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Sliced Lattice Gaussian Sampling: Convergence
Improvement and Decoding Optimization

Zheng Wang , Member, IEEE, Ling Liu, Member, IEEE, and Cong Ling , Member, IEEE

Abstract— Sampling from the lattice Gaussian distribution
has emerged as a key problem in coding and decoding while
Markov chain Monte Carlo (MCMC) methods from statistics
offer an effective way to solve it. In this paper, the sliced lattice
Gaussian sampling algorithm is proposed to further improve
the convergence performance of the Markov chain targeting
at lattice Gaussian sampling. We demonstrate that the Markov
chain arising from it is uniformly ergodic, namely, it converges
exponentially fast to the stationary distribution. Meanwhile,
the convergence rate of the underlying Markov chain is also
investigated, and we show the proposed sliced sampling algorithm
entails a better convergence performance than the independent
Metropolis-Hastings-Klein (IMHK) sampling algorithm. On the
other hand, the decoding performance based on the proposed
sampling algorithm is analyzed, where the optimization with
respect to the standard deviation σ > 0 of the target lattice
Gaussian distribution is given. After that, a judicious mechanism
based on distance judgement and dynamic updating for choosing
σ is proposed for a better decoding performance. Finally, sim-
ulation results based on multiple-input multiple-output (MIMO)
detection are presented to confirm the performance gain by the
convergence enhancement and the parameter optimization.

Index Terms— Coding, decoding, MCMC methods, MIMO
detection, lattice Gaussian sampling.

I. INTRODUCTION

NOWADAYS, the large-scale multiple-input multiple-
output (MIMO) system has become a promising

extension of MIMO in 5G, which boosts the network
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capacity on a much greater scale without extra band-
width [1]–[4]. However, the dramatically increased sys-
tem size also places a pressing challenge on the uplink
MIMO detection in 5G, which aims to recover the trans-
mitted data from the received signal at the receiver. In
essence, this actually belongs to the closest vector prob-
lem (CVP) in lattice decoding. On one hand, the advanced
detection schemes designed for the traditional MIMO sys-
tems like lattice-reduction-aided detection show a substan-
tial performance loss with the increment of the antenna
number [5]–[8]. On the other hand, a number of maximum-
likelihood (ML) decoding schemes that aim to reduce the
computational complexity of sphere decoding (SD) turn out
to be impractical due to the unaffordable complexity in high-
dimensional systems [9]–[13]. As for those near-ML decod-
ing schemes like fixed-complexity sphere decoding (FCSD),
K-best decoder, etc., they are also inapplicable due to the
intensive complexity increment and terrible performance dete-
rioration [14]–[18].

To this end, a numberof works have been made
by either improving the performance or reducing the
complexity [19]–[23]. Among them, sampling detection has
become the promising one, which performs lattice decoding
by sampling from a discrete Gaussian distribution over lattices
(i.e., lattice Gaussian distribution) [24]–[27]. Essentially, sam-
pling detection converts the traditional detection problem into
a sampling problem, where the optimal decoding solution with
the smallest Euclidean distance entails the largest probability
to be sampled. Therefore, if sampling can be efficiently
implemented, the decoding problem would be addressed in
an effective way. However, the sampling decoding mainly lies
on how to obtain the samples from the target lattice Gaussian
distribution. In fact, besides lattice decoding, sampling from
lattice Gaussian distribution also has drawn a lot of attentions
in various research fields. In coding, lattice Gaussian distrib-
ution was employed to obtain the full shaping gain for lattice
coding [28]–[30], and to achieve the capacity of the Gaussian
channel [31]. It was also used to achieve information-theoretic
security in the Gaussian wiretap channel [32], [33] and in the
bidirectional relay channel [34], respectively. In cryptography,
the lattice Gaussian distribution has become a central tool in
the construction of many primitives [35], [36]. Furthermore,
lattice Gaussian distribution has been adapted to bidirectional
relay network under the compute-and-forward strategy for the
physical layer security [34]. Additionally, it is also applied
to realize the probabilistic shaping for optical communication
systems [37].

In sharp contrast to the continuous Gaussian density, it is
by no means trivial even to sample from a low-dimensional
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discrete Gaussian distribution. Because of this, the pioneer
work of sampling detection based on Klein’s algorithm only
performs the sampling over a Gaussian-like distribution,
which means the performance loss due to the distortion by
the Gaussian-like distribution becomes inevitable [26], [27],
[38]. The classic Gibbs algorithm from Markov chain Monte
Carlo (MCMC) methods has also been adopted to MIMO
detection through sampling from the lattice Gaussian dis-
tribution [39]–[43]. However, since the convergence rate of
the Markov chain is hard to determine, the Markov mix-
ing of Gibbs sampling turns out to be intractable so that
the related decoding analysis is still lacking. Fortunately,
a remarkable progress has been made by the independent
Metropolis-Hastings-Klein (IMHK) algorithm given in [44],
which is not only uniformly ergodic in tackling with lattice
Gaussian sampling but also enjoys an accessible convergence
rate. In [45], IMHK algorithm was further applied into lattice
decoding to solve the CVP, where a better trade-off between
performance and complexity in terms of bounded distance
decoding (BDD) has been achieved.

In this paper, the state of the art of sampling decoding is
advanced from two perspectives. On one hand, in order to
improve the convergence performance of MCMC-based sam-
pling algorithm, the proposed sliced lattice Gaussian sampling
algorithm is given. Compared to IMHK sampling, auxiliary
variables are employed by the proposed sliced sampling to
enhance the convergence rate with negligible computational
increment. We demonstrate that the Markov chain induced
by it is uniformly ergodic, which means the Markov chain
converges to the target distribution in an exponential way. Then
the convergence analysis is carried out and we show that the
convergence rate of the proposed sampling is superior to that
of IMHK, thus making it a better choice for lattice Gaussian
sampling.

On the other hand, in the sampling decoding based on
MCMC methods there is a latent trade-off with respect to
the standard deviation σ of the lattice Gaussian distribution:
a large choice of σ naturally leads to a faster convergence
rate but the sampling probability of the target point in lat-
tice Gaussian distribution would decrease accordingly, and
vice versa. To this end, the selection of σ should be fully
investigated for a better sampling decoding performance. First
of all, a near-optimal choice of the standard deviation σ =
d(Λ, c)/

√
n is derived and we show it is better than the

choice σ = mini ��bi�/2
√

π provided in [45] when d(Λ, c) ≥√
n min ��bi�/2

√
π (n is the system dimension, �bi’s are the

Gram-Schmidt vectors of the lattice basis B, d(Λ, c) =
minx∈Zn �Bx−c� stands for the Euclidean distance between
the query point c and the lattice Λ with basis B). Based on
it, the related decoding complexity as well as decoding radius
in terms of BDD is derived, and we show that CVP can be
solved with complexity O(e

n
2 ) if d(Λ, c) ≤� n

2π · | det(B)| 1
n .

