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Decoding by Sampling – Part II:
Derandomization and Soft-Output Decoding

Zheng Wang, Shuiyin Liu, Member, IEEE, and Cong Ling, Member, IEEE

Abstract—In this paper, a derandomized algorithm for sam-
pling decoding is proposed to achieve near-optimal performance
in lattice decoding. By setting a probability threshold to sample
candidates, the whole sampling procedure becomes deterministic,
which brings considerable performance improvement and com-
plexity reduction over to the randomized sampling. Moreover,
the upper bound on the sample size K, which corresponds to
near-maximum likelihood (ML) performance, is derived. We also
find that the proposed algorithm can be used as an efficient tool
to implement soft-output decoding in multiple-input multiple-
output (MIMO) systems. An upper bound of the sphere radius
R in list sphere decoding (LSD) is derived. Based on it, we
demonstrate that the derandomized sampling algorithm is capa-
ble of achieving near-maximum a posteriori (MAP) performance.
Simulation results show that near-optimum performance can be
achieved by a moderate size K in both lattice decoding and
soft-output decoding.

Index Terms—Lattice decoding, sampling algorithms, lattice
reduction, soft-output decoding, iterative detection and decoding.

I. INTRODUCTION

AS one of the core problems of lattices, the closest vector
problem (CVP) has wide applications in number theory,

cryptography, and communications. In [1], the lattice reduction
technique was introduced to solve CVP approximately. Its
key idea is replacing the original lattice by an equivalent one
with a shorter basis, which greatly improves the performance
of suboptimal decoding schemes like successive interference
cancelation (SIC). Since then, a number of improved decoding
schemes based on the lattice reduction have been proposed
[2]–[5]. In multiple-input multiple-output (MIMO) commu-
nications, it has been shown in [6] that minimum mean-
square error (MMSE) decoding based on the lattice reduction
achieves the optimal diversity and multiplexing trade-off.
However, the performance gap between maximum-likelihood
(ML) decoding and lattice-reduction-aided decoding is still
substantial especially in high-dimensional systems [7], [8].

On the other hand, in order to achieve near-capacity perfor-
mance over MIMO channels, bit-interleaved coded modulation
(BICM) and iterative detection and decoding (IDD) are well
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accepted, where the extrinsic information calculated by a
priori probability (APP) detector is taken into account to
produce the soft decisions [9]. As the key ingredient of IDD re-
ceivers, the calculation of APP is usually performed by a log-
likelihood ratio (LLR) value via maximum a posteriori (MAP)
algorithm, whose complexity increases exponentially with the
number of transmit antennas and the constellation size. In [9],
a modified sphere decoding (SD) algorithm referred to as list
sphere decoding (LSD) was given. By resorting to a list of
lattice points within a certain sphere radius, it achieves an
approximation of the MAP performance while maintaining
affordable complexity. However, the exponentially increased
complexity is always a big problem in LSD especially for
high-dimensional systems. Based on LSD, a number of ap-
proaches resorting to lattice reduction were proposed to further
reduce the complexity burden or improve the performance
[10]–[14]. Unfortunately, none of them give the explicit size
of the sphere radius when the decoder approaches near-MAP
performance, making it still an open question. In [15], a LSD-
based probabilistic tree pruning algorithm was proposed with
a lower bound constraint of the sphere radius. However, to fix
that initial sphere radius, sphere decoding is still required as a
preprocessing stage making it impractical in high dimensions.

Recently, randomized sampling decoding has been proposed
in [16] to narrow the gap between lattice-reduction-aided
decoding and sphere decoding. As a randomized version of
SIC, it applies Klein’s sampling technique [17] to randomly
sample lattice points from a Gaussian-like distribution and
chooses the closest one among all the samples. However,
because of randomization, there are two inherent issues in
random sampling. One is inevitable repetitions in the sampling
process leading to unnecessary complexity, while the other one
is inevitable performance loss since some lattice points can
be missed during the sampling. Although Klein mentioned
a derandomized algorithm very briefly in [17], it does not
seem to allow for an efficient implementation. In [16], the
randomized sampling algorithm was also extended to soft-
output decoding in MIMO systems. Although it could achieve
remarkable performance gain with polynomial complexity, it
still suffers from these two issues.

In this paper, to overcome these two problems caused by
randomization, we propose a new kind of sampling algorithm
referred to as derandomized sampling decoding. With a sample
size K set initially, candidate points are sampled determinis-
tically according to a threshold we define. As randomization
is removed, derandomized sampling decoding shows great po-
tential in both performance and complexity. To further exploit
it, its optimum decoding radius, which is defined in bounded
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distance decoding (BDD) as a sphere radius that the lattice
point within this radius will be decoded correctly, is derived.
Furthermore, the upper bound on K with respect to near-
ML performance is given, by varying K , the decoder enjoys
a flexible trade-off between performance and complexity in
lattice decoding.

We then extend derandomized sampling algorithm to soft-
output decoding in MIMO systems. Since the randomization
during samplings is removed, it operates as an approxima-
tion scheme like LSD but generates the candidate list by
sampling, which is more efficient and easier to implement.
Although samplings are performed over the entire lattice,
lattice points with large sampling probabilities are quite likely
to be sampled, which means the final candidate list tends to
be comprised of a number of lattice points around the closest
lattice point. The upper bound of the sphere radius R in LSD
is also derived. Then based on the proposed derandomized
sampling algorithm, the trade-off between performance and
complexity in soft-output decoding is established by adjusting
the sample size K .

