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Markov Chain Monte Carlo Methods for Lattice
Gaussian Sampling: Convergence

Analysis and Enhancement
Zheng Wang , Member, IEEE

Abstract— Sampling from lattice Gaussian distribution has
emerged as an important problem in coding, decoding, and cryp-
tography. In this paper, the classic Gibbs algorithm from Markov
chain Monte Carlo (MCMC) methods is demonstrated to be
geometrically ergodic for lattice Gaussian sampling, which means
that the Markov chain arising from it converges exponentially
fast to the stationary distribution. Meanwhile, the exponential
convergence rate of the Markov chain is also derived through the
spectral radius of the forward operator. Then, a comprehensive
analysis of the convergence rate is carried out, and two sam-
pling schemes are proposed to further enhance the convergence
performance. The first one, referred to as a Metropolis-within-
Gibbs (MWG) algorithm, improves the convergence by refining
the state space of the univariate sampling. The second is a blocked
strategy of the Gibbs algorithm, which performs sampling over
multivariates at each Markov move, and is shown to yield a
better convergence rate than the traditional univariate sampling.
In order to perform blocked sampling efficiently, the Gibbs–
Klein (GK) algorithm is proposed, which samples block by block
using the Kleins algorithm. Furthermore, the validity of the GK
algorithm is demonstrated by showing its ergodicity. Simulation
results based on MIMO detections are presented to confirm
the convergence gain brought by the proposed Gibbs sampling
schemes.

Index Terms— Lattice coding and decoding, lattice Gaussian
sampling, Gibbs sampler decoding, Markov chain Monte Carlo,
MIMO detection.

I. INTRODUCTION

NOWADAYS, lattice Gaussian distribution, which is sup-
ported over a multi-dimensional Euclidean lattice, has
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drawn a lot of attentions in various research fields. In math-
ematics, Banaszczyk first applied it to prove the transfer-
ence theorems for lattices [1]. In coding, lattice Gaussian
distribution was employed to obtain the full shaping gain
for lattice coding [2]–[4], and to achieve the capacity of the
Gaussian channel [5]. Meanwhile, it was also used to achieve
information-theoretic security in Gaussian wiretap channel
[6]–[8]. Furthermore, lattice Gaussian distribution has been
adapted to bidirectional relay network under the compute-and-
forward strategy for the physical layer security [9]. Addition-
ally, it is also applied to realize the probabilistic shaping for
optical communication systems [10], [11].

In cryptography, lattice Gaussian distribution has already
become a central tool in the construction of many primi-
tives. Specifically, Micciancio and Regev used it to propose
lattice-based cryptosystems based on the worst-case hardness
assumptions [12]. In [13], lattice Gaussian distribution is
applied to create even more powerful cryptographic primitives,
namely, hierarchical identity-based encryption and standard
model signatures. In learning with errors (LWE) based encryp-
tion, sampling from lattice Gaussian distribution is highly
demanded for the key generation [14]. Meanwhile, it also
has underpinned the fully-homomorphic encryption for cloud
computing [15]. Besides, there are various applications that
require sampling over lattice Gaussian distribution as part of
the “on-line” computation, where the most notable one among
them is the secure lattice-based digital signature on a constrain
device [16].

On the other hand, algorithmically, lattice Gaussian dis-
tribution with a suitable variance allows lattice decoding
to solve the shortest vector problem (SVP) and the closest
vector problem (CVP) [17], [18]. Intuitively, the formula-
tion of it comes from a conceptually simple fact that each
lattice point in the discrete Gaussian distribution entails a
sampling probability scaled by the Euclidean distance from
the query point [19]. The lattice points which are close to
the center of the distribution naturally correspond to large
sampling probabilities. Therefore, the desired closest lattice
point or shortest lattice vector would conceivably be obtained
due to the largest sampling probability. To this end, sampling
over lattice Gaussian distribution has been widely applied in
multi-input multi-output (MIMO) communications for signal
detection [20]–[22]. Compared to the optimal sphere detection,
it is not only much more efficient, but also can be realized
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flexibly to achieve the trade-off between decoding performance
and complexity [23]. In addition, such a sampling decoding
strategy can be easily extended to signal processing as an
useful signal estimator or detector [24]–[28].

Because of the central role of lattice Gaussian distribution
in these fields, its sampling algorithms become an important
computational problem. However, different from the case of
continuous Gaussian density, sampling from the discrete lattice
Gaussian distribution is by no means trivial even for a low-
dimensional system. For this reason, Markov chain Monte
Carlo (MCMC) methods were introduced as an alternative way
for lattice Gaussian sampling, which attempts to sample from
the target distribution by building a Markov chain [29], [30].
Typically, after a burn-in stage, which is normally measured
by the mixing time in total variance distance, the Markov
chain will step into a stationary distribution, where samples
from the target distribution can be successfully obtained
thereafter. Specifically, in [30], Gibbs algorithm was intro-
duced for lattice Gaussian sampling by showing its ergodicity,
which employs conditional univariate sampling to build the
Markov chain. Nevertheless, ergodicity only guarantees the
convergence while the way of convergence (e.g., polynomial
convergence, geometric convergence and so on) as well as the
related convergence rate are unclear, resulting in an untractable
Markov chain. In fact, compared to Gibbs algorithm for lattice
Gaussian distribution, a better progress has been made with
respect to Metropolis-Hastings (MH) algorithm, which is well
known as another important sampling scheme in MCMC. For
example, the independent Metropolis-Hastings-Klein (IMHK)
algorithm given in [29] is not only uniformly ergodic for lattice
Gaussian sampling, but also has an accessible convergence
rate.

This paper was partially presented in [30] and [31] while
further investigation and extensions are given as follows.
On one hand, with respect to the geometric ergodicity of Gibbs
algorithm for lattice Gaussian sampling [31], a prospective
way for convergence diagnosis by means of the spectral
radius of the forward operator is offered. Inspired by it,
convergence analysis is carried out in this paper, where the
corresponding enhancement scheme named as Metropolis-
within-Gibbs (MWG) algorithm is proposed for univariate
Gibbs sampling. More importantly, the superiority of MWG
over Gibbs algorithm in terms of convergence rate is demon-
strated, and further improvement can be realized by the parallel
tempering technique. On the other hand, different from the
work in [30] which only concerns the efficient implementation
for the blocked strategy of Gibbs algorithm regardless of the
convergence behavior, the blocked strategy by sampling over
multivariate is demonstrated to enable a faster convergence
rate than the univariate sampling. Moreover, the geometric
ergodicity of the proposed Gibbs-Klein (GK) algorithm is also
given, which removes the approximation errors by resorting to
the rejection sampling. Hence, a whole framework of Gibbs-
based algorithms for lattice Gaussian sampling is established.

The rest of this paper is organized as follows. Section II
introduces the lattice Gaussian distribution and briefly reviews
the basics of MCMC methods. In Section III, Gibbs algorithm
is introduced for lattice Gaussian sampling, and its geometric

Fig. 1. Illustration of a two-dimensional lattice Gaussian distribution.

ergodicity is demonstrated. In Section IV, the MWG algorithm
is proposed to strengthen the convergence performance in
terms of the univariate sampling, followed by the proof to
show the convergence enhancement. In Section V, blocked
strategy is adopted to Gibbs algorithm to achieve a better con-
vergence rate. In order to realize efficient blocked sampling,
GK algorithm is proposed and the proof of its validity is also
given. Simulations through MIMO systems are presented in
Section VI to illustrate the convergence gain of these two
proposed algorithms. At the end, Section VII concludes the
paper.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the transpose, inverse,
pseudoinverse of a matrix B by BT ,B−1, and B†, respec-
tively. We use bi for the ith column of the matrix B, b̂i for
the ith Gram-Schmidt vector of the matrix B, bi,j for the entry
in the ith row and jth column of the matrix B. We use the
standard small omega notation ω(·), i.e., f(n) = ω(g(n)) if
for any k > 0, the inequality |f(n)| > k · |g(n)| holds for
all sufficiently large n. Finally, h ∈ L2

0(π) and L2
0(π) denote

the set of all mean zero and finite variance functions with
respect to the target distribution π, i.e., Eπ[h(x)] = 0 and
varπ[h(x)] = v < ∞.