Moreover, a judicious judgement mechanism for choosing σ
based on d(Λ, c) is proposed. By dynamically approaching
d(Λ, c) through the sampled candidates, considerable perfor-
mance gain can be achieved.

The rest of this paper is organized as follows. Section II
introduces the lattice Gaussian distribution and briefly reviews

the basics of sampling decoding and IMHK sampling algo-
rithm. In Section III, based on the traditional slice algorithm
in MCMC, the proposed sliced lattice Gaussian sampling
algorithm is presented. In Section IV, with respect to the
proposed algorithm, the related convergence analysis is carried
out, where the demonstration of uniform ergodicity and the
convergence rate diagnose are given. The decoding analysis
regarding to optimizing the choice of σ in sampling decoding
is presented in Section V and simulation results for MIMO
detection are illustrated in Section VI. Finally, Section VII
concludes the paper.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the transpose, inverse,
pseudoinverse of a matrix B by BT ,B−1, and B†, respec-
tively. We use bi for the ith column of the matrix B, bi,j

for the entry in the ith row and jth column of the matrix B.
Meanwhile, �bi’s are the Gram-Schmidt vectors of the matrix
B. Finally, in this paper, the complexity is measured by the
number of Markov moves.

II. PRELIMINARIES

In this section, we introduce the background and mathemat-
ical tools needed to describe and analyze the proposed sliced
lattice Gaussian sampling algorithm.

A. Lattice Gaussian Distribution

Let matrix B = [b1, . . . ,bn] ⊂ R
n consist of n linearly

independent column vectors. The n-dimensional lattice Λ
generated by B is defined by

Λ = L(B) = {Bx : x ∈ Z
n}, (1)

where B is called a generator matrix of a lattice. We define the
Gaussian function centered at c ∈ R

n for standard deviation
σ > 0 as

ρρ,c(z) = e−
�z−c�2

2σ2 , (2)

for all z ∈ R
n. When c or σ are not specified, we assume that

they are 0 and 1 respectively. Then, the discrete Gaussian
distribution with respect to x ∈ Z

n is defined as

DΛ,ρ,c(x) =
ρρ,c(Bx)
ρρ,c(Λ)

=
e−

1
2σ2 �Bx−c�2�

x∈Zn e−
1

2σ2 �Bx−c�2 , (3)

where ρρ,c(Λ) �
�

Bx∈Λ ρρ,c(Bx) is just a scaling to obtain
a probability distribution. In fact, the discrete Gaussian resem-
bles a continuous Gaussian distribution, but is only defined
over a lattice. It has been shown that discrete and continuous
Gaussian distributions share similar properties, if the standard
deviation σ > 0 is sufficiently large [33].

B. Decoding by Sampling

Consider the decoding of an n × n real-valued system.
The extension to the complex-valued system is straightfor-
ward [26]. Let x ∈ Z

n denote the transmitted signal. The
corresponding received signal c is given by

c = Bx + w (4)
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where w is the noise vector with zero mean and variance
σ2

w, B is an n× n full column-rank matrix of channel coeffi-
cients. Typically, the conventional maximum likelihood (ML)
reads

�x = arg min
x∈Zn

�c− Bx�2 (5)

where �·� denotes the Euclidean norm. Clearly, ML decoding
corresponds to the closest vector problem (CVP) in lattices.
If the received signal c is the origin, then ML decoding reduces
to shortest vector problem (SVP).

Intuitively, the CVP given in (5) can be solved by lattice
Gaussian sampling. Since the distribution is centered at the
query point c, the closest lattice point Bx to c is assigned the
largest sampling probability, i.e.,

�x = arg min
x∈Zn

�c − Bx�2 = arg max
x∈Zn

DΛ,ρ,c(x), (6)

which means finding the optimal �x with the smallest Euclidean
distance �c − Bx� corresponds to returning the sample �x
with the largest sampling probability in DΛ,ρ,c(x). Therefore,
the decoding problem in (5) is converted into a sampling
problem. If sampling over the lattice Gaussian distribution
DΛ,ρ,c(x) can be successfully performed, the solution of CVP
will most likely be returned by multiple independent sam-
plings from DΛ,ρ,c(x). It has been demonstrated that lattice
Gaussian sampling is equivalent to CVP [46]. Meanwhile,
the standard deviation σ of the discrete Gaussian distribution
can be optimized to improve the sampling probability of
the target point. By adjusting the sample size, the sampling
decoder enjoys a flexible trade-off between performance and
complexity. However, the premise behind the decoding by
sampling relies on how to successfully sample from the lattice
Gaussian distribution.

In [38], Klein’s algorithm that samples from a Gaussian-like
distribution was proposed for lattice decoding. Specifically,
by sequentially sampling from the 1-dimensional conditional
Gaussian distribution DZ,ρi,�xi

in a backward order from xn

to x1, the Gaussian-like distribution arising from Klein’s
algorithm is given by

PKlein(x) =
n�

i=1

DZ,ρi,�xi
(xi) =

ρρ,c(Bx)�n
i=1 ρρi,�xi

(Z)

=
e−

1
2σ2 �Bx−c�2

�n
i=1

�
xi∈Z

e
− 1

2σ2
i

�xi−�xi�2 , (7)

where �xi =
c�i−

�n
j=i+1 ri,jxj

ri,i
, σi = ρ

|ri,i| = ρ

��bi� ,

c� = Q†c, ri,j denotes the element of the upper trian-
gular matrix R from the QR decomposition B = QR
and �bi’s are the Gram-Schmidt vectors of B with ��bi� =
|ri,i|. In [47], PKlein(x) has been demonstrated to be
close to DΛ,ρ,c(x) within a negligible statistical distance
if

σ ≥ ω(
�

log n) · max1≤i≤n��bi�, (8)

Algorithm 1 IMHK Sampling Algorithm

Input: B, σ, c,x0, tmix(�);
Output: x ∼ DΛ,ρ,c;
1: let X0 = x0

2: for t = 1,2, …, do
3: let x denote the state of Xt−1

4: sample y from the proposal distribution q(x,y) in (10)
5: calculate the acceptance ratio α(x,y) in (11)
6: generate a sample u from the uniform density U [0, 1]
7: if u ≤ α(x,y) then
8: let Xt = y
9: else

10: Xt = x
11: end if
12: if t ≥ tmix(�) then
13: output x
14: end if
15: end for

where ω(log n) is a superlogarithmic function.1 Unfortunately,
such a requirement of σ is sufficiently large, rendering Klein’s
algorithm inapplicable to most cases of lattice Gaussian sam-
pling.