The rest of this paper is organized as follows. Section
II presents the system model and briefly reviews the ran-
domized sampling algorithm in lattice decoding. In Section
III, derandomized sampling algorithm is proposed, followed
by performance analysis and optimization. In Section IV,
the proposed algorithm is extended to soft-output decoding.
Simulation results are presented and evaluated in Section V.
Finally, Section VI concludes the paper.

Notation: Matrices and column vectors are denoted by
upper and lowercase boldface letters, and the transpose, in-
verse, pseudoinverse of a matrix B by BT ,B−1, and B†,
respectively. We use bi for the ith column of the matrix B,
bi,j for the entry in the ith row and jth column of the matrix
B. �x� denotes rounding to the integer closest to x. If x is
a complex number, �x� rounds the real and imaginary parts
separately. Finally, in this paper, the computational complexity
is measured by the number of arithmetic operations (additions,
multiplications, comparisons, etc.).

II. PRELIMINARIES

A. Sampling Decoding

Consider the decoding of an n × n real-valued system.
The extension to the complex-valued system is straightfor-
ward [16]. Let x denote the transmitted signal taken from a
constellation Xn ⊆ Z

n. The corresponding received signal y
is given by

y = Hx+ n (1)

where H is an n × n full column-rank matrix of channel
coefficients and n is the noise vector with zero mean and
variance σ2.

Given the model in (1), ML decoding is shown as follows:

x̂ = arg min
x∈Xn

‖y −Hx‖2 (2)

where ‖·‖ denotes Euclidean norm. Vector Hx can be viewed
as a lattice point of the lattice L(H) and ML decoding
corresponds to solving the CVP in the lattice L(H). In

sample 1 sample 2 sample 3 · · · sample K
F (x̃n) F (x̃n) F (x̃n) · · · F (x̃n)

↓ ↓ ↓ ... ↓
F (x̃n−1) F (x̃n−1) F (x̃n−1) · · · F (x̃n−1)

↓ ↓ ↓ ... ↓
F (x̃n−2) F (x̃n−2) F (x̃n−2) · · · F (x̃n−2)

...
...

...
...

...
F (x̃1) F (x̃1) F (x̃1) · · · F (x̃1)

x̂1 x̂2 x̂3 · · · x̂K

Fig. 1. Sampling procedures in randomized sampling decoding.

practice, ML decoding is always performed by sphere decod-
ing. Due to the exponential complexity of sphere decoding,
lattice-reduction-aided decoding is often preferred due to its
acceptable complexity.

In SIC decoding (also known as Babai’s nearest plane
algorithm), after QR-decomposition of the channel matrix
H = QR, the system model in (1) becomes

y′ = QTy = Rx+ n′ (3)

where Q is an orthogonal matrix and R is an upper triangular
matrix. At each decoding level i = n, n − 1, . . . , 1, the pre-
detection signal x̃i is calculated as

x̃i =
y′i −

∑n
j=i+1 ri,j x̂j

ri,i
(4)

where the decision x̂i is obtained by rounding x̃i to the nearest
integer as

x̂i = �x̃i�. (5)

Different from SIC decoding, in randomized sampling de-
coding [16], x̂i is generated randomly from the 2N -integer
set I: {�x̃i�−N+1, . . . , �x̃i�, . . . , �x̃i�+N} centered at x̃i:

x̂i = F (x̃i) (6)

where function F (x̃i) denotes the random rounding. Based
on Klein’s sampling algorithm [17], the probability of F (x̃i)
returning an integer x̂j

i (1 ≤ j ≤ 2N ) from the 2N -integer set
is calculated from the following discrete Gaussian distribution

P (x̂j
i ) =

e−ci(x̃i−x̂j
i )

2

s
, (7)

where

s = s(ci) =
∑
x̂l
i∈I

e−ci(x̃i−x̂l
i)

2

(8)

and ci = Ar2i,i. Note that P (x̂j
i ) is a conditional probability

because the selection of previous entries are also taken into
account to calculate x̃i. As for the selection of the parameter
A which affects the variance of sampling probabilities, Klein
chose A = logn/minir2i,i and [16] gave a better parameter for
randomized sampling algorithm as A = logρ/minir2i,i where
the parameter ρ > 1 related with the sample size K follows

K = (eρ)2n/ρ. (9)
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Fig. 2. BICM transmitter and IDD receiver in an MIMO system.

The decisions x̂i’s are generated level by level, and a
candidate lattice point x̂ is obtained if all the entries are
generated. It has been demonstrated in [16] that given y, the
probability of a vector x̂ being sampled (also known as the
sampling probability of x̂) is lower bounded by

P (x̂) ≥ 1∏n
i=1 s(Ar

2
i,i)

e−A‖y−Hx̂‖2

. (10)

By repeating this sampling procedure for K times, a candidate
list of K lattice points is obtained as shown in Fig. 1 and
the closest one in Euclidean norm is chosen as the decoding
output.

However, because samplings are random and because the
K samples are independent of each other, lattice points are
sampled following the probability P = 1−(1−P (x))K , which
results in two inherent problems in random sampling. On one
hand, inevitable sample repetitions in the final candidate list
means unnecessary complexity is incurred. Meanwhile, the
performance is also degraded by the existence of repetitions
since most of samplings are employed to sample those lattice
points with large sampling probabilities. On the other hand,
lattice points have to face the risk of being missed during
the sampling, especially for those with small sampling prob-
abilities on the early decoding levels, leading to inevitable
performance loss. Actually, to make sure lattice points with
a reasonable probability to be sampled, one has to increase
the sample size K , which leads to more sampling repetitions.
Therefore, the efficiency and performance of the randomized
sampling are greatly suffered from the randomization.

