems. Never-
theless, a performance gap between these distributed networks
and WMMSE still exists. In [10], a distributed-learning-based
uplink hybrid beamformer is proposed, where the network
is constructed by establishing communications among users,
access points, and the CU.
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In this paper, we propose a distributed model-driven pre-
coder named MDD-WMMSE for downlink massive MIMO
systems. Specifically, the proposed MDD-WMMSE is built on
a distributed version of WMMSE, where each DU trains its
network in a parallel distributed manner by exchanging local
information. Simulation results show that the proposed MDD-
WMMSE has comparable performance and lower complexity
compared to the traditional WMMSE algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a massive MIMO system with M antennas base
station (BS) serving K users, where each user has N receiving
antennas. Let sk ∈ Cd denote the signal vector transmitting to
user k ∈ K = {1, ...,K}, where d represents the size of the
transmission data streams. Meanwhile, it is also assumed that
the signal vectors transmitted to different users are independent
with zero mean and E

[
sksHk

]
= I. Define Hk ∈ CN×M

and Vk ∈ CM×d as the channel matrix in Rayleigh fading
channel model and precoding matrix between BS and user k,
respectively. Then, the receive signal yk at k-th user is

yk = HkVksk +

K∑
m=1,m 6=k

HkVmsm + nk, (1)

where nk ∈ CN×1 is the additive white Gaussian noise
(AWGN) with CN (0, σ2

kI). Then, the signal-to-interference-
plus-noise ratio (SINR) of the k-th user is given by

SINRk=HkVkVH
k HH

k

 K∑
m 6=k

HkVmVH
mHH

k +σ2
kI

−1

, (2)

which leads to the downlink achievable rate of user k as

Rk = log det(I + SINRk). (3)

Clearly, based on Rk, precoding aims to maximize the weight-
ed sum rate R =

∑K
k=1 αkRk under the power constraint, i.e.,

max
{Vk}k∈K

R =

K∑
k=1

αkRk

s.t. Tr

(
K∑

k=1

VkVH
k

)
≤ P,

(4)

where αk is the weight of user k and P denotes the total
transmit power budget at the transmitter. Since such a problem
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is non-convex and NP-hard, it is usually converted to the
following equivalent formation [1], [2]

min
{Uk,Wk,Vk}k∈K

K∑
k=1

αk

(
Tr (WkEk)− log det (Wk)

)
(5a)

s.t. Tr

(
K∑

k=1

VkVH
k

)
≤ P, (5b)

with the mean squared error (MSE) matrix

Ek =
(
I−UH

k HkVk

) (
I−UH

k HkVk

)H
+

K∑
m 6=k

UH
k HkVmVH

mHH
k Uk + σ2

kUH
k Uk,

(6)

where Uk ∈ CN×d and Wk ∈ Cd×d are two introduced
auxiliary matrices.

To obtain a stationary solution of problem (5), the block
coordinate descent (BCD) scheme is used to sequentially solve
Uk,Wk, and Vk, which is known as the WMMSE algorithm
with the following iterative expressions [2]

Uk =

( K∑
m=1

HkVmVH
mHH

k + σ2
kI

)−1

HkVk, (7)

Wk =
(
I−Uk

HHkVk

)−1

, (8)

Vk=αk

(
K∑

m=1

αmHH
mUmWmUH

mHm+µI

)−1

HH
k UkWk.

(9)

III. DEEP-UNFOLDING BASED DISTRIBUTED WMMSE
A. Decentralized Architecture

We now upgrade the traditional centralized architecture
into a distributed architecture, thus serving for the following
distributed networks.