C. IMHK Sampling for Lattice Gaussian Distribution

In order to sample from a target lattice Gaussian distri-
bution, Markov chain Monte Carlo (MCMC) methods were
introduced [44], [45]. In principle, they randomly generate
the next Markov state conditioned on the previous one; after
the mixing time for convergence, the distribution of samples
from the Markov chain is statistically close to the stationary
distribution, where the samples from the target distribution
can be obtained thereafter. As an important parameter to
measure the time required by a Markov chain to get close
to its stationary distribution, the mixing time tmix is defined as
follows [48]

tmix(�) = min{t : max�P t(x, ·) − π(·)�TV ≤ �}, (9)

where the superscript t denotes the number of Markov moves,
P t(x, ·) represents a row of the transition matrix P for t
Markov moves, π is the target invariant distribution and �·�TV

represents the total variation distance.
From MCMC perspective, DΛ,ρ,c(x) can be viewed as a

complex target distribution lacking direct sampling methods,
and the independent Metropolis-Hastings-Klein (IMHK) sam-
pling that fully exploits the potential of MCMC was therefore
proposed in [44]. In particular, given the current Markov state
Xt = x, PKlein(x) from Klein’s algorithm is used to serve as
the proposal distribution q(x,y) in IMHK:

q(x,y) = PKlein(y) =
ρρ,c(By)�n
i=1 ρρi,�yi

(Z)
, (10)

where the generation of the state candidate y is actually
independent of x. Then, regarding the state candidate y,

1Here we use the standard small omega notation ω(·), i.e., |ω(g(n))| >
k · |g(n)| for every fixed positive number k > 0.
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the acceptance ratio α is calculated by

α(x,y) = min

�
1,

π(y)q(y,x)
π(x)q(x,y)

	
= min

�
1,

�n
i=1 ρρi,�yi

(Z)�n
i=1 ρρi,�xi

(Z)

	
, (11)

where the stationary distribution π = DΛ,ρ,c. In the sequel,
the decision for whether accept Xt+1 = y or not is made
based on α(x,y), thus completing a Markov move. Overall,
the transition probability of the IMHK sampling over two
Markov states is

PIMHK(x,y) = q(x,y) · α(x,y)

= min

�
PKlein(y),

π(y)PKlein(x)
π(x)

	
, (12)

for cases x �= y.
Proposition 1 [44]: Given the invariant lattice Gaussian

distribution DΛ,ρ,c, the Markov chain established by the
IMHK algorithm is uniformly ergodic:

�P t(x, ·) − DΛ,ρ,c(·)�TV ≤ (1 − δ)t for all x ∈ Z
n (13)

with

δ � ρρ,c(Λ)�n
i=1 ρρi(Z)

> 0. (14)

Clearly, the exponential decay coefficient 0 < δ < 1 is the
key to determine the convergence rate.

III. SLICE SAMPLING FOR LATTICE

GAUSSIAN DISTRIBUTION

In this section, we present the conventional slice sampling in
MCMC and give the proposed sliced lattice Gaussian sampling
algorithm. Note that the Markov chain that we are concerned
with here has a countably infinite state space, i.e., the lattice
Λ with x ∈ Z

n.

A. Slice Sampling

The classical slice sampling was generalized by Neal
in [49]. In principle, it relies on the fact that uniformly
sampling from the region under the curve of a density function
is actually equal to drawing samples directly from that distri-
bution. Take a multi-dimensional target distribution π(x) as
an example, auxiliary variable u ≥ 0 is introduced to sample
from target distribution π(x) by sampling from the uniform
distribution over the set S = {(x, u) : 0 ≤ u ≤ π(x)}.
To achieve this, slice sampling alternatively updates x and u
from uniform distributions p(x | u) ∼ Uni(S) and p(u | x) ∼
Uni(0, π(x)) respectively, thus forming a valid Markov chain
with joint distribution Π(x, u). Consequently, samples of x
can be easily drawn from the marginal distribution π(x)/Z ,
where the introduced variable u is marginalized out and Z > 0
is a constant scalar. Overall, the operation of slice sampling
can be summarized as follows:

1) Sample ut from the conditional distribution

p(ut | xt−1) ∼ Uni(0, π(xt−1)). (15)

2) Sample xt from the conditional distribution

p(xt | ut) ∼ Uni(Su), (16)

where Su = {x : π(x) ≥ u}.
Clearly, the samples of x are obtained by simply ignoring

the values of u while only uniform sampling is required over
the set Su. However, in many cases of interest, determining the
set Su may be tricky especially for multi-modal distributions.
In fact, as lattice Gaussian distribution DΛ,ρ,c(x) is simply
unimodal, finding the slice and sampling from it could be
straightforward, which motivates us to incorporate slice sam-
pling into it for a better sampling performance.

B. Sliced Lattice Gaussian Sampling Algorithm

Inspired by the works of slice sampling [50]–[52], we now
present the proposed sliced sampling algorithm for lattice
Gaussian distribution. First of all, a Markov chain {Xt, Ut}∞t=0

with joint distribution Π(x, u) should be set up. Typically,
given the following factorization

π(x) = DΛ,ρ,c(x) = PKlein(x) · l(x) (17)

with

l(x) �
�n

i=1 ρρi,�xi
(Z)

ρρ,c(Λ)
, (18)

we can establish the joint distribution as

Π(x, u) = PKlein(x) · Iu<l(x)(x), (19)

where ρρ,c(Λ) is a constant scalar and IA(x) is the indi-
cator function of the set A. Compared to the original slice
sampling, the factorization of the target distribution in (17)
is adopted to the proposed slice sampling, which results in
the joint distribution in (19). In fact, it was pointed out by
Besag and Green in [53] that the usage of decomposition
is rather effective in multidimensional problems (especially
when PKlein(x) has a simpler structure than π(x)). More
specifically, the conditional uniform distribution of u lies on
the interval (0, l(x)) by incorporating u and l(x) together.
By doing this, u and x are iteratively updated by respectively
sampling from uniform distribution on (0, l(x)) given x and
from P

Aut

Klein(x) which restricts the set of x in PKlein(x) into
the set Au = {x : l(x) > u}:

1) Sample ut from the conditional distribution

p(ut | xt−1) ∼ Uni(0, l(xt−1)). (20)

2) Sample xt from the conditional distribution

p(xt | ut) ∼ P
Aut

Klein(x), (21)

where x ∈ Aut = {x : l(x) > ut}.
Following [53], it is straightforward to verify that the itera-

tive samplings from (20) and (21) lead to the joint distribution
Π(x, u) in (19). Intuitively, with respect to (21), sampling
from PKlein(x) can be efficiently implemented by Klein’s
algorithm with complexity O(n2), whereas the restriction of
x ∈ Aut can be simply addressed by resorting to rejection
sampling. If x /∈ Aut , then repeat the sampling until a
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Fig. 1. Illustration of a two-dimensional lattice Gaussian distribution and a
slice (blue plane) with u > 0 over it.

