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Abstract—The Langevin sampling method relies on an accurate
score matching while the existing massive multiple-input multiple
output (MIMO) Langevin detection involves an inevitable singu-
lar value decomposition (SVD) to calculate the posterior score.
In this work, a massive MIMO sampling detection strategy that
leverages the denoising diffusion model is proposed to narrow
the gap between the given iterative detector and the maximum
likelihood (ML) detection in an SVD-free manner. Specifically,
the proposed score-based sampling detection strategy, denoted as
approximate diffusion detection (ADD), is applicable to a wide
range of iterative detection methods, and therefore entails a con-
siderable potential in their performance improvement by multiple
sampling attempts. On the other hand, the ADD scheme manages
to bypass the channel SVD by introducing a reliable iterative
detector to produce a sample from the approximate posterior,
so that further Langevin sampling is tractable. Customized by
the conjugated gradient descent algorithm as an instance, the
proposed sampling scheme outperforms the existing score-based
detector in terms of a better complexity-performance trade-off.

Index Terms—Massive MIMO detection, diffusion model, de-
noising score matching, Langevin sampling.

I. INTRODUCTION

The uplink detection in massive multiple-input multiple-
output (MIMO) systems is of vital importance for the sake
of realizing the substantial benefits of the evolving MIMO
techniques [1]. Nevertheless, the computational complexity
associated with maximum likelihood (ML) detection is pro-
hibitive for hardware implementation, leading to an urgent
request to develop algorithms with more competitive detection
trade-off [2]. On the other hand, the score-based generative
models, collectively known as diffusion model, have lately
attracted increasing attention owing to their success in image
generation, inpainting, and synthesis [3].

Historically, the original diffusion model is proposed in
[4] as an unsupervised generative model. Inspired by non-
equilibrium statistical physics, it gradually destroys the ob-
jective distribution through a forward diffusion process, and
then tries to recover this distribution by a reverse generative
process. Later in [5], a simpler objective function for the
denoising diffusion probabilistic model (DDPM) is developed,
henceforth simplifying its training and popularizing the diffu-
sion model. What is more, the equivalence between DDPM
and the denoising score matching [6] has been shown, which
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encourages the subsequent unification of DDPM and denoising
score matching by stochastic differential equations (SDE) in
[7]. Despite the fact that the diffusion model and the score-
based generative model are different in the earlier research,
the word “diffusion model” now often refers to both of them.

Score matching aims to estimate the score, gradient of the
logarithm of a density distribution p(x), i.e., ∇x log p(x). It
captures the characteristic of the objective distribution and is
essential for Langevin dynamics sampling [6]. Given y as an
observed variable, in order to apply the Langevin method in
massive MIMO detection problem, one has to find out a way to
sample from the posterior distribution p(x|y) instead of p(x).
This can be accomplished by the SNIPS method in [8], where
a singular value decomposition (SVD) is required to derive
the closed-form expression for posterior score. Afterwards,
the first score-based massive MIMO detector [9] successfully
samples on the posterior distribution using the SNIPS method
and manages to implement a list detection.

In this work, we propose another score-based sampling
detection method, namely approximate diffusion detection
(ADD), as a more flexible and SVD-free scheme. The main
idea is to implement a deterministic detection method stochas-
tically under the denoising diffusion model architecture.
Through multiple sampling attempts, the ADD customized
by a particular iterative detector, such as the conjugated
gradient descent (CGD), is capable of achieving the near-
ML performance. Assisted by a reliable iterative detection, the
sampling on an approximate posterior p̂(x|y) characterized by
this given detector is tractable. The technical contribution of
this paper is two-fold: We propose a score-based sampling
detection strategy that can be flexibly applied to a wide range
of detection algorithms, while the proposed scheme is able to
achieve a more efficient sampling than the existing score-based
detection without channel SVD.