B. Soft-Output Decoding

In order to achieve near-capacity performance with low
complexity in MIMO-BICM systems, iterative detection and
decoding (IDD) proposed in [9] has attracted much attention
recently, which improves the performance by iteratively ex-
changing the extrinsic information between MIMO detector
and soft-in soft-out (SISO) decoder.

As shown in Fig. 2, the extrinsic information LE1 is calcu-
lated by the MIMO detector based on the channel observation
y and a priori information (API) LA1 of the transmitted bits
which is provided by the SISO decoder. Then LE1 is passed
through the deinterleaver to become API LA2 to the SISO
decoder, which computes the new extrinsic information LE2 to
feed back to the MIMO detector. Specifically, the extrinsic in-
formation in soft-output decoding is always calculated through

the computation of the posterior LLR for each information bit
associated with the transmitted signal x, which is given as

L(bi|y) = log
P (bi = 1|y)
P (bi = 0|y) (11)

where bi is the i-th information bit in x, 1 ≤ i ≤ mn. Here,
m represents the number of bits per constellation symbol and
x contains mn information bits in all. Through the exchange
of extrinsic information in each iteration, the performance of
soft-output decoding improves gradually and we have

L(bi|y)
=LA(bi)+log

∑
x:bi=1 P (y|x) ·exp

∑
j∈Ji

LA(bj)∑
x:bi=0 P (y|x) ·exp

∑
j∈Ji

LA(bj)
(12)

where LA(bi) denotes API of each transmitted bit in x

LA(bi) = log
P (bi = 1)

P (bi = 0)
(13)

and Ji is the set of indices j with

Ji = {j|j = 1, . . . ,mn, j 
= i}. (14)

In the absence of API, we suppose all the bits in x have
the same probability to be 0 or 1 before y is observed as
P (bi = 1) = P (bi = 0) = 1

2 . Then, for simplicity, the L-
value in (11) becomes [9], [18]

L(bi|y) = log

∑
x:bi=1 exp (− 1

2σ2 ‖ y −Hx ‖2)∑
x:bi=0 exp (− 1

2σ2 ‖ y −Hx ‖2) . (15)

The straightforward way to calculate the L-value in (15) is
MAP algorithm which computes the sums that contain 2mn

terms. Due to the exponentially increased complexity of MAP,
one has to resort to approximations to reduce the complexity.

As one of the approximation scenarios, Max-Log approxi-
mation tries to approximate the sums in (15) only with their
largest terms [19], [20]:

L(bi|y) ≈ log
maxx:bi=1exp (− 1

2σ2 ‖ y −Hx ‖2)
maxx:bi=0exp (− 1

2σ2 ‖ y −Hx ‖2) . (16)

However, to obtain the largest terms in (16), sphere decod-
ing is applied, which incurs exponential increment complexity.
To achieve a polynomial complexity, suboptimal hard decod-
ing schemes like SIC are used to solve those maximization
problems approximately. Unfortunately, the decoder perfor-
mance is poor even under the help of the lattice reduction
technique.
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As for another approximation schemes, list sphere decoding
(LSD) proposed in [9] restricts the sums in (15) into a much
smaller size, which uses sphere decoding with a certain radius
to perform the candidate admission as follows

S � {x ∈ Xn : ‖y−Hx‖2 ≤ R2}. (17)

Here, R denotes the sphere radius and a larger R means a
better approximation and also, a higher computational com-
plexity. Then, the calculation of L-value in (15) can be written
as

L(bi|y) ≈ log

∑
x∈S:bi=1 exp (− 1

2σ2 ‖ y −Hx ‖2)∑
x∈S:bi=0 exp (− 1

2σ2 ‖ y −Hx ‖2) . (18)

Although lattice reduction technique can be applied to
reduce its complexity, LSD schemes still suffer from a high
complexity cost due to the application of sphere decoding.
In particular, unlike finding the closest lattice point in lattice
decoding, sphere decoding in LSD tries to enumerate all the
lattice points within a constant sphere radius R. Additionally,
since the selection of the sphere radius R affects the perfor-
mance of LSD, there is still an open question about the upper
bound of R when LSD achieves near-MAP performance.

III. DERANDOMIZED SAMPLING DECODING

In this section, we propose a derandomized sampling algo-
rithm to solve the afore-mentioned problems in randomized
sampling decoding, namely, repetition and missing of certain
lattice points. Specifically, the sampling procedure of the
derandomized sampling algorithm is performed level by level
with i = n, n− 1, . . . , 1 as follows:

Algorithm 1 Derandomized sampling on decoding level i

Compute x̃i =
y′
i−

∑n
l=i+1 ri,lx̂l

ri,i
for j =1,2,. . . ,2N do

Compute P (x̂j
i ) =

e−ci(x̃i−x̂
j
i
)2

s

Compute E(x̂j
i ) = �Ki+1P (x̂j

i )�
if E(x̂j

i ) < 1 then
x̂j
i is ignored, sampling based on x̂j

i terminates
else if E(x̂j

i ) = 1 then
Let x̂i = x̂j

i , SIC is performed based on the detected
entries x̂n, . . . , x̂i to return a candidate lattice point

else if E(x̂j
i ) > 1 then

if i > 1 then
Let x̂i = x̂j

i , Ki = Ki+1P (x̂j
i ), start derandomi-

zed sampling from the next level i− 1 based on
the detected entries x̂n, . . . , x̂i

else if i = 1 then
Let x̂1 = x̂j

1, return x̂n, . . . , x̂1 as a candidate
lattice point

end if
end if

end for

At decoding level i, sample size Ki+1 is allocated to
candidate integers according to Ki = Ki+1P (x̂j

i ) and all
the integers with E(x̂j

i ) ≥ 1 are deterministically sampled.
Note that Ki is not necessarily an integer any more. For