Algorithm 2 Sliced Lattice Gaussian Sampling Algorithm

Input: B, σ, c,x0, tmix(�);
Output: x ∼ DΛ,ρ,c;
1: for t = 1,2, …, do
2: calculate l(xt−1) according to (18)
3: uniformly draw ut from the interval (0, l(xt−1))
4: for k = 1,2, …, do
5: sample xt from PKlein(x) shown in (7)
6: calculate l(xt) according to (18)
7: if l(xt) > ut then
8: break
9: end if

10: end for
11: if t ≥ tmix(�) then
12: output xt

13: end if
14: end for

qualified candidate is found for xt. Here one also can sample
x from PKlein(x) approximately under the restriction x ∈ Aut

directly.2 Interestingly, the numerator in (18) has already been
calculated by Klein’s algorithm during the sampling while the
denominator in (18) only serves as a scalar that can be set free
for non-negative values. In addition, considerable sampling
potential can be further exploited to improve the sampling
efficiency, which is one of our work in future. To summarize,
the proposed sliced lattice Gaussian sampling algorithm is
presented in Algorithm 2. More precisely, the complexity of
each Markov move in slice sampling is O(n2), which is the
same order with the IMHK and Gibbs sampling algorithms.
For this reason, in MCMC the computational cost of each
Markov move is often insignificant in complexity comparison,
whereas the number of Markov moves is more critical.

IV. CONVERGENCE ANALYSIS

In this section, convergence analysis with respect to the
proposed sliced lattice Gaussian sampling algorithm is given.

2For more details of implementing Klein’s sampling at each layer with finite
searching space, the reader is referred to [26].

The uniform ergodicity is firstly demonstrated, followed by the
convergence diagnosis to show the advantages of the proposed
sampling over IMHK sampling.

A. Uniform Ergodicity

Consider the marginal distribution π(x) = DΛ,ρ,c(x) with
respect to the joint distribution Π(x, u), clearly, the marginal
chain {X1,X2, . . .} regarding to x is not only a valid Markov
chain with transition probability PSlice(xt,xt+1) > 0, but also
turns out to be reversible (also known as detailed balance) due
to

π(xt)PSlice(xt,xt+1)

= π(xt)



Π(ut+1|xt)Π(xt+1|ut+1)dut+1

=



Π(xt|ut+1)Π(ut+1|xt)Π(xt+1|ut+1)p(ut+1)dut+1

= π(xt+1)



Π(ut+1|xt)Π(xt|ut+1)dut+1

= π(xt+1)



Π(ut|xt+1)Π(xt|ut)dut

= π(xt+1)PSlice(xt+1,xt), (22)

where π(x) =
�

Π(x, u)du =
�

Π(x|u)p(u)du. Subse-
quently, based on the sub-Markov chain {X1,X2, . . .}, its
transition probability can be derived as

PSlice(xt,xt+1)

=

 l(xt)

0

p(xt+1|ut+1)p(ut+1|xt)dut+1

=

 l(xt)

0

P
Aut+1
Klein (xt+1)p(ut+1|xt)dut+1

=
1

l(xt)


 l(xt)

0

P
Aut+1
Klein (xt+1)dut+1

=
1

l(xt)


 l(xt)

0

PKlein(xt+1)Iut+1<l(xt+1)(xt+1)
PKlein(Aut+1 )

dut+1

(23)

=
PKlein(xt+1)

l(xt)


 l(xt)∧l(xt+1)

0

1
PKlein(Aut+1)

dut+1

≥ PKlein(xt+1)
l(xt)


 l(xt)∧l(xt+1)

0

dut+1

= PKlein(xt+1)
�
1 ∧ l(xt+1)

l(xt)


=
�
PKlein(xt+1) ∧ π(xt+1)PKlein(xt)

π(xt)


= PKlein(xt+1) · α(xt,xt+1)
= PIMHK(xt,xt+1)
≥ δ · π(xt+1) (24)

for cases xt �= xt+1, where PKlein(Aut+1) denotes the proba-
bility summation of PKlein(x) over set Aut+1 = {x : l(x) >
ut+1}, (23) recalls Bayes’ theorem and “∧" yields the smaller
choice between two terms.

Here, the inequality (24) follows the fact that [35]

PKlein(x)
π(x)

=
ρρ,c(Λ)�n

i=1 ρρi,�xi
(Z)

≥ δ > 0 (25)
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for all Markov states x ∈ Z
n.

Theorem 1: Given the invariant lattice Gaussian distri-
bution DΛ,ρ,c, the sub-chain {X1,X2, . . .} established by
the proposed sliced lattice Gaussian sampling algorithm is
uniformly ergodic as:

�P t(x, ·) − DΛ,ρ,c(·)�TV ≤ (1 − δ)t for all x ∈ Z
n.

(26)

Actually, the result of PSlice(xt,xt+1) ≥ δ · π(xt+1) for all
the Markov states is accordance with the definition of small set
in the literature on MCMC [48]. Furthermore, given (24), for
a reversible Markov chain, it is straightforward to demonstrate
the uniform ergodicity of the underlying Markov chain through
coupling technique. Here, for the consideration of simplicity,
the related proof is omitted while more details about the
proof can be found in [44], [45]. Intuitively, because of
PSlice(xt,xt+1) ≥ PIMHK(xt,xt+1) for xt �= xt+1, the sliced
sampler performs better than the IMHK sampling in terms of
the convergence performance.

B. Convergence Improvement

Similar to IMHK sampling, the proposed sliced sampling
for lattice Gaussian distribution is uniformly ergodic as well.
For a better understanding, we now recall the concept of
Peskun ordering to verify the convergence improvement of
the proposed sliced sampling. Specifically, with respect to
sampling from DΛ,ρ,c(x), it always follows that

PSlice(x,y) ≥ PIMHK(x,y) (27)

for x �= y, which means each off-diagonal element in
transition matrix PSlice is no smaller than that of PIMHK. From
the literature on MCMC, this is known as Peskun ordering
defined in [54]

PSlice � PIMHK. (28)

We then invoke the following Proposition to show the conver-
gence performance from Peskun ordering. Here, L2(π) denote
the set of all function f(·) that are square integrable with
respect to π and v(f,P) is defined as sampler’s asymptotic
efficiency by

v(f,P) = lim
n→∞

1
n

var

�
n�

t=1

f(Xt)

�
, (29)

where the states X0, . . . ,Xt establish the corresponding
Markov chain.