II. SCORE-BASED MASSIVE MIMO DETECTION

A. System Model

For notational simplicity, we consider the real-valued linear
system for massive MIMO detection with K transmitting and
N receiving antennas as follows

y = Hx+ n, (1)



where the transformation from the complex system model
to the real one is straightforward [10]. We assume the flat
Rayleigh fading channel matrix H ∈ RN×K to be perfectly
known, and its entries are independent and identically dis-
tributed (i.i.d.) with zero mean and unit variance. y ∈ RN ,
x ∈ RK and n ∈ RN denote the transmitted signal, the
corresponding received signal and the zero-mean additive
white Gaussian noise with variance σ2

0 , respectively. Denote
Q = {±1,±3, ...,±

√
M − 1} as the constellation set for

M -ary quadrature amplitude modulation (QAM). Given the
perfect channel state information (CSI) and an observed y in
(1), the MIMO detection problem aims to find an estimate of
x that maximizes the posterior probability:

x̂MAP = arg max
x∈QK

p(x|y,H)

= arg max
x∈QK

p(y −Hx)p(x). (2)

As a consequence of uniform assumption on prior p(x) and
the Gaussian formulation of the noise n, the optimal maximum
a posteriori (MAP) solution would reduce to a maximum
likelihood (ML) one, namely

x̂ML = arg min
x∈QK

∥y −Hx∥2. (3)

B. Denoising Score Matching

The score of a density distribution p(x) is defined as the
gradient of its log-probability, i.e.,

s(x) ≜ ∇x log p(x). (4)

The procedure that finds such a function sθ(x) approximating
the score is called score matching [11], where θ is the
parameter either to be fitted in a deep neural network or to be
determined by a traditional trace-based method. However, the
trace-based methods are not tractable for large-scale systems,
and henceforth the denoising score matching [12] methodol-
ogy is leveraged to bypass the trace calculation.

Specifically, the denoising score matching firstly perturbs
the objective distribution p(x) with a predefined Gaussian dif-
fusion kernel qσ(x̃|x) = N (x̃;x, σ2I), leading to a perturbed
distribution qσ(x̃) =

∫
p(x)qσ(x̃|x)dx. Here σ controls the

similarity between the original distribution and the perturbed
one. Then, a score network sθ(x̃) is established and optimized
to estimate the score of the perturbed distribution qσ(x̃) using
the following criterion [12]:

θ = arg min
θ

Eqσ(x̃|x)p(x)[∥sθ(x̃)−∇x̃ log qσ(x̃|x)∥2]. (5)

As long as the perturbation is small enough, the optimal
network s∗θ(x) satisfies

s∗θ(x) = ∇x log qσ(x) ≈ ∇x log p(x), (6)

therefore attaining the score of the objective distribution p(x).

Algorithm 1 Annealed Langevin Sampling (ALS) Detection
Input Received signal y, channel matrix H, σ0, T , LA, noise

schedule {σt}Tt=1

1: Calculate the SVD of H = UΣVT , x̃T ∼ N (0, σT I)
2: for t = T, · · · 1 do
3: Update the step size δt according to [9], x̂0 = x̃t

4: for i = 1, · · · , LA do
5: Calculate the posterior score s(xi−1, σt) in [9]
6: x̂i = x̂i−1 +

δt
2 s(x̂i−1, σt) +

√
δtwi, wi ∼ N (0, I)

7: end for
8: x̃t−1 = x̂LA

9: end for
Output x̂ = x̂LA

C. Langevin Dynamics for Massive MIMO Detection

Once the score ∇x log p(x) is obtained, the Langevin
method [13] is able to produce samples from the density
distribution p(x) given the initial x̂0 from a prior distribution
π, x̂0 ∼ π(x), by iterating up to L times as follows,

x̂i = x̂i−1+
δ

2
∇x log p(x̂i−1)+

√
δwi, i = 1, 2, · · · , L. (7)

Here wi ∼ N (0, I), i denotes the sampling time step and
δ is the sampling step size. However, the naive application
of Langevin method would encounter irregular fluctuation,
estimation inaccuracy as well as slow mixing problem. Hence-
forth the annealed Langevin strategy that adopts multiple noise
levels is preferred to obviate these difficulties [6]. Specifically,
a noise schedule {σt}Tt=1 that satisfies

σ1

σ2
= · · · = σT−1

σT
< 1

divides the whole perturbation into several intermediate for-
ward diffusion processes qσt