In particular, partition the M antennas at BS into B
(1 ≤ B ≤ M ) DUs, and then each DU has C transmit
antennas (i.e. BC = M ), its own dedicated RF circuitry,
and baseband signal processing units. Consequently, the local
channel matrix between DU b and user k is Hk,b ∈ CN×C ,
and H:,b = [HH

1,b, · · · ,HH
K,b]

H ∈ CKN×C represents the
local channel state information (CSI) stored in the b-th DU.
Similarly, the local precoding matrix in the b-th DU is V:,b =
[V1,b, · · · ,VK,b] ∈ CC×Kd, where Vk,b ∈ CC×d denotes
the precoding matrix for user k. Moreover, the relationship
between the local channel matrix Hk,b and the global channel
matrix Hk is Hk = [Hk,1, · · · ,Hk,B ], and similarly we have
VH

k = [VH
k,1, · · · ,VH

k,B ]H . To be more specific, as shown
in Fig. 1, the received signal vector yk in this decentralized
architecture can be written as

yk =

B∑
b=1

Hk,bVk,bsk +

K∑
m6=k

B∑
b=1

Hk,bVm,bsm + nk. (10)

Different from solving (4) in a centralized architecture, each
DU in the decentralized architecture needs to independently
solve own precoding matrix V:,b with local CSI H:,b which
is only stored in the local storage unit.

Fig. 1. An example of a downlink communication model (B = 3, K = 3).

B. Distributed WMMSE

According to the iterative expressions in (7)–(9), since the
global CSI Hk is required to solve Vk, the operations of
the traditional WMMSE can not well suit this decentralized
architecture, which leads to the following distributed WMMSE
accordingly.

Specifically, we divide the problem in (5) into B distributed
subproblems, where each DU corresponds to a subproblem
shown below

min
{Uk,b,Wk,b}k∈K,V:,b

K∑
k=1

αk

(
Tr (Wk,bEk,b)− log det (Wk,b)

)

s.t. Tr

(
K∑

k=1

Vk,bV
H
k,b

)
≤ P/B (11)

with fixed V:,b̄, b̄ 6= b and

Ek,b =
(
I−UH

k,bHkVk

) (
I−UH

k,bHkVk

)H
+

K∑
m6=k

UH
k,bHkVmVH

mHH
k Uk,b + σ2

kUH
k,bUk,b.

(12)

Here, due to the independence of calculating Uk and Wk

among different DUs, we use Uk,b ∈ CN×d and Wk,b ∈
Cd×d to represent the results of the b-th DU. Meanwhile, the
power budget is evenly distributed to each DU, i.e. the local
power budget of each DU is P/B.

Then, with respect to the subproblem in (11), each DU
applies BCD method as follows

Uk,b =

( K∑
m=1

ξk,mξHk,m + σ2
kI

)−1

ξk,k, (13)

Wk,b =
(
I−UH

k,bξk,k
)−1

, (14)

Vk,b =

(
K∑

m=1

αmHH
m,bAm,bHm,b+µbI

)−1(
αkHH

k,bUk,bWk,b

−
K∑

m=1

αmHH
m,bAm,b (ξm,k −Hm,bVk,b)

)
(15)

with ξi,j =
∑B

b=1 Hi,bVj,b and Am,b = Um,bWm,bU
H
m,b. By

iteratively calculating (13)–(15), each DU can solve the dis-
tributed problem in (11) independently. Moreover, by solving
these B subproblems among all DUs in a sequential order, the
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Algorithm 1 Distributed WMMSE
Input: Hk,b, ε, {σk}k∈K, P , ∀b, k, L.
Output: Uk,b,Wk,b,Vk,b, ∀b, k.

1: Initialize: Set Vk,b to satisfy Tr(Vk,bV
H
k,b) = P/(BK).