II. PRELIMINARIES

In this section, the background and mathematical tools
needed to describe and analyze the Gibbs algorithm for lattice
Gaussian sampling are introduced.

A. Lattice Gaussian Distribution

Let B = [b1, . . . ,bn] ⊂ R
n consist of n linearly indepen-

dent vectors. The n-dimensional lattice Λ generated by B is
defined by

Λ = L(B) = {Bx : x ∈ Z
n}, (1)

where the full rank matrix B ∈ R
n×n is called the lattice

basis. The Gaussian function centered at c ∈ R
n with standard

deviation σ > 0 is defined as

ρσ,c(z) = e−
‖z−c‖2

2σ2 , (2)
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Algorithm 1 Klein’s Algorithm
Input: B, σ, c
Output: Bx ∈ Λ
1: let B = QR and c′ = QT c
2: for i = n, …, 1 do
3: let σi = σ

|ri,i| and x̃i =
c′i−

�n
j=i+1 ri,jxj

ri,i

4: sample xi from DZ,σi,�xi

5: end for
6: return Bx

for all z ∈ R
n. When c or σ are not specified, they are assumed

to be 0 and 1 respectively. Then, the discrete Gaussian
distribution over Λ is defined as

DΛ,σ,c(x) =
ρσ,c(Bx)
ρσ,c(Λ)

=
e−

1
2σ2 ‖Bx−c‖2∑

x∈Zn e−
1

2σ2 ‖Bx−c‖2 (3)

for all x ∈ Z
n, where ρσ,c(Λ) �

∑
Bx∈Λ ρσ,c(Bx) is just

a scaling to obtain a probability distribution and σ > 0
represents the standard deviation.

B. Klein’s Algorithm

At present, the default sampling algorithm for lattice
Gaussian distribution is due to Klein, which was origi-
nally proposed for bounded-distance decoding (BDD) in lat-
tices [19]. As shown in Algorithm 1, the operation of Klein’s
algorithm has polynomial complexity O(n2) excluding QR
decomposition. More precisely, by sequentially sampling from
the 1-dimensional conditional Gaussian distribution DZ,σi,�xi

in a backward order from xn to x1 (the forward order from
x1 to xn is fine as well), the Gaussian-like distribution arising
from Klein’s algorithm is given by

PKlein(x) =
n∏

i=1

DZ,σi,�xi
(xi) =

ρσ,c(Bx)∏n
i=1 ρσi,�xi

(Z)

=
e−

1
2σ2 ‖Bx−c‖2

∏n
i=1

∑
�xi∈Z

e
− 1

2σ2
i

‖xi−�xi‖2 , (4)

where x̃i =
c′i−

�n
j=i+1 ri,jxj

ri,i
, σi = σ

|ri,i| = σ

‖�bi‖ , c′ = Q†c,
ri,j denotes the element of the upper triangular matrix R from
the QR decomposition B = QR and b̂i’s are the Gram-
Schmidt vectors of B with ‖b̂i‖ = |ri,i|.

In [32], it has been demonstrated that PKlein(x) is close to
DΛ,σ,c(x) within a negligible statistical distance if

σ = ω(
√

log n) · max
1≤i≤n

‖b̂i‖. (5)

However, even with the help of lattice reduction,1 the require-
ment of standard deviation ω(

√
log n) ·max1≤i≤n ‖b̂i‖ is too

large to be useful in practice, rendering Klein’s algorithm
inapplicable to many cases of interest.

1It is well known that lattice reduction such as the Lenstra-Lenstra-Lovász
(LLL) algorithm is able to significantly improve mini ‖�bi‖ while reducing
maxi ‖�bi‖ at the same time [33], [34].

C. MCMC Methods

By establishing a Markov chain that randomly generates
the next state, MCMC is capable of sampling from the target
distribution of interest. As an important parameter which
measures the time (i.e., number of Markov moves) required
by a Markov chain to get close to its stationary distribution,
the mixing time tmix(ε) is defined as [35]

tmix(ε) = min{t : max ‖P t(x, ·) − π(·)‖TV ≤ ε}, (6)

where the integer t ≥ 1 denotes the index of Markov moves,
‖ · ‖TV represents the total variation distance, π is the target
invariant distribution, P t(x; ·) indicates a row of the transition
matrix P after t Markov moves with the initial state x.2 We
now give the descriptions of the basic properties that are
important to Markov chains, where the state space of the
Markov chain is denoted by x ∈ Ω.

1) Irreducible: For any two states si, sj ∈ Ω, there exists a
positive integer k such that P (Xt+k = sj |Xt = si) > 0.

2) Aperiodic: For any two states si, sj ∈ Ω, the Markov
chain is not forced into any cycle with fixed period
between them. In other words, the period of any two
states that communicate is the same, e.g., gcd{k :
P (Xt+k = sj |Xt = si) > 0} = 1, where “gcd”
represents the greatest common divisor.

3) Reversible: For any two states si, sj ∈ Ω,
π(si)P (Xt+1 = sj |Xt = si) = π(sj)P (Xt+1 =
si|Xt = sj) always holds.

Thanks to the celebrated coupling technique, for any
Markov chain with finite state space, exponentially fast con-
vergence can be demonstrated if the underlying Markov chain
is irreducible and aperiodic with an invariant distribution
π [35]. However, in the case of lattice Gaussian sampling,
the countably infinite state space x ∈ Z

n naturally imposes a
challenge, making us consider the convergence analysis from
the ergodicity.

Definition 1 ([36]): Let P be an irreducible and aperiodic
transition matrix for a Markov chain. If the chain is reversible
(hence positive recurrent), then the Markov chain is said to
be ergodic, which is defined as lim

t→∞‖P t(x, ·)−π‖TV = 0 for

all x ∈ Ω.
Note that the state space Ω in the above definition can

be countably infinite, which offers a valid way to verify the
ergodicity. Unless stated otherwise, the state space we are
concerned with throughout the context is the countably infinite
Ω = Z

n. Although ergodicity implies asymptotic convergence
to stationarity, it does not entail the way of convergence,
resulting in an intractable Markov chain [37]. Among kinds of
ergodicity in literature, geometric ergodicity which converges
exponentially is defined as:

Definition 2 ([35]): A Markov chain with stationary distri-
bution π is geometrically ergodic if there exists 0 < � < 1 and
0 < M(x) < ∞ such that ‖P t(x, ·) − π(·)‖TV ≤ M(x)�t

for all x with t ≥ 1, where function M(x) is parameterized
by the initial state x.

2The (i, j)-th entry P (i; j) of transition matrix P represents the probability
of transferring to state j from the previous state i
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Clearly, coefficient � is the convergence rate of the Markov
chain. In comparison, a Markov chain is said to be uniformly
ergodic if it is geometrically ergodic and M(x) is a constant
M independent of x [36].

III. GIBBS ALGORITHM FOR LATTICE

GAUSSIAN SAMPLING

In this section, Gibbs algorithm is introduced for lat-
tice Gaussian sampling, which establishes the Markov chain
through univariate sampling.