(x̃t|x) ∼ N (x̃t;x, σ
2
t I). This can

be re-parameterized as the following Markov chain:

x̃t = x̃t−1 +
√

σ2
t − σ2

t−1zt, t = 1, · · · , T, (8)

where zt ∼ N (0, I) is a Gaussian random noise and x̃0 ≜ x.
Then, an effort to recover these perturbed {x̃t}Tt=1 reversely

is made in the reverse generative process, where a noise con-
ditional score network sθ(x, σt) is involved to train. Once the
training is done, a successive LA-times sampling is conducted
along qσt(x̃t) in a descending order, i.e., x̃T , · · · , x̃1. To
be more specific, for each LA-times sampling, it starts from
x̂0 = x̃t, and the final sample x̂LA

is treated as an estimate of
perturbed variable for the next iteration, namely x̃t−1 = x̂LA

,
as follows,

x̂i = x̂i−1 +
δt
2
sθ(x̂i−1, σt)+

√
δtwi, i = 1, 2, · · · , LA. (9)

Here δt = ε · σ2
t /σ

2
T , with ε being the annealed learning rate,

updates corresponding to σt in a reverse order, i.e., from σT to
σ1. Clearly, this annealed Langevin strategy requires LA × T
times sampling in total to produce a single reliable sample,
and generally LA × T ≤ L stands as a result of the improved
mixing rate of annealed Langevin dynamics.

Nevertheless, the detection problem needs to tackle the issue
of sampling on the posterior density distribution p(x|y) rather
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Fig. 1. Framework of GPGD and the proposed ADD sampling scheme.

than p(x). One might handle this by applying the Bayes’ rule
and rewriting the posterior score as

∇x̂t
log p(x̂t|y) = ∇x̂t

log p(x̂t) +∇x̂t
log p(y|x̂t), (10)

whereas a singular value decomposition (SVD) of the channel
matrix H is required to formulate this posterior score explic-
itly, thereby imposing strains on computation complexity for
large-scale systems. This annealed Langevin sampling (ALS)
detection [9] is outlined in Alg.1 for one single sampling tra-
jectory. Finally, the entire Langevin dynamics produces an S-
length sample list L = {x̂(1), x̂(2), · · · , x̂(S)|x̂ ∼ p(x|y)} for
detection, amongst which the sample that minimizes following
Euclidean distance is distinguished as the final estimate:

x̂ = arg min
x∈L

∥y −Hx∥2. (11)

III. APPROXIMATE DIFFUSION DETECTION STRATEGY

In this section, we present the proposed ADD methodology
in detail. We mention that the neural network training is
not necessary here, but ADD is still amenable to further
deep generative detection network extension. Meanwhile, it
is shown by [7] that the Markov chain in (8) is equivalent to
the following SDE:

dx =

√
d [σ2(t)]

dt
dω, (12)

where ω is the standard Wiener process, and its diffusion

coefficient is g(t) =
√

d[σ2(t)]
dt . Basically, this SDE assumes

that, as T → ∞, the Markov chain {x̃t}Tt=1 turns into a
continuous stochastic process {x̃(t)}1t=0, where the integer
index t = 1, · · · , T is substituted by a continuous time variable
t ∈ [0, 1]. For the same reason, the noise schedule {σt}Tt=1

alters to a function σ(t) and zt becomes a Gaussian process
z(t). Accordingly, its reverse SDE is given by

dx = −g(t)2∇x log pt(x)dt+ g(t)dω̄, (13)

where ω̄ is the Wiener process through a reverse time and
∇x log pt(x) is the score at time t. The SDE-manner for-
mulation unifies both the denoising score matching and the
diffusion model, and therefore is adopted here for further
convenience. Note that for the forward process in (12), the
time variable t evolves from t = 0 to t = 1. By contrast, it
reduces from t = 1 to t = 0 in the reverse process of (13),
which accounts for distinguishing this reverse generating from
the forward diffusion process.

A. Framework
The proposed ADD strategy is inspired by the generalized

projected gradient descent (GPGD) method in [10], where a
projection operator alternates with an iterative gradient-based
detector, but the proposed strategy is also applicable to other
reliable detection algorithms. Besides, the ADD manages to
circumvent the calculation of posterior score by SVD and
results in a computational efficiency.