Proposition 2 [55]: Suppose P1 and P2 are reversible
transition matrices with the same invariant distribution and
P2 � P1. Then, for any function f ∈ L2

0(π) with zero mean
E{f} = 0, we have

v(f,P1) ≥ v(f,P2). (30)

Clearly, from Proposition 2, the proposed sliced sampling
has a smaller asymptotic variance of sample path averages than
IMHK for every function that obeys the central limit theorem
(CLT). Theoretically, the insight behind Peskun ordering is
that a Markov chain has smaller probability of remaining in the

same position explores the state space more efficiently. Hence,
convergence performance is improved by shifting probabilities
off the diagonal of the transition matrix, which corresponds to
decreasing the rejection probability of the proposed moves.
Moreover, in [50], Mira shows that if two transition matrices
are Peskun ordered as P2 � P1, then their corresponding sec-
ond largest eigenvalues satisfy

|λmax,1| ≥ |λmax,2|, (31)

where convergence rate in uniform ergodicity is exactly char-
acterized by the second largest eigenvalue |λmax|. Therefore,
we can easily arrive at the following result

|λmax|Slice ≤ |λmax|IMHK (32)

to confirm the convergence gain of the proposed sliced sam-
pling.

Obviously, given the value of δ < 1, the mixing time of the
Markov chain can be calculated by (9) and (26), that is,

tmix(�) =
ln �

ln(1 − δ)
≤ (− ln �) ·

�
1
δ

�
, � < 1 (33)

where we use the bound ln c < c−1 for 0 < c < 1. Therefore,
the mixing time is proportional to 1/δ, and becomes O(1) as
δ → 1. On the other hand, it is straightforward to see that
PKlein(Aut+1 ) decreases with the improvement of σ. This is
actually in line with the fact that a larger σ corresponds to a
faster convergence rate. Clearly, if σ is sufficiently large, then
sampling from DΛ,ρ,c(x) can be realized directly.

V. DECODING ANALYSIS

In this section, we apply the proposed sliced sampling
algorithm to solve the CVP and analyze its complexity with
respect to the choice of the standard deviation σ. As mentioned
before, the decoding complexity of MCMC is evaluated by
the number of Markov moves. In MCMC, samples from
the stationary distribution tend to be correlated with each
other. Therefore one can leave a sampling gap, which is
the mixing time tmix, to pick up the desired independent
samples (alternatively, one can run multiple Markov chains
in parallel to guarantee i.i.d. samples). Therefore, following
the configuration in [45], the statistical complexity of solving
CVP by MCMC is defined as follows.

Definition 1 [45]: Let d(Λ, c) = minx∈Zn �Bx−c� denote
the Euclidean distance between the query point c and the
lattice Λ with basis B, and let �x be the lattice point achieving
d(Λ, c). The statistical complexity (i.e., the number of Markov
moves t) of solving CVP by MCMC is

CCVP � tmix

DΛ,ρ,c(�x)
. (34)

According to (33) and (34), the decoding complexity of the
proposed sliced sampling for CVP can be upper bounded by

Cslice < log
�

1
�

�
· 1
δ
· ρρ,c(Λ)
ρρ,c(B�x)

≤ log
�

1
�

�
·
�n

i=1 ρρi(Z)
ρρ,c(Λ)

· ρρ,c(Λ)
ρρ,c(B�x)
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= log
�

1
�

�
·
�n

i=1 ρρi(Z)
ρρ,c(B�x)

= log
�

1
�

�
· C(σ), (35)

where

C(σ) �
�n

i=1 ρρi(Z)
ρρ,c(B�x)

=

�
n�

i=1

�
xi∈Z

e−
��bi�2

2σ2 ·x2
i

�
· e d2(Λ,c)

2σ2 .

(36)

Clearly, given B and d(Λ, c), the decoding complexity
is determined by the choice of σ. Note that since slice
sampling achieves a better mixing time than IMHK sampling,
its decoding complexity is also superior to that of IMHK
sampling for a better decoding performance [45]. Based
on (36), further analysis is given to optimize the choice of
the standard deviation σ in what follows, thus leading to
a better decoding performance. In addition, the following
derived results of σ is also applicable to the IMHK sampling
decoding for the performance enhancement as it considers the
same optimization problem to minimize C(σ) in (36).

A. Optimization of σ

From the point of view of simulated annealing in statistics,
σ functions as “temperature" to guide the Markov mixing,
which also has an impact upon tmix as well. Given the lattice
Gaussian distribution DΛ,ρ,c(x) shown in (3), although a small
size σ offers a relatively large decoding sampling probability
DΛ,ρ,c(�x) for the target optimal decoding solution, it also
incurs a “cold" Markov chain which tends to be trapped by the
frozen status, and vice versa [56] Therefore, to balance this
inherent trade-off for a better sampling decoding performance,
necessary optimization about σ should be carried out carefully.

In [45], the choice of σA = mini ��bi�/2
√

π is proposed
as a suboptimal choice for solving CVP by IMHK sampling
decoding. By simply substituting it into (36) for the proposed
sliced sampling, we have

C(σA) = e
2π

min2 ��bi�
·d2(Λ,c) ·

n�
i=1

ϑ3

�
2��bi�2

min2 ��bi�

�
(37)

with Jacobi theta function ϑ3(τ) =
�+∞

n=−∞ e−πςn2
. Since

ϑ3(τ) is monotonically decreasing with τ > 0, it is shown
that

C(σA) ≤ e
2π

mini ��bi�2 ·d2(Λ,c) · ϑn
3 (2)

= 1.0039n · e
2π

mini ��bi�2 ·d2(Λ,c)
, (38)

where ϑ3(2) = 1.0039 was given in [45]. Nevertheless, C(σA)
is sensitive with d(Λ, c) due to the exponentially increasing
component ed2(Λ,c).

In order to obtain a better σ for solving CVP, we start with
considering the optimal choice of σ with respect to

C(σ) �
�

n�
i=1


 ∞

−∞
e−

��bi�2

2σ2 ·x2
i dxi

�
· e d2(Λ,c)

2σ2 , (39)

which is a continuous version of (36). According to the fact�∞
−∞ e−

x2

2σ2 dx =
√

2πσ, it follows that

C(σ) =
(2π)

n
2

| det(B)| · σ
n · e d2(Λ,c)

2σ2 (40)

and the derivative of function C(σ) with respect to σ can be
easily obtained. Furthermore, by letting ∂C(ρ)

∂ρ = 0, then we
have

σ =
d(Λ, c)√

n
. (41)

Here, for notational simplicity, we apply σB = d(Λ, c)/
√

n
as the choice for C(σ) shown in (36), and it follows that

C(σB) = e
n
2 ·
�

n�
i=1

�
xi∈Z

e
− n��bi�2

2d2(Λ,c)
·x2

i

�

= e
n
2 ·

n�
i=1

ϑ3

�
n��bi�2

2πd2(Λ, c)

�
. (42)

Clearly, the choice σB = d(Λ, c)/
√

n is still suboptimal
because it was found through the continuous case. Neverthe-
less, significant potential still can be obtained. More precisely,

according to
�∞
−∞ e−

x2

2σ2 dx =
√

2πσ, C(σB) is upper bounded
by

C(σB) ≤ e
n
2 ·
�

n�
i=1


 ∞

−∞
e
− n��bi�2

2d2(Λ,c)
·x2

i dxi

�

= e
n
2 ·

n�
i=1

�√
2π · d(Λ, c)√

n��bi�

�

=
�

2πe

n

�n
2

· dn(Λ, c)
| det(B)| . (43)