Level 4

Level 3

Level 2

Level 1

x̂14

x̂ 23x̂13

x̂ 24 x̂34

x̂ 23 x̂13

x̂12x̂12 x̂ 22 x̂ 22

x̂ 21x̂11 x̂11x̂11

x̂1 x̂2 x̂3 x̂4 x̂5 x̂6 x̂7

Fig. 3. Illustration of the tree structure in derandomized sampling decoding
with n = 4. The solid and dashed lines represent the corresponding candidate
integer being sampled by E(x̂j

i ) > 1 and E(x̂j
i ) = 1 respectively. The dotted

line denotes performing SIC detection in the rest of levels due to E(x̂j
i ) = 1.

integers with E(x̂j
i ) > 1, after updating the size Ki, sampling

continues from the next level in the same way. Note that
when K = 1, derandomized sampling decoding performs the
same with SIC decoding by always selecting the integer with
the largest probability. Hence, for integers with E(x̂j

i ) = 1,
SIC is applied directly to obtain a candidate lattice point.
Finally, among all the candidate lattice points, the closest one
is selected as the solution. By performing the sampling based
on the threshold E(x̂j

i ) ≥ 1 at each decoding level, the whole
sampling process becomes deterministic. The risk of lattice
points being missed during the sampling is greatly reduced,
which means the probability of sampling the closest lattice
point is improved.

Unlike the parallel structure of the random sampling, deran-
domized sampling decoding admits a tree structure as shown
in Fig. 3. The final candidate list is generated by traversing the
tree from level n to level 1 rather than by K independent paths.
From this perspective, derandomized sampling functions like a
pruning algorithm in sphere decoding [21]–[23] which prunes
branches E(x̂j

i ) < 1. Thanks to the tree structure, there are
no sampling repetitions during the whole sampling process
while necessary calculations of sampling probabilities P (x̂j

i )
in branches E(x̂j

i ) > 1 are performed only once, saving a lot
of complexity. Therefore, different from randomized sampling
decoding and other decoding schemes establishing a candidate
list with a constant size around the SIC output [12], [24], the
size of the final candidate list Kfinal ≤ K is variable, which
means the sample size K set initially in the derandomized
sampling algorithm is actually a nominal sample size of the
candidate list.

As a nominal sample size, K is essentially a parameter
in the threshold E(x̂j

i ) = �Ki+1P (x̂j
i )� ≥ 1 used to

evaluate the sampling performance. With the increment of
K , the complexity improves gradually since more lattice
points will be sampled. Note that K is not the real size
of the final sampling list, the complexity of derandomized
sampling decoding in fact grows slowly with its increment.
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Because problems caused by randomization are overcome,
derandomized algorithm achieves desirable improvement in
both performance and complexity.

A. Algorithm Analysis

The operation of the derandomized sampling algorithm
relies on the notion of the sampling probability which is cal-
culated by (7). According to the defined threshold E(x̂j

i ) ≥ 1,
at each decoding level, an integer candidate x̂j

i for the entry
xi will be sampled if and only if

Ki+1P (x̂j
i ) ≥

1

2
. (19)

Note that the sampling probability P (x̂j
i ) calculated by (7)

is a conditional probability based on the entries of previous
levels. As sampling is performed from level n to level 1, the
sampling probability P (x) about lattice point x is essentially
the product of its entries’ sampling probability, which is lower
bounded by (10):

P (x) =
n∏

i=1

P (x̂j
n+1−i) ≥

1∏n
i=1 s(Ar

2
i,i)

e−A‖y−Hx‖2

. (20)

Proposition 1. Given the nominal sample size K , lattice
points with sampling probability

P (x) ≥ 1

2K
(21)

will be deterministically sampled by derandomized sampling
algorithm.

Proof: Consider sampling an n-dimensional lattice point
x by derandomized sampling algorithm. Obviously, with the
initial sample size K , its first entry x̂j

n on level n will be
sampled if

KP (x̂j
n) ≥

1

2
. (22)

Based on the selection of x̂j
n, its updated sample size Kn

on the next level is calculated as

Kn = KP (x̂j
n). (23)

Then, on level n−1, the first two entries of x will be obtained
when

KnP (x̂j
n−1) = KP (x̂j

n)P (x̂j
n−1) ≥

1

2
. (24)

By induction, x will be deterministically sampled if the
following condition holds

K

n∏
i=1

P (x̂j
n+1−i) = KP (x) ≥ 1

2
. (25)

Thus, the conclusion follows, completing the proof.
As for the randomized sampling in [16], because the K

times sampling is independent of each other, the probability of
missing x is calculated as (1−P (x))K , which means one has
to increase the sample size K to ensure x a high probability
of being sampled. In particular, given sample size K , lattice
points with sampling probability

P (x) ≥ 1

K
(26)

will be found by randomized sampling algorithm with proba-
bility P ≥ 1−1/e. Through the comparison between (21) and
(26), to sample the same lattice point x, the required sample
size of the derandomized sampling algorithm is less than the
half of that in randomized sampling algorithm:

KDerandomized <
1

2
KRandom. (27)

On the other hand, with the same sample size KDerandomized =
KRandom, derandomized sampling algorithm has the ability to
obtain more lattice points than randomized sampling, which
brings further performance improvement. Since KDerandomized is
the nominal sample size, for the same sample size derandom-
ized sampling algorithm still achieves much lower complexity
than randomized sampling. More precisely, when K = 1, the
complexity of the derandomized sampling algorithm is O(n2)
by invoking the calculation of the sampling probability in (7)
for n times. For K > 1, as computations in sampling proce-
dures are reduced by removing all the repetitions, the number
of recalling the calculation in (7) is much less than Kn, which
means the complexity is much smaller than K · O(n2). Due
to the uncertainty in this procedure, it is preferable to denote
the complexity of the derandomized sampling algorithm by
K ·O(n2), which means a polynomial complexity with respect
to the dimension n. Obviously, without suffering from the
effect of the randomization, derandomized sampling algorithm
shows great potential in both performance and complexity.

B. Optimization of the Parameter A

As a parameter which controls the variance of sampling
probabilities, parameter A has a significant impact on the final
decoding performance. Due to the consideration of complexity,
the initial sample size K of sampling algorithms is always
limited, which means finding the optimum A to exploit the
sampling potential for a given K is the key. In order to
determine the optimum choice of A in the derandomized
sampling algorithm, let A = logρ/minir2i,i where ρ > 1, then
ρ becomes the parameter needed to be optimized.

It has been demonstrated in [17] that
n∏

i=1

s(ci) ≤ e
2n
ρ (1+O(ρ−3)). (28)

Because ρ > 1, the term O(ρ−3) in (28) will be negligible
if ρ is sufficiently large. Assume ρ satisfies this weak condi-
tion, the sampling probability of x shown in (20), which is
calculated based on the discrete Gaussian distribution, can be
further derived as follows

P (x) ≥ e−
2n
ρ · ρ−‖y−Hx‖2/minir

2
i,i . (29)

Since lattice points with P (x) ≥ 1
2K will be deterministi-

cally sampled by derandomized sampling algorithm, motivated
by (29), let

e−
2n
ρ · ρ−‖y−Hx‖2/minir

2
i,i ≥ 1

2K
, (30)

and we have

‖y −Hx‖ ≤ miniri,i ·
√

logρ(2Ke−2n/ρ), (31)
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which means lattice points with ‖y−Hx‖ less than the right-
hand side (RHS) of (31) must be obtained.

In order to exploit the potential of the derandomized sam-
pling algorithm for the best decoding performance, parameter
ρ is selected carefully to maximize the upper bound shown
in (31). Therefore, let the derivative about logρ(2Ke−2n/ρ)
versus ρ be zero, the optimum ρo given sample size K in the
derandomized sampling algorithm can be finally determined
as follows

K =
1

2
(eρo)

2n/ρo . (32)

Obviously, the optimum ρo for the randomized sampling
algorithm shown in (9) is not the optimum solution in the
derandomized sampling algorithm. According to (32), it is
easy to check that the parameter ρo monotonically decreases
with respect to the increment of the sample size K .

In the view of lattice decoding, derandomized sampling
algorithm will give the closest lattice point if the distance
between y and lattice L(H) is less than the RHS of (31).
Therefore, the RHS of (31) can be regarded as the decoding
radius in the notion of bounded distance decoding (BDD).
By substituting (32) into (31), the optimum decoding radius
RDerandomized of the derandomized sampling algorithm is de-
rived as

RDerandomized �
√

2n

ρo
miniri,i. (33)

Clearly, with the increment of K , RDerandomized improves
gradually resulting in better decoding performance. We need to
emphasize that the decoding radius RDerandomized may be much
larger than the value defined in (33) because the derivation is
only based on the lower bound of P (x) shown in (29).

C. Upper Bound on the Sample Size K

We now give an explicit value of K when derandomized
sampling decoding achieves near-ML performance. To do this,
the total probability of samples in the final candidate list
is derived based on the truncation of the discrete Gaussian
distribution (7).

As shown in [16], the probability that the integer x̂i

generated by random rounding F (x̃i) is located within the
2N integers around x̃i is bounded by

P2N ≥ 1−O(ρ−N2

). (34)

Because ρ > 1, the term O(ρ−N2

) decays exponentially,
meaning a finite truncation with moderate N achieves an
accurate approximation. Normally, 3-integer approximation is
sufficient:

P (x̂1
i ) + P (x̂2

i ) + P (x̂3
i ) ≈ 1. (35)

Since these probabilities follow the discrete Gaussian dis-
tribution, they decrease monotonically with the distance from
x̃i. Let us order them as follows

P (x̂1
i ) ≥ P (x̂2

i ) ≥ P (x̂3
i ). (36)

As shown in (4), x̃i is subject to the effect of noise.
Intuitively, x̃i tends to be close to an integer for small
noise while it tends to be halfway between two integers for
large noise. Since x̃i is the peak of the continuous Gaussian

distribution associated with the discrete one (7), we define
the worst case in sampling as the one where x̃i is centered
between two integers.