A. Ergodicity

Typically, as for lattice Gaussian sampling by Gibbs algo-
rithm, each coordinate of x is sampled from the following
1-dimensional conditional distribution

P (xi|x[−i])=DΛ,σ,c(xi|x[−i])=
e−

1
2σ2 ‖Bx−c‖2∑

xi∈Z
e−

1
2σ2 ‖Bx−c‖2 (7)

with σ > 0. Here 1 ≤ i ≤ n denotes the coordinate index of x,
x[−i] � [x1, . . . , xi−1, xi+1, . . . , xn]T . During this univariate
sampling, the other n − 1 variables contained in x[−i] are
keeping fixed. By repeating such a procedure with a certain
scan scheme, a Markov chain {X0,X1, . . .} is established.
Here, for simplicity, we use κi to denote the lower bound of
the variance of each random variable xi

varP [xi|x[−i]] ≥ κi > 03 (8)

for 1 ≤ i ≤ n. This is easy to understand since xi is no longer
a random variable if it is completely determined by x[−i] once
var[xi|x[−i]] = 0, which is also contradictory with the default
setting of DΛ,σ,c(x).4 Therefore, all the sampling candidates
of xi ∈ Z are possible to be sampled, leading to an irreducible
chain that is free to communicate between any of two states.
Meanwhile, it is straightforward to verify that every state is
aperiodic, which results in a aperiodic Markov chain.

On the other hand, in Gibbs algorithm, there are various
scan schemes to proceed the component updating. Among
them, random scan is the basic one. Typically, under random
scan, the coordinate index i is randomly chosen from a set
of selection probabilities [β1, . . . , βn], where

∑n
i=1 βi = 1

and βi > 0. The extension to other scan strategies is possi-
ble. Without loss of generality, the random scan scheme is
considered for Gibbs algorithm throughout the context and
flexible implementation based on it can be easily carried out
in practice. Therefore, the transition probability P (Xt,Xt+1)
of Gibbs algorithm for lattice Gaussian sampling is

P (Xt = x,Xt+1 =y)=P (xt+1
i |xt

[−i])=DΛ,σ,c(xt+1
i |xt

[−i]),
(9)

for t ≥ 1, where random variable i follows from the
distribution [β1, . . . , βn]. Clearly, every two adjacent states
Xt = x = [xt

1, . . . , x
t
i, . . . , x

t
n]T and Xt+1 = y =

3varP [xi|x[−i]] is slight affected by x[−i] but the impact of x[−i] upon it
is periodic with respect to Z, thus leading to the positive lower bound κi.

4The lattice basis B is a full rank matrix while bi’s are linear independent
of each other.

Algorithm 2 Gibbs Algorithm for Lattice Gaussian Sampling

Input: B, σ, c,X0, βi’s, tmix(ε)
Output: x ∼ π, π is within statistical distance of ε to DΛ,σ,c

1: for t =1,2, … do
2: let x denote the state of Xt−1

3: randomly choose index i by distribution [β1, . . . , βn]
4: sample xi from P (xi|x[−i]) shown in (7)
5: update x with the sampled xi and let Xt = x
6: if t ≥ tmix(ε) then
7: output the state of Xt

8: end if
9: end for

[xt
1, . . . , x

t+1
i , . . . , xt

n]T differ from each other by at most one
coordinate xi.

With the transition probabilities (9), we may form the
infinite transition matrix P. Then, according to Definition 1,
besides irreducible and aperiodic property, it is also easy
to verify that the underlying Markov chain is reversible by
DΛ,σ,c(Xt)P (Xt,Xt+1) = DΛ,σ,c(Xt+1)P (Xt+1,Xt) so as
to the following Theorem about ergodicity, where the proof is
omitted due to simplicity.

Theorem 1: Given the invariant distribution DΛ,σ,c,
the Markov chain induced by the Gibbs algorithm is ergodic
as lim

t→∞‖P t(x, ·) − DΛ,σ,c‖TV = 0 for all states x ∈ Z
n.

According to Theorem 1, if time permits to reach the
stationary distribution, Gibbs algorithm will draw samples
from DΛ,σ,c no matter what value σ > 0 is, which means
the obstacle encountered by Klein’s algorithm is overcome.
To summarize, Algorithm 2 illustrates the operation of Gibbs
algorithm for lattice Gaussian sampling. The initial Markov
state X0 can be chosen from Z

n arbitrarily or from the output
of a suboptimal algorithm.

B. Geometric Ergodicity

To analyze convergence, we introduce the notion of spectral
gap, formally defined as γ = 1 − spec(F).5 Here, spec(·)
denotes the spectral radius and F represents the forward
operator of the Markov chain defined as [39]

Fh(Xt) �
∑

Xt+1∈Ω

h(Xt+1)P (Xt,Xt+1) = EP [h(Xt+1)|Xt]

(10)

with induced operator norm

‖F‖ = sup
h∈L2

0(π),var(h)=1

‖Fh‖. (11)

Therefore, spec(F) is closely related with the norm of F as
[40], [41]

spec(F) = lim
t→∞‖Ft‖1/t. (12)

Here, Eπ(·) and varπ(·) denote the expectation taken under
the probability measure π, EP (·) and varP (·) denote the

5The geometric ergodicity of Markov chains can be also verified by other
ways, i.e., drift condition in [29], [38].
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expectation taken under the probability measure P (Xt,Xt+1)
shown in (9). L2(π) is the Hilbert space of square inte-
grable functions with respect to π so that L2

0(π) � {h(x) :
E[h(x)] = 0, var[h(x)] < ∞} denotes the subspace of L2(π)
consisting of functions with zero mean relative to π. More
precisely, for h(·), g(·) ∈ L2

0(π), the inner product defined by
the space is

〈h(x), g(x)〉 = Eπ[h(x)g(x)] (13)

with variance

varπ[h(x)] = 〈h(x), h(x)〉 = ‖h(x)‖2. (14)

Theorem 2 ([41]): Given the invariant distribution π,
a reversible, irreducible and aperiodic Markov chain with
spectral gap γ = 1 − spec(F) > 0 is geometrically ergodic
‖P t(x, ·) − π(·)‖TV ≤ M(x)(1 − γ)t with t ≥ 1.

Clearly, from Theorem 2, the convergence rate of the
Markov chain is exactly characterized by the spectral radius
of F, i.e., � = spec(F). Based on it, we then arrive at the
following Corollary to show the geometric ergodicity.

Corollary 1: Given the target lattice Gaussian distribution
π = DΛ,σ,c, the Markov chain induced by Gibbs algorithm
is geometrically ergodic ‖P t(x, ·) − π‖TV ≤ M(x)�t with
convergence rate � = spec(F) < 1.

Proof: First of all, based on (12), because reversibility
corresponds to a self-adjoint operator F with [42]

‖Ft‖ = ‖F‖t, (15)

it follows that

spec(F) = ‖F‖. (16)

Subsequently, according to (11) and (14), the spectral radius
of F is further expressed as

spec(F)
= sup

h∈L2
0(π),var(h)=1

‖Fh‖

= sup
h∈L2

0(π),var(h)=1

{varπ[EP [h(Xt+1)|Xt]]} 1
2 (17)

(a)
= sup

h∈L2
0(π),var(h)=1

{varπ[h(Xt+1)]−Eπ[varP [h(Xt+1)|Xt]]} 1
2

=

[
sup

h∈L2
0(π),var(h)=1

{varπ[h(Xt+1)]−Eπ[varP[h(Xt+1)|Xt]]}
] 1

2

=
[
1− inf

h∈L2
0(π),var(h)=1

{Eπ[varP [h(Xt+1)|Xt]]}
] 1

2

(b)
=

[
1− inf

h∈L2
0(π),var(h)=1

{
n∑

i=1

βiEπ[varP [h(x)|x[−i]]]

}] 1
2

=
[
1− inf

h∈L2
0(π),var(h)=1⎧⎨⎩

n∑
i=1

βi

∑
x[−i]

varP [h(x)|x[−i]]Pπ(x[−i])

⎫⎬⎭
⎤⎦

1
2

. (18)

Here, (a) follows the law of total variance of random variable
in statistics, i.e., var(A) = E[var(A|B)] + var[E(A|B)]. (b)

comes from the fact that Xt and Xt+1 differs by only one
component xi and the index i obeys the distribution βi’s as a
random variable, and Pπ(x[−i]) is the marginal distribution of
multivariate x[−i] with respect to π.