2: repeat(Outer loop)
3: for b = 1 to B do
4: for l = 1 to L do (Inner loop)
5: update Uk,b via (13), ∀k in b-th DU.
6: update Wk,b via (14), ∀k in b-th DU.
7: update Vk,b via (15), ∀k in b-th DU.
8: end for
9: end for

10: until Reaching convergence conditions

stationary point of the following problem can be approached
[11]

min
{Uk,Wk,Vk}k∈K

K∑
k=1

αk

(
Tr (WkEk)− log det (Wk)

)
(16a)

s.t. Tr

(
K∑

k=1

Vk,bV
H
k,b

)
≤ P/B,∀b. (16b)

Clearly, the difference between the problems in (16) and (5)
lies in the different constraints. Assuming f∗1 is the minimum
value of problem in (5) and f∗2 is the minimum value of
problem of (16), since the constraint range in (16b) is included
in the constraint range in (5b), the difference between these
two minimum values satisfies ∆f = f∗2 − f∗1 ≥ 0, which can
be well controlled with the appropriate power allocation. More
specifically, it has been shown in [12] that a negligible ∆f can
be reached with the average power allocation.

To summarize, the proposed distributed WMMSE algorithm
is given by Algorithm 1. However, although it can achieve
the near performance as the centralized one, the sequential
computations among DUs are required for the computations
in (13)–(15).

IV. PROPOSED DEEP-UNFOLDING-BASED DISTRIBUTED
WMMSE DESIGN

Based on the above distributed WMMSE, we now propose
a model-driven deep-unfolding-based distributed WMMSE
network (MDD-WMMSE), where each DU can operate in a
more parallel way with less other DUs’ information. By doing
this, the sequential implementation of the proposed distributed
WMMSE can be effectively avoided without performance loss.

Specifically, as shown in Fig.2, the proposed MDD-
WMMSE mainly consists of two stages. The first stage in-
cludes T layers without information exchange, and the second
stage has Te layers with information exchange supported by
CU.

A. The First Stage of MDD-WMMSE

The first stage of MDD-WMMSE is built by reformulating
the T iterations from Uk,b to Vk,b in (13)-(15), where
superscript t denotes the t-th layer at the first stage.

To avoid the information exchange, a trainable matrix Ot
b ∈

CKN×Kd is set to approximate the information of other DUs
for the b-th DU. Then, given P̂t

b = Ot
b+H:,bV

t−1
:,b , the update

of Ut
k,b and Wt

k,b can be written as

Ut
k,b =

(
ξ̂tk,:(ξ̂

t
k,:)

H + σ2I
)−1

ξ̂tk,k, (17)

W̄t
k,b = (Wt

k,b)
−1 = I− (Ut

k,b)
H ξ̂tk,k. (18)

Here, ξ̂tk,m = P̂t
b[(k − 1)N + 1 : kN, (m − 1)d + 1 : md] ∈

CN×d, which is an approximate version of ξk,m, and ξ̂k,: =
P̂t

b[(k − 1)N + 1 : kN, :] ∈ CN×Kd.
As for the update of the local precoding matrix V:,b in

MDD-WMMSE, the design of this part does not rely on the
expression in (15), but adopts its equivalent expression as

Vt
:,b =HH

:,bU
t
:,b

(
(Ut

:,b)
HH:,bH

H
:,bU

t
:,b + µt

bW̄
t
:,b

)−1
(
I

− (Ut
:,b)

H
∑
b̄ 6=b

H:,b̄V:,b̄

)
,

(19)
with Ut

:,b =blkdiag(Ut
1,b, · · · , Ut

K,b) and W̄t
:,b =blkdiag

(α1W̄
t
1,b, · · · , αKW̄t

K,b), where blkdiag(A1, A2) represents a
block diagonal matrix with A1 and A2 as the diagonal blocks.
Here, the equivalence is guaranteed by (I + AB)−1A =
A(I + BA)−1.