Because the random noise makes it hard for an exact anal-
ysis, we only consider the worst-case scenario in samplings.
Then, under the 3-integer approximation in (35), the following
holds in the worst case:

P (x̂1
i ) = P (x̂2

i )  P (x̂3
i ) (37)

where P (x̂3
i ) is much smaller due to exponential decay of the

probability with the distance.
Now, let us calculate the total probability of lattice points

sampled by derandomized sampling, in the worst case. Con-
sider the level n first. Obviously, according to (19), the first
two integers will be sampled if K > 2. If P (x̂3

n) ≥ 1
2K , all

the 3 integers around x̃n are deterministically sampled. On
the other hand, if P (x̂3

n) <
1
2K , integer x̂3

n will be discarded
while the summation of probabilities of the other two integers
will be larger than 1− 1

2K according to (35). Therefore, given
the nominal sample size K , the sum probability of samples
on the level n is bounded by

P (leveln) ≥ 1− 1

2K
. (38)

To further derive the lower bound of the total probability of
samples, we assume the third sample x̂3

i at the each sampling
level is always discarded. Then, still in the worst case, the
total probability of samples on the level n− 1 is given by

P (leveln− 1)≥(1− 1

2K
)

[
1

2

(
1− 1

K

)
+
1

2

(
1− 1

K

)]

= (1 − 1

2K
)(1 − 1

K
). (39)

Similarly, on the level n−p, the total probability of samples
in the worst case can be lower bounded by

P (leveln− p) >

p∏
i=1

(1− 2i−2

K
). (40)

Therefore, the total probability of sampled lattice points in
the derandomized sampling algorithm is lower bounded by
a function of K . We define a parameter η to evaluate the
decoding performance as

Ptotal = P (level 1) > η �
n∏

i=1

(1− 2i−2

K
). (41)

Obviously, the lower bound η increases with K and a larger
η means a higher probability of the closest lattice point being
sampled. Thus, derandomized sampling decoding can be used
to approximate ML decoding as η approaches 1.

The lower bound (41) is loose because it quantifies the
probability in the worst case. For η close to 1, K can be
very huge (in fact exponential). A lower bound in the average
case is an open question. Because the noise is random, the
average-case probability may be more useful.

In order to obtain a better estimate, the idea of the fixed-
complexity sphere decoding (FSD), which also follows a tree
structure in decoding, is exploited. Different from the standard
sphere decoding, it only performs the full search in the upper p
levels known as the full-expansion stage while SIC is applied
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on the rest of levels. It has been proved in [25] that by
applying the channel matrix ordering to make sure signals
with the largest postprocessing noise amplification are detected
in the full-expansion stage, FSD algorithm yields near-ML
performance in high SNR if it satisfies:

(p+ 1)2 ≥ n (42)

where p is the number of levels in the full-expansion stage.
We propose to use sampling in the full-expansion stage of

FSD. With the suitable channel matrix ordering, the modified
sampling decoder also consists of two stages. Candidate values
on the upper p levels are sampled based on the lower bound
η while decodings on the remaining levels are processed by
SIC (i.e., derandomized sampling decoding with K = 1).

According to (40) and (42), if we set η to a value near 1
on the upper p decoding levels, then the decoder will achieve
near-ML performance:

Ptotal = P (leveln− p) > η =

p∏
i=1

(1− 2i−2

K
). (43)

Compared with (41), the lower bound (43) is better because
p is much smaller than n meaning the value of K achieving
the same η is greatly reduced. Here, we define η = 0.9
representing near-ML performance. Then, according to (43),
the corresponding K who denotes the upper bound of the
sample size in derandomized sampling decoding can be easily
calculated.

Note that the derandomized sampling algorithm with K = 1
performs the same with SIC in lattice decoding. Thus, the
decoder enjoys flexible performance between SIC and near-
ML by adjusting K . Although larger η > 0.9 will bring further
performance improvement, it approaches ML performance
asymptotically with the exponential increment of K , which
is meaningless due to the consideration of complexity.

IV. DERANDOMIZED SAMPLING ALGORITHM IN

SOFT-OUTPUT DECODING

In this section, we show that the proposed derandomized
sampling algorithm can also be used as an efficient tool
to implement soft-output decoding in MIMO systems. By
generating a list of lattice points around the ML estimate
minx∈Xn‖y − Hx‖, derandomized sampling algorithm in
soft-output decoding actually functions as an approximation
scheme like list sphere decoding (LSD) in [9]. To establish
the trade-off with respect to the sample size K , we firstly
give an upper bound of the sphere radius R in LSD.

A. Upper Bound on the Sphere Radius R in LSD

Given y ∈ R
n, we define a function f : Rn → R over the

n-dimensional lattice L(H) as

fL(H)(y) =

∑
v∈L(H) exp(−π‖y − v‖2)∑

v∈L(H) exp(−π‖v‖2) , (44)

where v ∈ R
n denotes the lattice point of L(H). Thus the

LLR in soft-output decoding shown in (15) can be expressed
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Fig. 4. Bit error rate versus average SNR per bit for the uncoded 10 × 10
MIMO system using 64-QAM.

by f -function as

L(bi | y) = log

∑
x:bi=1 exp(−π · 1

2πσ2 ‖ y −Hx ‖2)∑
x:bi=0 exp(−π · 1

2πσ2 ‖ y −Hx ‖2)

= log

∑
x:bi=1 exp(−π· 1

2πσ2 ‖y−Hx‖2)∑
x∈Xn exp(−π· 1

2πσ2 ‖Hx‖2)∑
x:bi=0 exp(−π· 1

2πσ2 ‖y−Hx‖2)∑
x∈Xn exp(−π· 1

2πσ2 ‖Hx‖2)

= log
fL( 1

σ
√

2π
H),x:bi=1(

1
σ
√
2π

y)

fL( 1
σ
√

2π
H),x:bi=0(

1
σ
√
2π

y)
. (45)