On the other hand, since h(·) ∈ L2
0(π) is a square

integrable function (i.e.,
∑

x∈Zn |h(x)| < ∞) satisfying
L2

0(π) � {h(x) : Eπ[h(x)] = 0, varπ[h(x)] < ∞},
the variance of varπ[h(x)] is not determined by the specific
values of the multivariate x, otherwise both

∑
x∈Zn |h(x)| and

varπ[h(x)] would be infinite due to the countably infinite state
space of x. Meanwhile, given the facts that varπ [h(x)] =
1 and varP [xi|x[−i]] ≥ κi shown in (8), it follows that∑n

i=1 var[h(x)|x[−i]] > 0. Note that P in (9) is the conditional
distribution of the target distribution π. More precisely, once∑n

i=1 varP [h(x)|x[−i]] = 0, it means h(·) has no impact on
every single random variable of x, which naturally leads to
varπ[h(x)] = 0 rather than varπ[h(x)] > 0.

Next, according to the proof by contradiction, let
us focus on the lower bound of the summation term∑n

i=1 varP [h(x)|x[−i]] given the requirement of varπ[h(x)] =
1. To start with, if varπ[h(x)] > 0, the value of the
summation

∑n
i=1 varP [h(x)|x[−i]] could be arbitrarily small

(i.e., inf
h∈L2

0(π)

∑n
i=1 varP [h(x)|x[−i]] = 0) since h(·) freely

comes from the Hilbert space with L2
0(π) � {h(x) :

Eπ[h(x)] = 0, varπ[h(x)] < ∞}. However, here h(·)
is required as varπ[h(x)] = 1, which not only makes∑n

i=1 varP [h(x)|x[−i]] > 0 hold but also brings a latent lower
bound κ† > 0 of it, namely,

n∑
i=1

varP [h(x)|x[−i]] ≥ κ† > 0. (19)

This can be verified by contradiction. In particular,
if inf

h∈L2
0(π),var(h)=1

∑n
i=1 varP [h(x)|x[−i]] = 0, then the

requirement of varπ [h(x)] = 1 would be violated.
More specifically, consider an extreme case that

inf
h∈L2

0(π),var(h)=1
varP [h(x)|x[−i]] = 0 for 1 ≤ i ≤ n − 1,

then to meet the requirement of varπ[h(x)] = 1,
there must be a positive constant for the term of

inf
h∈L2

0(π),var(h)=1
varP [h(x)|x[−n]], which indicates a

latent lower bound with respect to the summation∑n
i=1 varP [h(x)|x[−i]] no matter what h(·) is. Therefore,

by simple induction, the following infimum will be lower
bounded as

inf
h∈L2

0(π),var(h)=1

⎧⎨⎩
n∑

i=1

βi

∑
x[−i]

varP [h(x)|x[−i]]P (x[−i])

⎫⎬⎭
= κ‡ > 0, (20)

leading to

spec(F) = (1 − κ‡)
1
2 < 1. (21)

Hence, by invoking Theorem 2, the proof is completed with
γ = 1 − spec(F) > 0.

To summarize, the Markov chain converges exponentially
fast to the lattice Gaussian distribution, where the exponential
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convergence rate � = spec(F) is derived in (18). Although it is
difficult to calculate � explicitly, comprehensive convergence
analysis still can be carried out, which targets at a smaller �
for the convergence enhancement.

IV. CONVERGENCE ENHANCEMENT FOR

UNIVARIATE SAMPLING

In this section, Metropolis-within-Gibbs algorithm is pro-
posed for lattice Gaussian sampling. By refining the state space
of each univariate sampling, the sampler turns out to be more
efficient by a faster convergence rate.

A. Classic MH Algorithms

In particular, let us consider a target invariant distribution π
together with a proposal distribution q(x,y) [43]. Given the
current state Xt = x for Markov chain, a state candidate
y for the next Markov move Xt+1 is generated from the
proposal distribution q(x,y). After that, the acceptance ratio
α is computed by

α(x,y) = min

{
1,

π(y)q(y,x)
π(x)q(x,y)

}
, (22)

and y will be accepted by Xt+1 with probability α. Otherwise,
x will be retained by Xt+1. In this way, a Markov chain
{X0,X1, . . .} is established with the transition probability
P (Xt,Xt+1) as follows:

P (Xt = x,Xt+1 = y)

=

{
q(x,y)α(x,y) if y �= x,

1 − ∑
z�=x q(x, z)α(x, z) if y = x.

(23)

Note that the proposal distribution q(x,y) in MH algorithm
can be any fixed distribution from which we can conveniently
draw samples. In principle, Gibbs algorithm is a special case
of MH sampling by letting the proposal distribution be the
univariate conditional distribution, i.e.,

q(x,y) = π(xi|x[−i]). (24)

Interestingly, with the above proposal distribution, it is easy
to verify that the acceptance ratio α of Gibbs algorithm is
always 1, making the acceptance of Markov Xt+1 = y without
uncertainty.

B. Metropolis-Within-Gibbs Algorithm

Inspired by the flexible choice of q(x,y) in MH algo-
rithm, we now present the proposed Metropolis-within-Gibbs
(MWG) algorithm for lattice Gaussian sampling to further
exploit the convergence potential of the univariate sampling.

Specifically, following the instruction of classic
MH algorithm, given the Markov state Xt =
x = [xt

1, . . . , x
t
i, . . . , x

t
n]T , a state candidate y =

[xt
1, . . . , x

∗
i , . . . , x

t
n]T for Xt+1 is obtained through the

proposal distribution

q(x,y)=q(xi|x−i)=
DΛ,σ,c(xi|x[−i])

1−DΛ,σ,c(xt
i|x[−i])

, xi ∈ Z (25)

and xt
i from the ith coordinate of x is eliminated from the

state space Z in sampling x∗
i , which results in a reduced state

space Z with

Z ∪ xt
i = Z and Z ∩ xt

i = ∅. (26)

In other words, the sample x∗
i in y is obtained according to

the sampling from (25), namely,

x∗
i ∼ q(xi|x−i). (27)

Once x∗
i in y is obtained, then the acceptance ratio α

in (22) is calculated, and the decision about whether to
accept it as Xt+1 = y is performed thereafter. Note that in
conventional Gibbs algorithm y will be accepted by Xt+1

without uncertainty. This is the core difference between the
proposed MWG and Gibbs algorithms since the uncertainty
in the judgment of Xt+1 to choose y or not is retained.
Hence, the proposed MWG algorithm can be summarized as
the following three main procedures.

1) Sample from the following univariate proposal distrib-
ution in (25) to obtain the candidate sample x∗

i .
2) From (22), calculate the acceptance ratio α(x,y)

α(x,y) = min

{
1,

1 − DΛ,σ,c(xt
i|x[−i])

1 − DΛ,σ,c(x∗
i |x[−i])

}
. (28)

3) Make a decision for Xt+1 based on α(x,y) to accept
y = [xt

1, . . . , x
∗
i , . . . , x

t
n]T or not (i.e., Xt+1 = x).

Here, we emphasize that different from Gibbs algorithm
who always accepts the sampling candidate y as the state
of Markov move Xt+1, a salient feature of MWG algorithm
is that the uncertainty arising from the sample acceptance is
retained [44] as acceptance ratio α(x,y) ≤ 1. Put it in another
way, the sampling candidate x∗

i obtained by y can be rejected
in the proposed MWG algorithm. To conclude, the proposed
MWG algorithm for lattice Gaussian sampling is presented in
Algorithm 3.