According to (19), we firstly set the Lagrange multiplier µt
b

as a trainable parameter, since the eigenvalue decomposition
and bisection search for searching µt

b are not amenable to
be mapped to the network. Meanwhile, in (19), the matrix
Jt
b = (Ut

:,b)
HH:,bH

H
:,bU

t
:,b +µt

bW̄
t
:,b also requires the inverse

operation. To reduce the complexity, inspired by [6], an ap-
proximate expression containing trainable parameters is used
as an alternative, i.e. (Jt

b)
−1 ≈ [Jt

b]
−1
diagX

t
b +Jt

bY
t
b +Zt

b, where
Xt

b, Yt
b, Zt

b ∈ CKd×Kd are trainable matrices, and [Jt
b]
−1
diag is

the inverse matrix of diagonal elements of Jt
b. Therefore, we

have

V̂t
:,b=HH

:,bU
t
:,b

(
[Jt

b]
−1
diagX

t
b + Jt

bY
t
b + Zt

b

)(
I− (Ut

:,b)
HOt

b

)
+ HH

:,bF
t
b (20)

with a trainable compensation error matrix Ft
b ∈ CKN×Kd,

which leads to the following expression by power constraint

Vt
:,b =

√
P

B
∗

V̂t
:,b

‖V̂t
:,b‖F

. (21)

In general, the first stage of MDD-WMMSE in each DU
contains T rounds of calculations from (17) to (21) (except
for (19)) without any information exchange, so the calculations
among DUs can be carried out in parallel. Note that MDD-
WMMSE is based on (19) rather than (15) for promoting the
learning efficiency of neural networks. More specifically, this
comes from the following fact about the target problem in (4).

Proposition 1. (Low-Dimensional Subspace Property) [13]:
Any nontrivial stationary point V∗k of problem (4) must lie in
the range space of HH = [H:,1, · · · ,H:,B ]H ∈ CKN×M , i.e.
V∗ = [V∗1, · · · ,V∗B ] = HHX̂ with X̂ ∈ CKN×Kd.
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Fig. 2. The illustration of MDD-WMMSE with Te = 2.

Expanding Proposition 1 to distributed cases, the local
precoding matrix V:,b for DU b that maximizes the global
sum rate must lie in the range space of HH

:,b. Compared to
the expression in (15), the one in (20) obeys this proposition,
which introduces a more accurate coverage range to MDD-
WMMSE with boosted training speed and performance.

B. The Second Stage of MDD-WMMSE

In the first stage, the information exchange is avoided
by setting the trainable parameter Ot

b. For the consideration
of performance improvement, the second stage including Te
layers introduces information exchange with T > Te.

Before the calculation of the te-th layer in the second
stage, each DU calculates H:,bV

T+te−1
:,b and sends it to CU.

Then, CU performs the accumulation operation, i.e. Pte =∑B
b=1 H:,bV

T+te−1
:,b , and then feeds it back to each DU. Next,

with the participation of Pte into the local network, each DU
completes the following calculations

UT+te
k,b =

(
ξtek,:(ξ

te
k,:)

H + σ2
kI

)−1

ξtekk, (22)

W̄T+te
k,b = I− (UT+te

k,b )Hξtekk, (23)

V̄T+te
:,b = HH

:,bU
T+te
:,b

(
(UT+te

:,b )HH:,bH
H
:,bU

T+te
:,b +µT+te

b W̄T+te
:,b

)−1

(
I− (UT+te

b )H(Pte −H:,bV
T+te−1
:,b )

)
, (24)

where ξtekk, ξtek,: and Pte have the same relationship as ξ̂tkk,
ξ̂tk,: and P̂t

b. To ensure the performance, the matrix inversion
operation is remained here, where only µT+te

b is a trainable
parameter in the above expressions.

In addition, due to the parallel calculations between DUs,
an additional weighted correction operation is added, i.e.,

V̂T+te
:,b = VT+te−1

:,b + βte
b (V̄T+te

:,b −VT+te−1
:,b ) (25)

with a trainable parameter βte
b . Finally, perform the power

normalization operation on V̂T+te
:,b by (21) to obtain VT+te

:,b .