Typically, with respect to the GPGD method, a gradient-
based iterative detector, denoted by Iter [·]Titer

, implements
Titer times gradient descent (GD) steps to provide an estimate
of the signal. Afterwards a projection operator D tries to find
the ideal counterpart of this estimate in a specific discrete
domain. One iteration of this process can be expressed as

xi+1 = D
(
Iter [xi,y;H]Titer

)
, (14)

with i being the iteration index. In practical, the projection
operator D might be constructed by a deep neural network
and trained under a minimum mean square error (MSE)
criterion, but finding a good enough projection is always
time-consuming and requires dedicated network design. The
main idea behind the proposed strategy is to transform the
deterministic algorithm in a stochastic manner, where the per-
formance gain can be attained by multiple sampling attempts,
thus shrinking the gap to the optimal ML detection.

In particular, during the ADD, an iterative method is utilized
to produce a relatively reliable solution x̄ = Iter[x]Titer

that
supports the subsequent score estimation. This variable char-
acterizes the distribution of an approximate posterior, denoted
by p̂(x|y), which is the key to eliminate the closed-form score
calculation. Based on this, a denoiser Dσ(·) parameterized by
σ, plays a similar role as the projection operator in GPGD
method to give a minimum MSE estimate Dσ(x̄). By doing
so, the score of approximate posterior can be given by the
Tweedie’s identity, whose feasibility can be found in [14]:

s(x̄) =
D(x̄)− x̄

σ2
. (15)

Leveraging this score, the Langevin sampling can be con-
ducted to sample from the approximate posterior p̂(x|y). The
proposed ADD strategy and the GPGD method are compared
in Fig.1, where their related structures can be observed. Since
the denoiser in ADD works as an MSE minimizer, which is
often the role played by the projection in GPGD method, extra
projection in the ADD is not necessary.



Algorithm 2 Approximate Diffusion Detection (ADD)
Input Received signal y, channel matrix H, symbol energy

Es, σ0, σmin, σmax, ϵ, T , Titer, S
1: Calculate the noise schedule σ(t) = σmin

(
σmax

σmin

)t

and the

diffusion coefficient g(t) = σmin

(
σmax

σmin

)t √
2 log σmax

σmin

for t ∈ [ϵ, 1] with the interval ∆t = 1−ϵ
T

2: for j = 1, ..., S do
3: t = 1, ỹ(0) = y, x̂(1) ∼ N (0, σ2

maxI)
4: while t ̸= ϵ do
5: Sample ỹ(t) ∼ N

(
ỹ(t);y(0), σ(t)2HHT

)
6: t = t−∆t
7: Evoke Function 1 to get x̄(t)

8: Estimate the score s
(
x̄(t)

)
=

Dσ(t)(x̄(t))− x̄(t)

σ(t)2
,

where Dσ(t)(·) adopts the LGD form in (22)
9: Sample w(t) ∼ N (0, I) and get

x̂(t) = x̄(t)− g2(t) · s
(
x̄(t)

)
∆t+ g(t)

√
∆t ·w(t)

10: end while
11: Include x̂(ϵ) to the list L of length S.
12: end for
Output x̂ = arg min

x∈L
∥y −Hx∥2.

B. Implementation

The implementation details of the proposed ADD method
are elaborated in the following. Here we define the noise
schedule function as

σ(t) = σmin

(
σmax

σmin

)t

, t ∈ [0, 1] , (16)

with σ(0) = σmin ≜ σ1 and σ(1) = σmax ≜ σT . We
still denote T as the total sampling times, and henceforth the
interval between each individual time step is ∆t = 1

T .
In this way, the one-step transition probability of the forward

diffusion process can be written as

p (x̃(t)|x̃(t−∆t))

=N
(
x̃(t); x̃(t−∆t),

(
σ2(t)−σ2(t−∆t)

)
I
)
, t∈ [0, 1], (17)

and the corresponding t-step counterpart is

p (x̃(t)|x(0)) = N
(
x̃(t);x(0), σ(t)2I

)
. (18)

According to this, the perturbed variable x̃(t) in the forward
diffusion is re-parametrized as x̃(t) = x(0) + σ(t)z(t).
Therefore, the perturbed received signal at time t can be
formulated as

ỹ(t) = Hx̃(t) + n = H
(
x(0) + σ(t)z(t)

)
+ n

= Hx(0) + n+ σ(t)Hz(t) = y + σ(t)Hz(t) (19)

with x(0) = x. Now the t-step transition probability of ỹ(t)
is also attainable:

p (ỹ(t) | y(0)) ∼ N
(
ỹ(t);y(0), σ(t)2HHT

)
, (20)