Algorithm 3 Metropolis-Within-Gibbs Algorithm for Lattice
Gaussian Sampling

Input: B, σ, c,X0, βi’s, tmix(ε)
Output: x ∼ π, π is within statistical distance of ε to DΛ,σ,c

1: for t =1,2, … do
2: let x denote the state of Xt−1

3: randomly choose index i by distribution [β1, . . . , βn]
4: sample x∗

i by proposal distribution q(xi|x[−i]) in (27)
5: calculate the acceptance quantity α shown in (28)
6: generate a sample u ∼ U [0, 1]
7: if u ≤ α then
8: get y with the sampled xi and let Xt = y
9: else let Xt = x

10: end if
11: if t ≥ tmix(ε) then
12: output the state of Xt

13: end if
14: end for
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C. Convergence Rate Analysis

Theorem 3: Given the invariant lattice Gaussian distribu-
tion DΛ,σ,c, the proposed Metropolis-within-Gibbs algorithm
achieves a better exponential convergence performance than
Gibbs algorithm by �MWG < �.

Proof: First of all, according to (23), the transition
probability of MWG sampling algorithm is derived as

PMWG(Xt

= x,Xt+1 = y) = q(x,y) · α(x,y)

= min

{
DΛ,σ,c(x∗

i |x[−i])
1−DΛ,σ,c(xt

i|x[−i])
,

DΛ,σ,c(x∗
i |x[−i])

1 − DΛ,σ,c(x∗
i |x[−i])

}
. (29)

Compared to the transition probability of Gibbs algorithm
given in (9), it is straightforward to see that

PMWG(Xt = x,Xt+1 = y) > PGibbs(Xt = x,Xt+1 = y)
= DΛ,σ,c(xt+1

i |x[−i])
(c)
= DΛ,σ,c(x∗

i |x[−i]) (30)

for cases of x �= y. Here equality (c) holds because in Gibbs
sampling the sample x∗

i in y is always accepted, i.e., x∗
i =

xt+1
i and Xt+1 = y = [xt

1, . . . , x
t+1
i , . . . , xt

n]T . Therefore,
it means that each off-diagonal element in transition matrix
PMWG is always larger than that of PGibbs. From literatures of
MCMC, such a case is known as Peskun ordering written by

PMWG(Xt,Xt+1) � PGibbs(Xt,Xt+1). (31)

Now, we invoke the following Lemma to reveal the relation
between Peskun ordering and convergence rate.

Lemma 1 ([45]): Given reversible Markov chains P and
Q with stationary distribution π, if P � Q, then their
convergence rates satisfy �P ≤ �Q.

Note that the definition of Peskun ordering P (Xt,Xt+1) �
Q(Xt,Xt+1) given in [45] is based on the inequality
P (Xt,Xt+1) ≥ Q(Xt,Xt+1), where the equality �P = �Q

holds only if P (Xt,Xt+1) = Q(Xt,Xt+1). Here, because
the case of equality is not included, according to (31) and
Lemma 1, we can immediately obtain that �MWG < �,
completing the proof.

The insight behind Peskun ordering is that a Markov chain
has smaller probability of remaining in the same position
explores the state space more efficiently. Hence, convergence
performance is improved by shifting probabilities off the diag-
onal of the transition matrix, which corresponds to decrease
the rejection probability of the proposed moves.

D. Parallel Tempering

Now, the parallel tempering technique is adopted to the
proposed Metropolis-within-Gibbs algorithm to alleviate the
possible risks associated with slow mixing Markov chains,
which may get stuck during the convergence.

Theoretically, parallel tempering is a generic MCMC sam-
pling method which allows a better convergence. The inspi-
ration of it comes from the idea that a temperature parameter
could be used to flatten out the target distribution, thus making
the random walk chain for that temperature more likely to

mix quickly [46]. Therefore, according to parallel tempering,
the Markov chain induced by the Metropolis-within-Gibbs
algorithm for lattice Gaussian sampling can be strengthened
as follows.

1) Define a set of target lattice Gaussian distributions
πt1 , . . . , πtk

πtj = DΛ,tjσ,c(x), 1 ≤ j ≤ k (32)

where tk > . . . > t1 = 1 represent different temperature
parameters respectively.

2) Run k Markov chains in parallel with the MWG
transition probability

P j
MWG(Xt

j = x,Xt+1
j = y)

= min

{
πtj (x∗

i |x[−i])
1 − πtj (xt

i|x[−i])
,

πtj (x∗
i |x[−i])

1 − πtj (x∗
i |x[−i])

}
(33)

for 1 ≤ j ≤ k.
3) After tswap Markov moves on each Markov chain,

consecutively select chain pairs between two neighboring
temperatures tj and tj+1, 1 ≤ j ≤ k − 1, then attempt to
swap their states with probability

αswap = min

{
1,

πtj (X
t+1
tj+1

)πtj+1 (X
t+1
tj

)

πtj+1(X
t+1
tj+1

)πtj (X
t+1
tj

)

}
, (34)

otherwise the swap over Xt+1
j and Xt+1

j+1 is canceled.
To summarize, this modification essentially allows two types

of update. The first one draws samples from distributions
DΛ,tjσ,c(x), and the second one is based on a proposal gen-
erated from the potential swapping of states between Markov
chains. Here, the acceptance probability shown in (34) mainly
ensures that the second type of update preserves the stationary
distribution [47]. Note that only pairs between neighboring
temperatures are considered for swapping, where the chances
of accepting an exchange are more likely to be higher.

Clearly, with the increase of temperature parameter tj ,
the lattice Gaussian distribution DΛ,tjσ,c(x) becomes ‘warm’,
which would correspond to a uniform distribution over the
entire state space. More specifically, the warm distribution
mix progressively more rapidly than the cold one which is
of primary interest. By allowing the Markov chains to swap
states, the convergence performance of the ‘cold’ chain is
improved since the state space is traversed more rapidly. Note
that such an operation also requires multiple chains in parallel,
and only the output from one is used as a basis for inference.

V. CONVERGENCE ENHANCEMENT FOR

MULTIVARIATE SAMPLING

To further improve the convergence performance,
the blocked strategy, which performs the sampling over
multiple components of x within a block, is investigated.
Then, Gibbs-Klein (GK) algorithm is proposed for the
efficient implementation of blocked Gibbs algorithm.

A. Convergence Analysis of Blocked Sampling

The idea of blocked strategy in Gibbs algorithm is to
perform multivariate sampling over multiple components at
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Fig. 2. Illustration of standard and blocked Gibbs sampling strategies.
Components within the dashed block are sampled as a whole by blocked Gibbs
algorithm, where the components emitting the arrows are being conditioned
during the univariate sampling or blocked sampling.

each Markov move. Compared to the standard Gibbs algorithm
in (7), the blocked sampling for lattice Gaussian distribution
can be expressed as

P (xblock|x[−block]) = DΛ,σ,c(xblock|x[−block])

=
e−

1
2σ2 ‖Bx−c‖2∑

xblock∈Zm e−
1

2σ2 ‖Bx−c‖2 , (35)

where each block xblock = [xi, xj , . . .]T contains multiple
components of x and x[−block] denotes the other components
of x except xblock. In this way, the transition probability
Pblock(Xt,Xt+1) of the blocked Gibbs algorithm for lattice
Gaussian sampling is

Pblock(Xt = x,Xt+1 = y) = DΛ,σ,c(xblock|x[−block]). (36)

For a better illustration, a two-component blocked sampling
strategy is depicted in Fig. 2. Compared to univariate sampling,
by sampling multiple components together, the slow compo-
nentwise moves will be replaced by the fast moves incorporat-
ing the information about dependence between components.

Lemma 2: Given the invariant lattice Gaussian distribution
DΛ,σ,c, the blocked Gibbs algorithm achieves a faster conver-
gence rate than the standard one as �block ≤ �.