Intuitively, when n > 2πe (i.e., n ≥ 18), C(σB) is mainly
dominated by the relationship between d(Λ, c) and | det(B)|.
More precisely, according to (43), the complexity of O(e

n
2 )

for solving CVP can be achieved by C(σB) if

d(Λ, c) ≤
�

n

2π
· | det(B)| 1

n . (44)

Furthermore, by substituting (43) into (35), the complexity
of solving CVP via the proposed sliced sampling decoding
can be derived as

CCVP ≤ log
�

1
�

�
·
�

2πe

n

�n
2

· dn(Λ, c)
| det(B)| (45)

and its decoding radius in terms of bounded distance decod-
ing (BDD) follows that

dρB(Λ, c) =
�

n

2πe
·
�

CCVP

log(1
� )

� 1
n

· | det(B)| 1
n , (46)

where the decoding radius based on σA is

dρA(Λ, c) =

�
1
2π

· ln CCVP

log
�

1
�

� · min
1≤i≤n

��bi�. (47)
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Fig. 2. C(σB) versus γ = d(Λ, c)/
�√

n min ‖�bi‖
2
√

π

�
for the lattice basis

B ∈ R
8×8 with Gaussian coefficients.

B. Relationship Between σA and σB

In order to investigate the relationship between σA and σB ,
we arrive at the following Proposition, whose proof is omitted
due to simplicity. From it, the following analysis can be given.

Proposition 3: Given C(σA) and C(σB) in (37) and (42)
respectively, it follows that

1) If d(Λ, c) =
√

n min ��bi�
2
√

π
, the choices σA and σB are

equivalent due to the same value of C(σ).
2) If d(Λ, c) <

√
n min ��bi�

2
√

π
, then the choice σA is better

than σB due to a smaller C(σ).
3) If d(Λ, c) >

√
n min ��bi�

2
√

π
, then the choice σB is better

than σA due to a smaller C(σ).
Insight into C(σA) and C(σB), both of them increase with

the improvement of d(Λ, c). In particular, due to the constant
term en/2, C(σB) is less efficient than C(σA) when d(Λ, c) is
small. However, given an increasing d(Λ, c), the product term�n

i=1 ϑ3

�
n��bi�2

2πd2(Λ,c)

�
in C(σB) is not as sensitive as the term

e
2π

mini ��bi�2 ·d2(Λ,c)
in C(σA), thus leading to a significant supe-

riority in decoding complexity for d(Λ, c) >
√

n min ��bi�
2
√

π
. To

summarize, in order to achieve a better decoding performance,
σ should obey the following choice

σ =

⎧⎪⎪⎨⎪⎪⎩
σA = min

i
��bi�/2

√
π if d(Λ, c) ≤

√
n min ��bi�

2
√

π
;

σB = d(Λ, c)/
√

n if d(Λ, c) >

√
nmin ��bi�

2
√

π
.

(48)

For a better understanding, the average value of C(σB)
versus d(Λ, c) = γ ·

√
n min ��bi�

2
√

π
, γ > 0 for an 8×8 lattice basis

B with Gaussian coefficients is illustrated by Monte Carlo

methods in Fig. 2. Intuitively, when d(Λ, c) >
√

n min ��bi�
2
√

π

(i.e., γ > 1), the average value of C(σB) grows rapidly.
Moreover, the comparisons between C(σA) and C(σB) with
respect to various lattice basis B with Gaussian coefficients are
further presented in Fig. 3. As expected, C(σA) and C(σB)

Fig. 3. C(σ) versus γ = d(Λ, c)/
�√

n min‖�bi‖
2
√

π

�
for 8 × 8, 12 × 12,

16 × 16 and 20 × 20 lattice basis B with Gaussian coefficients.

are same when d(Λ, c) =
√

n min ��bi�
2
√

π
, i.e., γ = 1. Meanwhile,

it is clear that C(σA) < C(σB) when d(Λ, c) <
√

n min ��bi�
2
√

π

and C(σA) > C(σB) for d(Λ, c) >
√

n min ��bi�
2
√

π
. Most

importantly, compared to C(σA), the increment of C(σB)
is much milder, thus making C(σB) a promising choice for

d(Λ, c) >
√

n min ��bi�
2
√

π
. Additionally, in order to present a clear

complexity comparison, the complexity of upper bounds of
solving CVP (i.e., the maximum number of Markov moves
required to solve CVP) of various sampling decoding are given
in Table I. Because the computational complexities of Gibbs,
IMHK and the proposed sliced sampling algorithms have the
same complexity order O(n2) within one single Markov move,
the corresponding computational costs (i.e., the maximum
number of Markov moves times the computational complexity
per move) for each sampling decoding scheme can be easily
derived as O(C ·n2). Intuitively, the computational complexity
costs are different from each other mainly due to the different
numbers of the required Markov moves, making the number
of Markov moves more critical than the computational com-
plexity of each move.3

Another point that should be emphasized is the application
of lattice reduction techniques. It is well known that after
Lenstra-Lenstra-Lovász (LLL) reduction, vectors in the matrix
B (i.e., lattice basis) become relatively short and orthogonal to
each other. Meanwhile, LLL reduction is able to significantly
improve mini ��bi� while reduce maxi ��bi� [57]. To this end,
LLL reduction is encouraged to serve as a preprocessing stage
with polynomial computational complexity O(n3 log n) since
it could significantly improve the decoding performance of
the choice σA [58]. Note that as shown in (42) and (46),
LLL reduction does not alter the volume of lattice, which
corresponds to a constant | det(B)|. Since C(σA) is better

3In fact, the computational complexities of random and derandomized
sampling algorithms within one single sampling are O(n2) as well, so that
their computational complexities are mainly determined by the number of
samples, i.e., O(C · n2).
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TABLE I

COMPLEXITY COMPARISON OF VARIOUS DECODING SCHEMES

than C(σB) when d(Λ, c) <
√

n min ��bi�
2
√

π
, the usage of LLL

reduction also expands the active range of the choice σA.

C. Dynamic Update of σ

However, given the choices of σ in (48), an estimation
with respect to d(Λ, c) is required. For this reason, a natural
question shown below raises, which should be considered
carefully:

• The premise d(Λ, c) corresponds to solving CVP, which
is difficult to obtain at the beginning.