Function 1 Conjugate Gradient Descent (CGD)
Input y = ỹ(t), x0 = x̂(t), H, Titer

1: Initialization: A = HTH+ σ0EsI, b = HTy
r0 = Ax0 − b, d0 = −r

2: for i = 0, 1, · · · , Titer − 1 do
3: αi+1 = (rTi ri)/(r

T
i Adi)

4: xi+1 = xi + αi+1di

5: ri+1 = ri + αi+1Adi

6: βi+1 = (rTi+1ri+1)/(r
T
i ri)

7: di+1 = −ri+1 + βi+1di

8: end for
Return xTiter

where y(0) = y. In this way, sampling on the perturbed
received signal ỹ(t) is tractable. Hence, starting from the time
t = 1, the reverse sample x̂(t) and forward ỹ(t) can cooperate
to give an estimate x̄(t) by the iterative detection method, i.e.,

x̄(t) = Iter [x̂(t), ỹ(t);H]Titer
. (21)

This estimate is viewed as a sample from the approximate
posterior p̂(x|y) depending on the chosen iterative detection
method.

Now that the variable x̄ encapsulates information about y
and H, once a minimum MSE estimate of x̄ is obtained,
the score of p̂(x|y) can be analyzed according to (15):

s
(
x̄(t)

)
=

Dσ(t)(x̄(t))− x̄(t)

σ(t)2
. The required denoiser Dσ(t)

can be established by a deep neural network, while for now we
directly use the training-free estimator as in [9]. Specifically,
this estimator evaluates every component xk of the input x
aided by the one-dimensional (1-D) lattice Gaussian distribu-
tion (LGD), namely

pQ(xk = x̂k; x̄k, σ)≜
1

ZQ
exp

(
−∥x̂k − x̄k∥2

2σ2

)
, x̂k ∈ Q, (22)

with ZQ =
∑

x̂k∈Q exp
(

−∥x̂k−x̄k||2
2σ2

)
a normalization scalar.

To this end, we can generate a new sample x̂ utilizing the
attained score as (13) indicates, leading to

x̂(t) = x̄(t)− g2(t) · s
(
x̄(t)

)
∆t+ g(t)

√
∆t ·w(t), (23)

where w(t) is the Gaussian process from wt. As the sampling
goes on from t = 1 to t = 0, the final sample x̂(0) is
treated as sampled from the approximate posterior distribution
p̂(x|y). The whole generative procedure is illustrated in Fig.2.
This completes a single trajectory for the sampling, and this
procedure continues up to S times, generating a candidate list
for final decision. The overall algorithm is outlined in Alg.2,
where the CGD method [15], as presented in Func.1, is chosen
to customize the Iter [·]Titer

procedure as a simple instance. It
is suggested that σmin should be set as a very small value,
like σmin = 0.01, and σmax close to the symbol energy Es.
Meanwhile, a extremely small-valued ϵ > 0 is recommended
for numerical stability.



C. Complexity Analysis

For one single trajectory, the computation for ADD strategy
mainly consists of three parts: selected iterative detector, score
calculation and sampling. Particularly, with respect to the sam-
pling, the generation of ỹ(t) ∼ N

(
ỹ(t);y(0), σ(t)2HHT

)
is

achieved by re-parameterizing ỹ(t) = y + σ(t)Hz(t), which
involves multiplying H to a noise vector z(t) with NK multi-
plications. Besides, there are 2T times random Gaussian noise
generation, one z(t) and one w(t) for each iteration, but their
complexity can be neglected. Moreover, since the denoiser
Dσ(·) adopted in this work evaluates by 1-D LGD, whose
complexity is O(MK) for M -QAM, the score calculation
part does not require any neural network computing. Finally,
as for the iterative detector, taking CGD as an example, its
complexity is dominated by calculation of HTH, which is of
order O(NK2), and the complexity for one single iterative
step is O(K2). Therefore, the overall complexity of the pro-
posed ADD strategy is O(NK2+T (NK+TiterK

2+MK))
in a polynomial manner. Compared to the ALS method, whose
complexity is O(NK2 + LAT (K

2 + MK)) [9] and largely
affected by the SVD operation, the dominant computation of
ADD is the chosen iterative detector. Here for the CGD case,
the calculation of Hermitian matrix HTH is much simpler
than SVD computation, and additionally ADD provides a more
flexible scheme with a substitutable iterative detector, leading
to a possibility in future complexity-reduction.