Proof: First of all, by taking the random index i at each
Markov move into account, the term shown in (17) can be
described as

varπ[EP [h(Xt+1)|Xt]] =
n∑

i=1

βivarπ[EP [h(x)|x[−i]]] (37)

and subsequently, we have

� = sup
h∈L2

0(π),var(h)=1

[
n∑

i=1

βivarπ[EP [h(x)|x[−i]]]

] 1
2

=

[
sup

h∈L2
0(π),var(h)=1

n∑
i=1

βivarπ[EP [h(x)|x[−i]]]

] 1
2

. (38)

For ease of presentation, a two-component blocked sam-
pling scenario is firstly concerned. Typically, suppose compo-
nents xi and xj of x can be sampled together as a block, then

consider the fact that

EP [h(x)|x[−i,−j]] = EP [EP [h(x)|x[−i]]|x[−j]], (39)

we can immediately get

varπ[EP [h(x)|x[−i,−j]]] ≤ varπ[EP [h(x)|x[−i]]] (40)

and

varπ[EP [h(x)|x[−i,−j]]] ≤ varπ[EP [h(x)|x[−j]]] (41)

by the law of total variance var(A) = E[var(A|B)] +
var[E(A|B)]. Therefore, given the index selection probabil-
ities βi and βj , we have

(βi + βj)varπ[EP [h(x)|x[−i,−j]]]
≤ βivarπ[EP [h(x)|x[−i]]]

+ βjvarπ[EP [h(x)|x[−j]]]. (42)

where the equality in (42) holds if and only if components
of xi and xj are independent of each other. From (38), this
indicates a more efficient convergence rate ρ for the blocked
sampling over xi and xj .

Inductively, this two-component blocked sampling over
coordinates i and j can be easily extended to any larger
size blocked sampling. Hence, according to (38) and (42),
it follows that

�block ≤ �, (43)

completing the proof.
Note that the equality �block = � holds if and only if

the components of x are independent of each other, which
corresponds to the lattice basis B in the lattice Gaussian distri-
bution is an orthogonal matrix. From (41), it is straightforward
to check that the convergence performance also improves
gradually by grouping more elements into the block

varπ[EP [h(x)|x[−block,−j]]]≤varπ[EP [h(x)|x[−block]]] (44)

since a larger block size allows moves in more general direc-
tions. If all the components forming a single block could be
sampled directly, there would be no need for MCMC sampling.
In this regard, blocked strategy is strongly recommended if
sampling over multivariate can be efficiently performed.

B. Efficient Blocked Sampling by Gibbs-Klein Algorithm

Although blocked sampling achieves a better convergence
rate than univariate one, sampling over a block is generally
more costly than componentwise sampling as its sampling
space increases exponentially with the block size. Because of
this, we propose to use Klein’s algorithm for multi-component
sampling, which leads to the Gibbs-Klein algorithm.

At each step of Markov chain, the proposed Gibbs-Klein
algorithm randomly picks up m components of x to update.
For a better illustration of the proposed sampling, here we
establish another new scheme but equivalent to the foregoing
one, which resorts to the help of permutation matrices. In par-
ticular, an n × n permutation matrix E is applied to sort the
updating order within the blocked sampling

DL(B),σ,c(x) =
e−

1
2σ2 ‖Bx−c‖2∑

x∈Zn e−
1

2σ2 ‖Bx−c‖2
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=
e−

1
2σ2 ‖�Bz−c‖2∑

z∈Zn e−
1

2σ2 ‖�Bz−c‖2

= DL(�B),σ,c(z). (45)

where z = E−1x and B̃ = BE. Intuitively, if E is randomly
generated, then Gibbs-Klein algorithm on m randomly cho-
sen components will be equivalent to sample m consecutive
components of z in a fixed order. Therefore, here we always
consider the block formed by the first m components of z,
namely zblock = [z1, . . . , zm]T , which simply corresponds to
xblock containing m components of x

DL(B),σ,c(xblock|x[−block])

=
e−

1
2σ2 ‖Bx−c‖2∑

xblock∈Zm e−
1

2σ2 ‖Bx−c‖2

=
e−

1
2σ2 ‖�Bz−c‖2∑

zblock∈Zm e−
1

2σ2 ‖�Bz−c‖2

= DL(�B),σ,c(zblock|z[−block]). (46)

Here, we apply QR-decomposition to B̃ = QR so that
‖ B̃z−c ‖=‖ Rz−c′ ‖ with c′ = QT c. This is unnecessary in
fact but could provide a more straightforward way to illustrate
and analyze the proposed Gibbs-Klein algorithm due to the
form of the upper triangular matrix R. Then, as for the blocked
sampling over zblock, we propose to sample each component
zi within it from the following 1-dimensional distribution in
the backward order from zm to z1:

Pi(zi|z[−i]) = DZ,σi,�zi
(zi), 1 ≤ i ≤ m, (47)

where σi = σ
|ri,i| , z[−i] = [zi+1, . . . , zm, zm+1, . . . , zn]T

and z̃i =
c′i−

�m
j=i+1 ri,jzj−

�n
j′=m+1 ri,j′ zj′

ri,i
.6 Clearly, from

(47), all the n − m components of z out of the block (i.e.,
z[−block] = [zm+1, . . . , zn]T ) are taken into account by each
element within the block. To summarize, Algorithm 4 gives
the proposed Gibbs-Klein algorithm, where the extension to
other scan strategies is possible.

6Determining �zi without QR-decomposition is similar as �zi = D(i, :)(c−�m
j=i+1

�bjzj −�n
j′=m+1

�bj′zj′ ), where D(i, :) denotes the ith row of

D = �B†.

Algorithm 4 Gibbs-Klein Algorithm for Lattice Gaussian
Sampling

Input: B, σ, c,X0, tmix(ε);
Output: x ∼ π, π is within statistical distance of ε to DΛ,σ,c

1: for t =1,2 … do
2: let x denote the state of Xt−1

3: randomly generate a permutation matrix E
4: let B̃ = BE and z = E−1x
5: let B̃ = QR and c′ = QT c
6: for k = 1, … do
7: for i = m, …, 1 do
8: let σi = σ

|ri,i|
9: let z̃i =

c′i−
�m

j=i+1 ri,jzj−
�n

j′=m+1 ri,j′zj′
ri,i

10: sample zi from DZ,βi,�zi

11: end for
12: calculate the acceptance ratio αaccept shown in (53)
13: generate a sample u ∼ U [0, 1]
14: if u ≤ αaccept then
15: output zblock as the exact sample from DL(r),σ,c

16: Break
17: end if
18: end for
19: update z = [zblock; z[−block]]T

20: return x = Ez and let Xt = x
21: if t ≥ tmix(ε) then
22: output the state of Xt

23: end if
24: end for

C. Validity of Gibbs-Klein Algorithm

Now, the validity of Gibbs-Klein algorithm is verified by
showing its ergodicity, where rejection sampling is resorted to
make sure the generated distribution by Gibbs-Klein is exact
lattice Gaussian distribution.

Lemma 3: For a given invariant lattice Gaussian distrib-
ution DΛ,σ,c, if σ = ω(

√
log m) · max1≤i≤m |ri,i|, under

the help of rejection sampling, the proposed Gibbs-Klein
algorithm is able to sample from the following distribution

DL(�B),σ,c(zblock|z[−block]) =
e−

1
2σ2 ‖�Bz−c‖2∑

zblock∈Zm e−
1

2σ2 ‖�Bz−c‖2
, (48)

where z = [zblock; z[−block]].