Therefore, we try to answer it in what follows.
Specifically, as d(Λ, c) is hard to get, the initial distance

dinitial(Λ, c) = �Bxsic-lll − c� is applied as an approximation,
where xsic-lll is the decoding result of SIC-LLL decoding.4

Note that other decoding results �x of sub-optimal decod-
ing schemes can also be applied, and the more accurate
dinitial(Λ, c) to d(Λ, c), the better decoding performance.
Meanwhile, xsic-lll can also be applied as the initial starting
state of the Markov chain, which is helpful to the Markov
mixing [59].

Then, given the fact d(Λ, c) ≤ dinitial(Λ, c), the related
judgement can be carried out to determine the choice of σ.

If dinitial(Λ, c) ≤
√

n min ��bi�
2
√

π
, then σA is selected as a judicious

choice. Otherwise, σ = dinitial(Λ, c)/
√

n is applied at the
beginning, and σ is updated dynamically by learning from
the collected samples as

σdynamic =
dupdate(Λ, c)√

n
� minx∈S �Bx− c�√

n
· ϑn

3 (2), (49)

where set S contains all the samples of x already collected dur-
ing the sampling. Hence, along with the sampling, dupdate(Λ, c)
shrinks gradually, leading to a better estimation of σ to σB .

Proposition 4: Given d(Λ, c) >
√

n min ��bi�
2
√

π
, the choice

σ = dinitial(Λ,c)√
n

is better than σA due to a smaller C(σ) if

dinitial(Λ, c) � | det(B)| 1
n ·
�

n

2πe
· e

2π·d2(Λ,c)
n·min2 ��bi� , (50)

4The successive interference cancelation (SIC) decoding is also known as
Babai’s nearest plane algorithm in lattice decoding.

where � denotes approximately less than.
Proof: First of all, by substituting σinitial = dinitial(Λ,c)√

n
into (43), we have

C(σinitial) ≤
�

2πe

n

�n
2

· dn
initial(Λ, c)
| det(B)| . (51)

Then, given (37), in order to make sure C(σinitial) < C(σA),
it follows that�

2πe

n

�n
2

· dn
initial(Λ, c)
| det(B)| < e

2π

min2 ��bi�
·d2(Λ,c)

·
n�

i=1

ϑ3

�
2��bi�2

min2 ��bi�

�
(52)

so as to

dinitial(Λ, c)

< | det(B)| 1
n ·
�

n

2πe
· e

2π·d2(Λ,c)
n·min2 ��bi� ·

n�
i=1

ϑ3

�
2��bi�2

min2 ��bi�

�

≤ | det(B)| 1
n ·
�

n

2πe
· e

2π·d2(Λ,c)
n·min2 ��bi� · ϑn

3 (2)

≈ | det(B)| 1
n ·
�

n

2πe
· e

2π·d2(Λ,c)
n·min2 ��bi� , (53)

completing the proof.
From Proposition 4, the choice of σ = dinitial(Λ,c)√

n
is superior

to σA when dinitial is close to d(Λ, c) >
√

n min ��bi�
2
√

π
within a

certain level. Nevertheless, as the initial distance dinitial(Λ, c)
may be quite far away from d(Λ, c) due to a poor suboptimal
detection, the estimation of σ in (49) has the risk to be
excessively large. To prevent such a problem, it is necessary
to set an upper bound for σ as

σdynamic = min

�
dupdate(Λ, c)√

n
, γ · min ��bi�

2
√

π

�
, (54)

where d(Λ, c) = γ ·
√

n min ��bi�
2
√

π
. Here, the coefficient γ is

suggested to choose from the range [1.2, 1.4] experimentally,
which could be further optimized in practice. We emphasize
the significance of the above upper bound, which is important
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especially for decoding cases with limited state space, i.e., x ∈
Xn ⊆ Z

n.
To summarize, the proposed choice of standard deviation

σmix is given as follows, where the judgement is carried out
based on dinitial(Λ, c).

Remark 1: • If dinitial(Λ, c) ≤
√

n min ��bi�
2
√

π
, let σmix = σA

for the sampling decoding.
• If dinitial(Λ, c) >

√
n min ��bi�

2
√

π
, update σmix = σdynamic

dynamically for the sampling decoding.
Note that updating σ by learning dynamically is compatible

with the mechanism of MCMC, which is known as adap-
tive MCMC (see [60]–[62] for more details). Meanwhile,
this is also in line with the concept of simulated anneal-
ing (SA) by gradually cooling down the temperature of the
Markov chain, which is widely applied in various research
fields [56].

VI. NUMERICAL STUDIES

In this section, the performances of MCMC-based sampling
schemes are exemplified in the context of MIMO detection,
whose system model can be expressed as

c = Hx + w. (55)

Here, the ith entry of the transmitted signal x, denoted as
xi, is a modulation symbol taken independently from an M -
QAM constellation X with Gray mapping. The channel matrix
H contains uncorrelated complex Gaussian fading gains with
unit variance and remains constant over each frame duration
and w is the Gaussian noise with zero mean and variance σ2

w.
Let Eb represent the average power per bit at the receiver, then
the signal-to-noise ratio (SNR) Eb/N0 = n/(log2(M)σ2

w)
where M is the modulation level and σ2

w is the noise variance.
Intuitively, this decoding problem of �x = arg min

x∈Xn

�Hx −
c�2 can be solved by sampling over the discrete Gaussian
distribution

PL(H),ρ,c(x) =
e−

1
2σ2 �Hx−c�2�

x∈Xn e−
1

2σ2 �Hx−c�2 , (56)

and the closest lattice point Hx will be returned with the high-
est probability. Hence, after multiple samplings, the solution
of CVP is the most likely to be returned.

In Fig. 4, the bit error rates (BERs) of MCMC sampling
detectors are evaluated against the number of Markov moves
(i.e., iterations) in a 8 × 8 uncoded MIMO system with
16-QAM. Here, we use K to denote the number of Markov
moves of MCMC sampling, and LLL reduction-aided SIC
decoding serves as a performance baseline for a better com-
parison. Meanwhile, LLL reduction is also applied to other
decoding schemes as a fair comparison, where the trade-off
coefficient 1/4 < η < 1 in Lovász condition is set as 0.99 for a
relatively orthogonal lattice basis. Clearly, there is a substantial
performance gap between lattice reduction-aided decoding
scheme and sampling decoding schemes. In particular, with
the standard deviation σA = mini ��bi�/(2

√
π), the pro-

posed sliced lattice Gaussian sampling algorithm achieves
a better decoding performance than IMHK under the same

Fig. 4. Bit error rate versus average SNR per bit for the uncoded 8 × 8
MIMO system using 16-QAM.

Fig. 5. Bit error rate versus average SNR per bit for the uncoded 12 × 12
MIMO system using 16-QAM.

number of Markov moves (i.e., K = 50). On the other
hand, the performance of ML decoding, which is realized
by sphere decoding (SD) to solve the closest vector prob-
lem (CVP) in (5) by enumerations is also given as a baseline.
Clearly, with the increase of Markov moves, the decoding
performance improves gradually due to a larger decoding
radius. As expected, near-optimal decoding performance can
be obtained when K = 200. In addition, the Gibbs sam-
pling from MCMC is also added for the decoding compar-
ison, where the setting of standard deviation σdistance comes
from [63].