Accordingly, the L-value computation is converted into the
calculation of function fL( 1

σ
√

2π
H)(

1
σ
√
2π

y). Here, the lattice

point v in L(H) is expressed by Hx, where x ∈ Xn is an
integer vector. To further exploit the function f , we invoke
the following lemma in [26]. Lemma 1 ([26]). For any n-
dimensional lattice L(H), y ∈ R

n and c > 1√
2π

, one has∑
v∈L(H),‖y−v‖>c

√
n exp(−π‖y − v‖2)∑

v∈L(H) exp(−π‖v‖2)
≤ 2

(
c
√
2πe · e−πc2

)n

= 2−Ω(n). (46)

According to Lemma 1, we obtain

fL(H)(y) =

∑
v∈L(H),‖y−v‖≤c

√
n exp(−π‖y − v‖2)∑

v∈L(H) exp(−π‖v‖2)

+

∑
v∈L(H),‖y−v‖>c

√
n exp(−π‖y− v‖2)∑

v∈L(H) exp(−π‖v‖2)

≤
∑

v∈L(H),‖y−v‖≤c
√
n exp(−π‖y − v‖2)∑

v∈L(H) exp(−π‖v‖2) + 2−Ω(n). (47)

As to the second term in the RHS of (47), it decays
exponentially with the dimension n. Assume n is sufficiently
large, then fL(H)(y) is dominated by the set of lattice points
within the radius R =

√
n/2π centering at y. Back to

fL( 1
σ
√

2π
H)(

1
σ
√
2π

y) in (45), correspondingly, lattice points
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in the corresponding set denoted by S should satisfy the
following condition as

1

σ
√
2π

‖y − v‖ ≤
√

n

2π
(48)

and we have

‖y− v‖ ≤ √
nσ. (49)

Based on the fact as shown in (45) that

fL( 1
σ
√

2π
H)(

1

σ
√
2π

y) ∝
∑

x∈Xn

exp (− 1

2σ2
‖ y −Hx ‖2), (50)

the key of solving the L-value computation depends on lattice
points within the radius

√
nσ. In other words, it can be

interpreted as that, with the sphere radius R =
√
nσ, LSD

could achieve MAP performance within a negligible loss by
only exploiting lattice points in the set S shown in (17). Thus,
the sphere radius R in LSD is upper bounded by

R ≤ √
nσ. (51)

Note that with the increase of SNR, the radius R shrinks
gradually saving a lot of complexity.

B. Derandomized Sampling in Soft-Output Decoding

Given the sphere radius R, LSD performs sphere decoding
to obtain all the lattice points within R. However, it is known
that sphere decoding is impractical due to its exponentially
increased complexity. Instead of enumerating lattice points
within R by exhaustive search, derandomized sampling algo-
rithm generates lattice points by sampling from a Gaussian-
like distribution, which is more efficient than LSD due to its
polynomial complexity.

As it shown in (10), the lower bound of the sampling
probability resembles a Gaussian distribution over the lattice.
The closer Hx to y, the larger lower bound. Therefore, lattice
points closer to y are more likely to be sampled due to
larger sampling probability lower bounds. In this way, the
derandomized sampling algorithm could find a number of
lattice points with small values of ‖y−Hx‖ around the ML
estimate. By restricting the original set of sums in (15) into
a much smaller one denoted by C, the LLR calculation by
derandomized sampling algorithm can be written as

L(bi|y) ≈ log

∑
x∈C:bi=1 exp (− 1

2σ2 ‖ y −Hx ‖2)∑
x∈C:bi=0 exp (− 1

2σ2 ‖ y −Hx ‖2) . (52)

It is noteworthy that lattice points with sampling proba-
bilities P (x) ≥ 1

2K will be deterministically sampled by
derandomized sampling algorithm. As shown in (31), this can
be interpreted as obtaining all the lattice points inside a sphere
of the radius r where

r = ‖y −Hx‖ ≤ miniri,i ·
√

logρ(2Ke−2n/ρ). (53)

To achieve a better upper bound of r, the optimum choice of
the parameter ρo in (32) is applied and we have

r ≤
√

2n

ρo
miniri,i. (54)
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Fig. 5. Complexity comparison in flops for a MIMO system using 64-QAM
at SNR per bit = 17dB.

Let C1 denotes the set formed by lattice points within sphere
radius r

C1 � {x ∈ Xn : ‖y −Hx‖ ≤ r}, (55)

then set C in (52) can be rewritten as

C = C1 ∪ C2, (56)

where C2 represents the set of lattice points outside radius
r but also sampled by derandomized sampling decoding,
and normally |C1| < |C2|. Although lattice points within r
only constitute a small part in the final candidate list of
derandomized sampling, it captures the key aspect of the
decoding performance and offers a way to investigate the
effect of the sample size K in soft-output decoding.

Based on the upper bound of the sphere radius R in
LSD, derandomized sampling algorithm can also be applied to
implement soft-out decoding through sampling all the lattice
points within R. Hence, according to (51), let r =

√
nσ,

the derandomized sampling algorithm will achieve near-MAP
performance even with lattice points in C1 only. Therefore, we
have √

2n

ρo
miniri,i =

√
nσ (57)

and

ρo =
2 min2i ri,i

σ2
. (58)

By substituting (58) into (32), the corresponding sample
size K can be derived as

K =
1

2

(
2emin2i ri,i

σ2

)(
nσ2

min2
i
ri,i

)
. (59)

Obviously, with the increment of K , more lattice points
will be sampled and the corresponding sphere radius r also
increases gradually leading to further performance improve-
ment. Note that the total sampling probability shown in (43)
could also be used to reveal this flexible trade-off. As for
achieving near-MAP performance, we emphasize that the re-
quired sample size K of the derandomized sampling algorithm
is significantly less than the value shown in (59). The reasons
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are two-fold: the derivation is based on a loose upper bound
of r shown in (53), and the contribution of set C2 which also
contains sampled lattice points is not considered. Nevertheless,
it provides a straightforward way of showing the trade-off
in soft-output decoding with respect to K . Actually, with a
moderate value of K , desirable performance gain in a low
complexity burden can be achieved, as will be shown in
simulation results.