D. Discussions On Deep Learning Extension

In the following, we show that further deep learning exten-
sion is possible in the proposed ADD scheme. Consider the
diffusion kernel qσ(x̃|x) = N (x̃;x, σ2I) in the mentioned
denoising score matching. It is easy to derive that its score
has the following form:

∇x̃ log qσ(x̃ | x) = −(x̃− x)/σ2. (24)

According to the objective function in (5), the training of a
denoising score network sθ(x̃, σ) turns to minimize

ℓ(θ;σ) = Ep(x)Ex̃∼qσ(x̃|x)

[∥∥∥∥sθ(x̃, σ) + x̃− x

σ2

∥∥∥∥2
]
. (25)

Again, x̃ can be attained by the re-parameterization x̃ = x+σz
with z ∼ N (0, I). Henceforth, by substituting (x̃−x)/σ = z,
the loss function in (25) can be transformed into

ℓ(θ;σ) = Ep(x)Ez∼N (0,I)

[∥∥∥sθ(x̃, σ) + z

σ

∥∥∥2] . (26)

This corresponds to the unsupervised training scheme used in
diffusion generative model.

With the Tweedie’s identity, the score of a Gaussian per-
turbed variable is estimated by a minimum MSE denoiser

Dσ(·) to get s(x̃, σ) =
Dσ(x̃)− x̃

σ2
, as in the proposed ADD

scheme. Now if we directly use this score to replace the
trainable score network sθ(x̃, σ) in (25), the loss function now
can be estimated as

ℓ(θ;σ) = Ep(x)Ex̃∼qσ(x̃|x)

[
∥Dθ,σ(x̃)− x∥2

]
, (27)

iterative approximation

sampling on

Fig. 2. The reverse generative process in the proposed ADD strategy.

where a subscript θ that represents the trainable parameter is
added to the denoiser. By doing so, the problem of training a
score network sθ(x̃, σ) becomes finding a denoising network
Dθ,σ(x̃) that minimizes the loss function (27), which turns the
unsupervised training into a supervised one. The labels are
original data x and an ideal Dθ,σ(x̃) shall be able to recover
x given the perturbed data x̃ diffused by qσ(x̃|x). Some
inspirations might be found in the denoising auto-encoder
(DAE) architecture [16]. On the other hand, based on (27),
the 1-D LGD denoiser used in ADD inevitably results in a
considerable quantization error in the beginning of sampling,
where the noise setting σ(t) is relatively large. Henceforth,
there is a potential performance gain in the ADD scheme
to be realized by means of deep learning, leading to a deep
generative detection network.

IV. SIMULATIONS

This section examines the performance of ADD strategy,
where the CGD is selected to be the inner iterative detector
and perfect CSI is assumed at the receiver. For comparison
purposes, the performances of ALS, minimum mean square
error (MMSE) , MMSE-based successive interference cancel-
lation (MMSE-SIC) and ML detection are also shown.

Fig.3 shows the bit error rate (BER) for an uncoded system
with N = K = 32 and 4-QAM. For fair comparison, we first
consider T ×LA = T × Titer case, where ADD and ALS can
be taken as implementing for the same iterations. Clearly, with
5 calls, the performance of ADD is more satisfying than that
of ALS, and by increasing the sampling trajectories, further
performance improvement can be observed by both of the sam-
pling detector. The reason about this gap between ADD and
ALS might be the intrinsic property of SNIPS method, where
the diffusion noise is assumed in a special way to promise
the dependence on the channel noise, but this assumption
might be less reliable in the low signal-noise-ratio region. An
interesting thing about the ADD is, that the performance can
be even enhanced with a fewer Titer (See ADD-20, Titer = 3).
This is similar to the phenomenon found in GPGD scheme
[10], claiming that there exists the most suitable Titer for
particular linear iterative method. Besides, after increasing the
trajectories of ADD to 50, only a small gain can be observed,
which implies that the convergence of ADD is rather fast but
its performance upper bound still gets a nearly 2dB gap to
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the ML detection. Recall that this ADD instance just adopts
a simple linear iterative detector, which could have eventually
converged to the linear MMSE detection. Nevertheless, it still
manages to significantly outperform the nonlinear MMSE-SIC
and partially recover the gap to ML detection.