In Fig. 5, the BERs of MCMC sampling decoding schemes
are evaluated against the number of Markov moves in a 12×12
uncoded MIMO system with 16-QAM. Clearly, the proposed
sliced lattice Gaussian sampling algorithm is superior to
IMHK sampling in terms of decoding performance, thus
implying a better convergence performance. Note that with
the increase of the system dimension, the performance gap
between ML and sampling decoding schemes is enlarged, and
more complexity cost will be consumed. Therefore, to achieve
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Fig. 6. Bit error rate versus average SNR per bit for the uncoded 16 × 16
MIMO system using 64-QAM.

the near-optimal decoding performance, a larger number of
Markov moves is required. In other words, the proposed
sliced lattice Gaussian sampling is flexible, where its decoding
trade-off between performance and complexity can be adjusted
through the number of Markov moves.

In order to show the performance comparison with different
choices of the standard deviations, Fig. 6 is given to illustrate
the BER performance of σA and σmix in a 16 × 16 uncoded
MIMO system with 64-QAM. As shown in Proposition 3,
σA is only advantageous in a bounded range with d(Λ, c) <√

n min ��bi�
2
√

π
, which means considerable decoding potential can

be further exploited. For this reason, σdynamic shown in (54) is
given, and it takes the advantages of the initial starting state
(i.e., x0 = xsic-lll) of the underlying Markov chain, thereby
leading to the mixed version σmix based on the judgement of
dinitial(Λ, c). More specifically, the coefficient γ we choose in
dinitial(Λ, c) is 1.3. In Fig. 6, as expected, compared to the
sliced sampling with σA, considerable decoding performance
can be obtained by the sliced sampling with σmix under the
same number of Markov moves K = 50. In particular, the gain
of the choice σmix with K = 50 is approximately 1 dB for a
BER of 10−4, which can be further improved with the increase
of the Markov moves. Additionally, the decoding performance
of the fixed candidates algorithm (FCA) in [64] and iterative
list decoding in [65] with 50 samples are also presented as a
comparison.

In Fig. 7, the performance comparison with different choices
of the standard deviations is presented to show the BER
performance in a 24 × 24 uncoded MIMO system with 16-
QAM. This corresponds to a lattice decoding scenario with
restricted state space in dimension n = 48. It is clear that
under the help of LLL reduction, all the decoding schemes
are able to achieve the full receive diversity. However, with
the increase of system dimension, more number of Markov
moves is needed for approaching the ML performance. The
similar observations can be found in Fig. 8, where the BER
performance comparison is illustrated in a 48 × 48 uncoded
MIMO system with 4-QAM. As expected, the decoding gain
of the choice σmix over σA still can be observed for both

Fig. 7. Bit error rate versus average SNR per bit for the uncoded 24 × 24
MIMO system using 16-QAM.

Fig. 8. Bit error rate versus average SNR per bit for the uncoded 48 × 48
MIMO system using 4-QAM.

IMHK sampling decoding and sliced sampling decoding,
which further improves with the increase of Markov moves.
Note that as a mixed strategy for choosing σ, σmix selects σA

or σdynamic according to the judgement based on dinitial(Λ, c),
where the related details will be explicitly described in the
following.

To further study the choice of σmix between σA and σdynamic,
Fig. 9 is given to show the choice percentage of σmix in two
different decoding cases, namely, 16 × 16 uncoded MIMO
system with 64-QAM and 24×24 uncoded MIMO system with
16-QAM. Both the numbers of Markov moves of the sliced
sampling algorithm in these two cases are set as K = 50 with
coefficient γ = 1.3. Clearly, in the low SNR region, the choice
percentages of σA for σmix are rather limited. This is because
dinitial(Λ, c) normally turns out to be relatively large due to
the effect of noises. With the increase of SNR, the effects of
noises are constrained gradually, thus resulting in a smaller
size of dinitial(Λ, c). In this case, the choice of σA becomes a
better choice than σdynamic and its percentage of being selected
goes up subsequently. On the contrary, the choice percentages
of σdynamic decrease with the increase of SNR. When the
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Fig. 9. Choice proportion of σmix versus average SNR per bit for the uncoded
MIMO systems.

TABLE II

AVERAGE RUNNING TIMES OF K = 50 MARKOV MOVES (I.E., MEASURED

IN SECONDS) IN MIMO DETECTION WITH VARIOUS DIMENSIONS

AND Eb/N0 UNDER 16-QAM

SNR per bit is larger than 27dB, the percentage of choosing
σdynamic is approaching to 0. Nevertheless, it still plays a
dominant role especially in the low SNR regions. For this
reason, the decoding performance gain of σdynamic over σA

is reliable in most cases of MIMO detection. Another thing
should be pointed out is that the modulation scheme also has
an impact upon the choice of σ since the high order modulation
suffers from the noises more severely in average.

Table II is given to show the complexity comparison in
average elapsed running times for K = 50 Markov moves in
both sliced sampling decoding and IMHK sampling decoding.
Typically, the simulation is conducted by MATLAB R2019a
on a single computer, with an Intel Core i7 processor at
2.3GHz, a RAM of 8GB and Windows 10 Enterprise Service
Pack operating system. As can be seen clearly, the average
elapsed running times of the sliced sampling decoding are
comparable to these of IMHK. This is accordance with the
derived computational complexity O(C·n2), where the number
of Markov moves is the key. Clearly, under the same number
of Markov moves, sliced sampling algorithm achieves a better
decoding performance than IMHK.

VII. CONCLUSION

In this paper, the sliced lattice Gaussian sampling algorithm
was proposed to sample from the lattice Gaussian distribution.

By introducing an auxiliary random variable, the underlying
Markov chain of the proposed sliced sampling not only
achieves uniform ergodicity to converge in an exponential
way, but also shows a better mixing performance than that of
the independent Metropolis-Hastings-Klein (IMHK) sampling
algorithm. On the other hand, with respect to lattice decoding
by the sliced lattice Gaussian sampling algorithm, comprehen-
sive analysis is carried out while a better choice of the standard
deviation σ > 0 is derived for certain cases. To further
exploit the decoding potential, a judicious judgement based
on the Euclidean distance is proposed for a better choice of
σ. By doing this, the proposed sliced lattice Gaussian sampling
algorithms suits well for the various decoding requirements,
where the decoding trade-off between the performance and
complexity is flexibly adjusted through the number of Markov
moves. Finally, simulation results based on the large-scale
MIMO detection are presented to confirm the performance
gain by the convergence enhancement and the parameter
optimization of the proposed sliced lattice Gaussian sampling
algorithm.
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