V. SIMULATION RESULTS

In this section, performance and complexity of the deran-
domized sampling algorithm in MIMO systems are studied.
Here, the i-th entry of the transmitted signal x, denoted as
xi, is the modulation symbol taken independently from a
Q2-QAM constellation X with Gray mapping. We assume
a flat fading environment, the channel matrix H contains
uncorrelated complex gaussian fading gains with unit vari-
ance and remains constant over each frame duration. Let Eb

represents the average power per bit at the receiver, then
Eb/N0 = n/(log2(M)σ2) holds where M is the modulation
level and σ2 is the noise power.

Fig. 4 shows the bit error rate (BER) of the derandomized
sampling decoding compared with other decoding schemes in
a 10 × 10 uncoded MIMO system with 64-QAM. Clearly,
sampling decoding schemes have considerable gains over the
lattice-reduction-aided SIC. Compared to the fixed candidates
algorithm (FCA) in [12] and iterative list decoding in [24] with
30 samples, sampling decoding algorithms offer not only the
improved BER performance but also the promise of smaller
sample size. As expected, derandomized sampling decoding
achieves better BER performance than randomized sampling
decoding with the same K . Specifically, the gain in MMSE
schemes with K = 15 is approximately 1 dB for a BER
of 10−4. With the increment of K , the BER performance
improves gradually. Observe that with η = 0.9 (K=73), the
performance of the derandomized sampling algorithm suffers
negligible loss compared with ML. Therefore, with a moderate
K , derandomized sampling decoding could achieve near-ML
performance.

Fig. 5 shows the complexity comparison of the deran-
domized sampling algorithm with other schemes in different
dimensions. It is clearly seen that in a 64-QAM MIMO system
for the fixed SNR (Eb/N0 = 17 dB), the derandomized
sampling algorithm needs much lower average flops than other
decoding schemes with the same size K . This can be inter-
preted as reducing the computation in sampling procedures
by removing all the unnecessary repetitions. Even for a large
K = 73 (η = 0.9), the complexity is still lower than that of the
randomized sampling algorithm with K = 15. Consequently,
better BER performance and less complexity requirement
make derandomized sampling algorithm very promising for
lattice decoding.

Fig. 6 shows the frame error rate for a coded 8× 8 MIMO
BICM-IDD system with 4-QAM, using a rate-1/2, irregular
(256,128,3) low-density parity-check (LDPC) code of code-
word length 256 (i.e., 128 information bits). Each codeword
spans one channel realization and a random bit interleaver
is used. The parity check matrix is randomly constructed,
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Fig. 6. Frame error rate versus average SNR per bit in the coded 8 × 8
MIMO BICM-IDD system with a rate-1/2 LDPC code of codeword length
256 using 4-QAM.

but cycles of length 4 are eliminated. The maximum number
of decoding iterations for LDPC is set at 50. Clearly, after
three iterations between MIMO detector and SISO decoder in
IDD, the proposed sampling algorithm with K = 15 performs
better than FCA, MMSE suppression [27], and Embedding
list [28]. To achieve a better comparison, performance of both
sampling algorithms with K = 15 after one iteration are also
given. As expected, derandomized sampling algorithm always
achieves better FER performance than randomized sampling
algorithm under the same iteration. Note that there is no
significant performance gain after more than three iterations
in IDD receivers. It is observed that the LSD in [9] and
shifted sphere list deocding (SSLD) in [14] with sample size
K = 15 achieve near-MAP performance. However, due to
the application of sphere decoding, their complexity are high
and increase exponentially with the size of sphere radius and
system dimensions leading them impractical. It is also shown
that the performance gap between the proposed algorithm
and MAP decreases with the increment of K and near-MAP
performance is achieved by derandomized sampling algorithm
with a moderate size K = 100. By adjusting K , the whole
system enjoys a flexible trade-off between performance and
complexity.

VI. CONCLUSIONS

In this paper, we proposed a derandomized algorithm to
address issues in sampling algorithms caused by random-
ization, which holds great potential in both lattice decoding
and soft-output decoding. By setting a probability threshold
to perform the sampling, the whole sampling procedure be-
comes deterministic. We demonstrated that the proposed de-
randomized sampling algorithm outperforms the randomized
sampling algorithm with much lower complexity and derived
the optimal parameter A which maximizes the decoding radius
RDerandomized for the best decoding performance. To accomplish
the trade-off in lattice decoding, the upper bound on the
sample size K corresponding to near-ML performance was
also given. Furthermore, we found that the proposed deran-
domized sampling algorithm is quite suitable for soft-output
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decoding through sampling a list of lattice points around the
ML estimate. According to the analysis, we demonstrated that
the derandomized sampling algorithm is capable of achieving
near-MAP performance with a moderate size K . Therefore,
by varying K , the decoder enjoys a flexible trade-off between
performance and complexity in both lattice decoding and soft-
output decoding.
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