Fig.4 compares the average running time of ADD and ALS
for one single trajectory. The ADD is configured as Titer = 1.
It can be seen that these two methods show a similar increasing
tendency with the dimension, while the ADD still slightly
enjoys a more competitive time complexity for the absence
of SVD operation. Besides, as shown in Fig.3, the ADD
outperforms ALS under the same configuration, especially
at low signal-noise-ratio regime, thereby achieving a better
complexity-performance trade-off.

V. CONCLUSION

In this paper, we proposed an approximate diffusion detec-
tion (ADD) strategy for massive MIMO systems, which can

be applied to a wide range of iterative detectors and eliminates
the SVD in existing score-based method. The resultant ADD
turned a deterministic iterative detector into a stochastic one to
achieve performance gain through sampling. This introduced
inner iterative detector helped ADD produce samples based
on an approximate posterior, thereby circumventing the SVD
required for explicit score calculation. The conducted simu-
lations verified that a fraction of the gap to ML detection
can be recovered by the adoption of ADD scheme. Besides,
the presented ADD customized by a CGD detector enjoys a
more satisfying complexity-performance trade-off compared
to the existing score-based detector, but more attempts on this
replaceable detector are encouraged. Besides, we discussed the
possibility of extending the ADD scheme to a deep generative
detection network, which constitutes our future work.

VI. ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China under Grants No. 62371124, and
in part by the National Key R&D Program of China under
Grants No. 2023YFC2205501.

REFERENCES

[1] S. Yang and L. Hanzo, “Fifty years of MIMO detection: the road to
large-scale MIMOs,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp.
1941–1988, 2015.

[2] Y. Wang et al., “Transformer-empowered 6G intelligent networks: from
massive MIMO processing to semantic communication,” IEEE Trans.
Wireless Commun., vol. 30, no. 6, pp. 127-135, December 2023.

[3] L. Yang et al., “Diffusion models: a comprehensive survey of methods
and applications,” ACM Compt. Surv., vol. 56, no. 105, pp. 1–39, 2023.

[4] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep
unsupervised learning using nonequilibrium thermodynamics,” in Proc.
Int. Conf. Mach. Learn. (ICML), vol. 37, 2015, pp. 2256–2265.

[5] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 33, 2020, pp.
6840–6851.

[6] Y. Song and S. Ermon, “Generative modeling by estimating gradients
of the data distribution,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
2019, pp. 11918–11930.

[7] Y. Song et al., “Score-based generative modeling through stochastic
differential equations,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2020.

[8] B. Kawar, G. Vaksman, and M. Elad, “SNIPS: solving noisy inverse
problems stochastically,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
vol. 34, 2021, pp. 21757–21769.

[9] N. Zilberstein, C. Dick, R. Doost-Mohammady, A. Sabharwal, and S.
Segarra, “Annealed Langevin dynamics for massive MIMO detection,”
IEEE Trans. Wireless Commun., vol. 22, no. 6, pp. 3762-3776, 2023.

[10] L. He, Z. Wang, S. Yang, T. Liu and Y. Huang, “Generalizing projected
gradient descent for deep-learning-aided massive MIMO detection,”
IEEE Trans. Wireless Commun., vol. 23, no. 3, pp. 1827-1839, 2024.

[11] A. Hyvärinen, “Estimation of non-normalized statistical models by score
matching,” J. Mach. Learn. Res., vol. 6, pp. 695–709, 2005.

[12] P. Vincent, “A connection between score matching and denoising auto-
encoders,” Neural Comput., vol. 23, no. 7, pp. 1661–1674, 2011.

[13] A. Barbu and S. Zhu, “Hamiltonian and Langevin Monte Carlo” in
Monte Carlo Methods, Springer, pp. 281–325, 2020.

[14] K. Zahra and S. Eero, “Stochastic solutions for linear inverse problems
using the prior implicit in a denoiser,” in Adv. Neural Inf. Process. Syst.
(NIPS), vol. 34, 2021, pp. 13242–13254.

[15] S. Wright et al., Numerical Optimization, Springer, 1999.
[16] P. Vincent, H. Larochelle, Y. Bengio and P. Manzagol, “Extracting and

composing robust features with denoising autoencoders,” in Proc. Int.
Conf. Mach. Learn. (ICML), 2008, pp. 1096–1103.