C. Back Propagation and Complexity
In MDD-WMMSE, after the calculations in the above two

stages of the forward propagation, each DU outputs its local
precoding matrix VT+Te

:,b and then sends H:,bV
T+Te

:,b to CU
for the back propagation. Then, after CU accumulates the
results, it returns PTe =

∑B
b=1 H:,bV

T+Te

:,b to each DU. Next,
each DU independently calculates the sum rate R of the entire
system based on PTe by

R =

K∑
k=1

αk log det
(
ξTe

k,:(ξ
Te

k,:)
H
)

−
K∑

k=1

αk log det
(
ξTe

k,:(ξ
Te

k,:)
H − ξTe

k,k(ξTe

k,k)H + σ2
kI
)
,

(26)

which leads to the loss function for each DU as

Lossb = −R,∀b ∈ {1, 2, · · · , B}. (27)

Although the loss function is independently calculated by each
DU, each DU actually shares the same loss function value so
as to the global training performance.

Overall, during the training process, each DU first computes
parallel based on its local CSI, then transmits H:,bV

T
:,b to

the CU starting the second stage of the network. In the
second stage stage, the DU completes relevant operations with
the assistance of the CU. Eventually, each DU outputs the
final result and sends H:,bV

T+Te

:,b to the CU. After the CU
aggregates H:,bV

T+Te

:,b , the result is returned to each DU. In
back propagation, by correlating PTe with local H:,bV

T+Te

:,b ,
each DU computes the loss function via (26) and then updates
local trainable parameters via the local updater, such as the
Adam optimizer, dependently.

As for the complexity of MDD-WMMSE, it is
O(TBK2.37 +TeBK

3 +(T+Te)BKN
3 +(T+Te)K

2MN),
since the matrix multiplication operation with O(K2.37)
replaces matrix inversion with O(K3) in the first stage.
Meanwhile, for centralized WMMSE, its complexity is
O(LKM3 + LKN3 + LK2M2N). Due to M � K and T ,
Te � L, the complexity of MDD-WMMSE is significantly
lower than that of WMMSE.

V. SIMULATION RESULTS

Fig. 3 shows the sum rates achieved by the proposed
distributed WMMSE (D-WMMSE) in Algorithm 1 and the
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centralized WMMSE under the different numbers of transmit
antennas C and the numbers of iterations L in each DU.
Intuitively, regardless of the values of C or L, the distributed
version of WMMSE has negligible performance loss compared
to the traditional WMMSE algorithm. In addition, the increas-
es of C and L lead to an acceleration of convergence speed.

The comparison of the sum rates achieved by MDD-
WMMSE and the centralized WMMSE under different B, T
and Te is shown in Fig. 4. The results of MDD-WMMSE are
the average of 500 tests using the trained network. During
network training, since deep learning models lack support for
complex number training, all complex matrices are converted
to real form. The training set consists of 24800 randomly
generated channel matrices, and training uses the mini-batch
mode, where the batch size is 128. Here, a random normal
distribution, i.e. N (0, ω2) where ω is the scaler factor set as
0.01, is used to initialize each element in Xt

b, Yt
b, Zt

b and Ft
b

with µt
b, β

te
b = 1. Compared with the D-WMMSE, the MDD-

WMMSE can achieve higher performance with lower layers.
Obviously, an increase in the number of DUs B leads to an
increase in performance loss, which means that more layers of
MDD-WMMSE are needed. Moreover, increasing the number

TABLE I
THE CPU TIME AND WSR OF MDD-WMMSE WITH SNR = 10dB.

(M,K) (B,T ,Te) CPU time(s) WSR(%)

(128, 16)

WMMSE 16.77 131.55(bps/Hz)
(4,4,2) 1.79 95.23%
(4,4,3) 1.83 97.04%
(4,5,2) 1.81 95.25%
(8,6,3) 2.54 92.04%

of layers Te in the second stage can effectively improve the
performance of MDD-WMMSE.

Table I compares the CPU time of the prediction stage for
different schemes in various scenarios. It demonstrates that
the MDD-WMMSE can reach a performance close to that
of the centralized WMMSE but with much lower computa-
tional complexity. In summary, the MDD-WMMSE based on
the decentralized architecture achieves negligible performance
loss with less complexity cost compared to the centralized
WMMSE.
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