P (zblock | z[−block]) =
m∏

i=1

DZ,σm+1−i,�zm+1−i
(zm+1−i)

=
e−

1
2σ2

�m
i=1(cm+1−i−

�m
j=m+1−i rm+1−i,jzj)2

∏m
i=1

∑
zm+1−i∈Z

e−
1

2σ2 (cm+1−i−
�m

j=m+1−i rm+1−i,jzj)2

=
e−

1
2σ2 ‖c−Rzblock‖2∏m

i=1

∑
zm+1−i∈Z

e−
1

2σ2 (rm+1−i,m+1−izm+1−i−cm+1−i+
�m

j=m+2−i rm+1−i,jzj)2

=
ρL(R),σ,c(zblock)∏m

i=1 ρσ(rm+1−i,m+1−iZ + ξi)
, (50)
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Proof: From (47) and by induction, the blocked sampling
probability zblock conditioned on z[−block] is given by

P (zblock | z[−block]) =
m∏

i=1

P (zm+1−i|z[−(m+1−i)]). (49)

Then, according to (47) and (49), we have the following
derivation in (50), as shown at the bottom of previous page,
where ci = c′i −

∑n
j′=m+1 ri,j′zj′ , c = [c1, . . . , cm]T , ξi =∑m

j=m+2−i rm+1−i,jzj−cm−i+i and R is the m×m segment
of R with r1,1 to rm,m in diagonal. Clearly, the effect of the
subvector z[−block] is hidden in ci.

In [48], it has been demonstrated that if σ > ηε(L(R)),
then ∏m

i=1 ρσ(ri,iZ + ξi)∏m
i=1 ρσ(ri,iZ)

∈
((

1 − ε

1 + ε

)m

, 1
]

(51)

which means
∏m

i=1 ρσ(ri,iZ + ξi) can be substituted by∏m
i=1 ρσ(ri,iZ) within negligible errors when ε is sufficiently

small. As shown in [32], ηε(Λ) with negligible ε is upper
bounded as ηε(Λ) ≤ ω(

√
log n) · max1≤i≤n‖b̂i‖. Therefore,

if σ = ω(
√

log m) · max1≤i≤m‖ri,i‖, P (zblock | z[−block])
shown in (50) can be rewritten as

P (zblock | z[−block]) �
ρL(r),σ,c(zblock)∏m

i=1 ρσ(ri,iZ)
, (52)

where “�” represents equality up to a negligible error. More-
over, in order to remove the latent negligible bias shown above,
the classic rejection sampling can be applied to yield an exact
sample (see [49] for more details). Specifically, the candidate
of zblock is outputted with probability

αaccept =
∏m

i=1 ρσ(ri,iZ + ξi)∏m
i=1 ρσ(ri,iZ)

(53)

and this probability can be efficiently computed (achieve any
desired t bits of accuracy in time poly(t), t denotes the number
of iterations), as shown in [49]. Therefore, under the help of
rejection sampling, it follows that

P (zblock | z[−block]) =
ρL(R),σ,c(zblock)∏m

i=1 ρσ(ri,iZ)
. (54)

where the denominator is a constant since it is independent
of zblock, z[−block] and c. In this condition, we obtain that in
any given iteration, the output is distributed according to the
desired distribution

DL(R),σ,c(zblock) =
ρL(R),σ,c(zblock)∑

zblock∈Zm ρL(R),σ,c(zblock)
(55)

where the denominator in (55) is also a constant by serving as
a scalar. Therefore this is also the overall output distribution
of the blocked target sampler

DL(�B),σ,c(zblock|z[−block]) = e
− 1

2σ2 ‖ �Bz−c‖2

�
zblock∈Zm e

− 1
2σ2 ‖ �Bz−c‖2

= DL(R),σ,c(zblock). (56)

Furthermore, because DL(�B),σ,c(z) and DΛ,σ,c(x) describe
the same lattice Gaussian distribution, namely,

e−
1

2σ2 ‖�Bz−c‖2∑
zblock∈Zm e−

1
2σ2 ‖�Bz−c‖2

� e−
1

2σ2 ‖Bx−c‖2∑
xblock∈Zm e−

1
2σ2 ‖Bx−c‖2 (57)

DL(�B),σ,c(zblock|z[−block]) is essentially equivalent to
DL(B),σ,c(xblock|x[−block]). Therefore, according to Lemma 3,
Gibbs-Klein algorithm is capable to sample multiple
components of x at each Markov move. We then arrive at the
following Theorem.

Theorem 4: For σ = ω(
√

log m) · max1≤i≤m |ri,i|,
the Markov chain induced by the Gibbs-Klein algorithm with
block size m is ergodic with respect to the lattice Gaussian
distribution DΛ,σ,c as lim

t→∞‖P t(x, ·)−DΛ,σ,c‖TV = 0 for all

states x ∈ Z
n.

Proof: Based on Definition 1, we now prove the ergodicity
by verifying the reversibility, irreducibility and aperiodic of the
underlying Markov chain.

To start with, let xi and xj be two adjacent states in Gibbs-
Klein algorithm. For block size m, every two adjacent states
in Gibbs-Klein algorithm differ from each other by at most m
components. For convenience, we express them as

xi =[xblock(i),x[−block]] and xj =[xblock(j),x[−block]], (58)

where xblock(i) and xblock(j) denote the m components belong-
ing to xi and xj , respectively. Then, the transition probability
of Gibbs-Klein algorithm is

P (Xt =xi,Xt+1 =xj) = P (xblock(i) → xblock(j)|x[−block])
(d)
= P (xblock(j)|x[−block])

=
e−

1
2σ2 ‖Bxj−c‖2∑

xblock∈Zm e−
1

2σ2 ‖Bx−c‖2 , (59)

where (d) is due to the fact that xblock is sampled only
conditioned on x[−block].

To show the Markov chain is irreducible, note that given a
state xi one can attain with positive probability in one step
any state xj which shares >= (n − m) components with
xi. Now, if xi and xj have, say, d < n − m components
in common, there is always a positive probability that after
each step they get exactly one more component in common.
So we can go in n−d steps from one to the other. But as soon
as m >= 2, we can assume that at the first step we get two
more components in common, and then one at each further
step, so we can go with positive probability in n−d−1 steps.

On the other hand, it is clear to see that the number of
steps required to move between any two states (can be the
same state) is arbitrary without any limitation to be a multiple
of some integer. Put another way, the chain is not forced into
some cycle with fixed period between certain states. Therefore,
the Markov chain is aperiodic.

As for reversibility, it is not hard to check that the following
relationship holds

DΛ,σ,c(xi)P (xi,xj) = DΛ,σ,c(xj)P (xj ,xi) (60)
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with the same expression e
− 1

2σ2 ‖Bxi−c‖2

�
x∈Zn e

− 1
2σ2 ‖Bx−c‖2 ·

e
− 1

2σ2 ‖Bxj−c‖2

�
xblock∈Zm e

− 1
2σ2 ‖Bx−c‖2 . Thus, the conclusion follows,

completing the proof.
After showing the Markov chain induced by Gibbs-Klein

algorithm is ergodic, it is straightforward to arrive at the
geometric ergodicity by the same arguments of Corollary 1 and
Lemma 2, and its proof is omitted here.

Corollary 2: Given the invariant lattice Gaussian distri-
bution DΛ,σ,c, the Markov chain induced by Gibbs-Klein
algorithm is geometrically ergodic ‖P t(x, ·) − DΛ,σ,c‖TV ≤
M(x)�t

block with �block ≤ �.

VI. SIMULATION RESULTS

In this section, the performance of Gibbs-based sampling
schemes for lattice Gaussian distribution are exemplified in
the context of MIMO detection.

Specifically, simulation results for an n× n MIMO system
with a square channel matrix containing i.i.d. Gaussian entries
are presented. The i-th entry of the transmitted signal x,
denoted as xi, is a modulation symbol taken independently
from a Q2-QAM constellation X ∈ Z with Gray mapping.
Meanwhile, it is assumed a flat fading environment, where
the channel matrix H contains uncorrelated complex Gaussian
fading gains with unit variance and remains constant over each
frame duration. Let Eb represents the average power per bit
at the receiver, then Eb/N0 = n/(log2(M)σ2

w) holds where
M is the modulation level and σ2

w is the noise power.7 Then,
we can construct the system model as c = Hx + w and this
decoding problem of x̂ = arg min

x∈Xn

‖c − Hx‖ can be solved

by sampling over the discrete Gaussian distribution

PL(H),σ,c(x) =
e−

1
2σ2 ‖Hx−c‖2∑

x∈Xn e−
1

2σ2 ‖Hx−c‖2 (61)

because the optimal solution has the largest probability making
it most likely be encountered by sampling (this complex
decoding system is straightforward to be extended to the
real-valued system [22], [52]). For this reason, we examine
the decoding error probabilities to approximately compare
the convergence rates of Markov chains. Meanwhile, given
the definition of geometric ergodicity shown in Definition 2,
the choice of the starting state x also has an impact upon
the convergence performance. Here, Babai rounding algorithm
(also known as zero-forcing decoding) is applied to output the
suboptimal result for the initial Markov state [53].

Fig. 3 depicts the bit error rates (BER) of the different
sampling schemes in a 6 × 6 uncoded MIMO system with
4-QAM. The SNR is fixed as Eb/N0 = 10 dB. This cor-
responds to lattice dimension n = 12. The performance of
zero-forcing (ZF) and maximum-likelihood (ML) decoding
are shown as benchmarks. Meanwhile, the lattice-reduction-
aided decoding scheme ZF-LLL is also provided for a better
illustration. For a fair comparison, we follow Klein’s choice of

7In [50], the noise variance σ2
w is used as the sampling variance over the

discrete Gaussian distribution, but this would lead to a stalling problem at
high SNRs [51].

Fig. 3. Bit error rate versus iterations for the uncoded 6× 6 MIMO system
using 4-QAM with Eb/N0 = 10 dB.

σ = min1≤i≤n‖b̂i‖/√log n and run the univariate sampling
in both MWG and Gibbs algorithm for n times as a full
iteration. Additionally, the parallel tempering technique that
fastens the mixing by utilizing the tuning temperatures is also
illustrated. For the consideration of computational complexity,
only two Markov chains are applied for parallel tempering
with t1 = 1 and t2 = 2 (i.e., k = 2), where the swap
gap tswap is set as 1. As shown in Fig. 3, the decoding
performance improves with the number of Markov chain
iterations. In particular, Klein’s sampling is not as good as
MCMC sampling schemes since it does not really produce
Gaussian samples [32]. On the other hand, as demonstrated,
the proposed MWG algorithm outperforms Gibbs algorithm
under the same number of iterations, implying a better conver-
gence performance. Meanwhile, parallel tempering is strongly
recommended if parallel implementation is allowed. Note that
parallel tempering is also applicable to Gibbs algorithm for
performance improvement.

In Fig. 4 illustrates the BER decoding performance by
Gibbs-based multivariate sampling over lattice Gaussian dis-
tribution, and its enhancement result by parallel tempering
is also given. Specifically, in a 4 × 4 uncoded MIMO sys-
tem with 16-QAM, which corresponds to lattice dimension
n = 8, for a fair comparison, when the block size is m,
we run block sampling for n/m times, and count this as
a full iteration for Gibbs-Klein algorithm. Intuitively, this
actually updates n components of x randomly in one iteration,
which is comparable to the univariate sampling in standard
Gibbs for n times. As can be seen clearly, with the same
number of Markov chain iterations, the decoding performance
improves with the block size, which indicates a faster con-
vergence rate. These multiple updates are still determined
by the conditional lattice Gaussian distribution, which takes
the correlation structure into account. In this regard, block
technique is worth trying for sampling decoding to enhance its
performance.

Fig. 5 shows BER of different decoding schemes in a 8×8
uncoded MIMO system with 16-QAM. This corresponds to a
lattice decoding scenario with dimension n = 16 while the
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Fig. 4. Bit error rate versus iterations for the uncoded 4× 4 MIMO system
using 16-QAM with Eb/N0 = 15 dB.

numbers of iterations of MCMC sampling schemes are set
as t = 50. The SNR is fixed as Eb/N0 = 15 dB. Besides
MCMC decoding schemes, decoding schemes from MIMO
detections like ZF-LLL, embedding list algorithm in [54] as
well as iterative list decoding in [55] are also taken into
account in the comparison. For a fair comparison, the list
size of samples of embedding list algorithm and iterative
list decoding are set as 50. Clearly, the proposed MWG and
GK samplings outperform the standard Gibbs sampling due
to the enhanced convergence rate, where further performance
gain can be achieved under the help of parallel tempering.
However, the decoding performance of Gibbs-based sampling
algorithms are still less than that of independent Metropolis-
Hastings-Klein (IMHK) in [29]. This can be interpreted by
two reasons. Firstly, since the exact convergence rate of IMHK
can be accessed, decoding optimization with respect to it can
be carried out, which leads to a better decoding performance.
For example, σ = mini ‖b̂i‖/(2

√
π) was derived in [20] for

IMHK while such a work is lacking for Gibbs-based sampling,
which means the choice of σ = 2 that we use here is far away
from the optimum. Secondly, it has shown in [20] that LLL
reduction is well suited for IMHK to enhance the convergence
rate. However, here for Gibbs sampling we only apply LLL
as a preprocessing to yield the high quality initial point, and
how to incorporate LLL into the operation of Gibbs smoothly
should be further studied in future.

Table I shows the average complexity comparison in flops
of the Gibbs-based sampling schemes with different system
dimensions, where the flops evaluation scenario that we use
comes from [56]. More specifically, the n/2 × n/2 uncoded
MIMO systems are applied with 4-QAM and the SNR is
fixed as Eb/N0 = 15 dB. Note that here we consider the
average induced flops in every single Markov move (i.e.,
one iteration). Clearly, compared to standard Gibbs sampling,
there is only a slight complexity increment with respect
to the proposed MWG sampling, which is mainly due to
the mechanism induced by acceptance ratio. Furthermore,
the application of parallel tempering introduces more flops as
another Markov chain is invoked for the exchange of Markov

Fig. 5. Bit error rate versus Eb/N0 for the uncoded 8 × 8 MIMO system
using 16-QAM.

TABLE I

AVERAGE COMPLEXITY IN FLOPS OF SAMPLING SCHEMES FOR UNCODED

MIMO SYSTEM WITH 4-QAM

states. Additionally, as for Gibbs-Klein algorithm, more com-
plexity will be consumed due to the proposed blocked strat-
egy. Nevertheless, if the blocked sampling is performed by
enumerating the state space of xblock, exponential complexity
increment would be introduced as the sampling space increases
exponentially with the block size, which means significant
complexity reduction is achieved by the proposed GK algo-
rithm. On the other hand, the complexity cost of IMHK is
more than that of Gibbs sampling due to the usage of proposal
distribution.

VII. CONCLUSION

In this paper, the classic Gibbs algorithm for lattice
Gaussian sampling is studied in full detail. By resorting
to spectral radius of the forward operator, a comprehensive
analysis is conducted to prove the geometric ergocidity of
Gibbs algorithm for lattice Gaussian sampling, which means
the underlying Markov chain converges to the lattice Gaussian
distribution in an exponential way. Moreover, by showing the
spectral radius of the forward operator exactly characterizes
the convergence rate, analysis and optimization are performed
to further enhance the convergence performance. Metropolis-
within-Gibbs (MWG) and Gibbs-Klein (GK) algorithms for
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univariate and multivariate sampling are proposed respectively.
Meanwhile, the validity of Gibbs-Klein algorithm for blocked
sampling is confirmed by ergodicity. Therefore, blocked sam-
pling can be efficiently performed with a flexible block size
determined by the provided standard deviation.
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