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Abstract—In this paper, the paradigm of expectation propaga-
tion (EP) algorithm in large-scale MIMO detection is extended
by the sampling decoding in an Markov chain Monte Carlo way
to boost the approximation of the target posterior distribution.
The proposed EP-based sampling decoding scheme not only theo-
retically addresses the inherent convergence problem of EP, but
also is able to achieve the near-optimal decoding performance
with the increment of Markov moves. Specifically, the EP-based
independent Metropolis-Hastings (MH) is proposed to guarantee
the exponential convergence to the target posterior distribution,
thus bridging the EP detector and the sampling decoding as a whole.
Meanwhile, the output yielded by the EP detector also provides a
good initial setup for the sampling decoding, which results in a
better convergence performance in the approximation. To further
improve the convergence performance and the decoding efficiency,
the EP-based Gibbs sampling is given, where the choice of the stan-
dard deviation of the discrete Gaussian distribution in the Markov
mixing is also studied for a better decoding performance. Moreover,
we extend the proposed EP-based Gibbs sampling decoding to the
soft-output decoding in MIMO bit-interleaved coded modulation
(BICM) systems, which enjoys a flexible decoding trade-off between
performance and complexity by the number of Markov moves.

Index Terms—EP algorithm, sampling decoding, MIMO
detection, soft-output decoding, lattice decoding, near-ML
decoding.
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I. INTRODUCTION

NOWADAYS, massive multiple-input multiple-output
(MIMO) has been widely applied in 5 G to boost the

network capacity on a much greater scale without extra band-
width [1]–[4]. Besides the large-scale number of antennas at
the base station, the total antenna number at the user side also
increases dramatically due to the smaller size of antennas and
rapid growth of user devices, which imposes a pressing challenge
on the uplink signal detection of massive MIMO systems. To this
end, a number of works have been made to achieve a better de-
coding trade-off between performance and complexity [5]–[9].
Nevertheless, the substantial performance gap still does exist
especially when the system size goes up.

In [10], the expectation propagation (EP) technique was
adopted into the large-scale MIMO detection, which fully takes
the advantages of approximate inference over the posterior prob-
ability of the transmitted signal. As a generalization of belief
propagation (BP) to construct tractable approximations [11],
[12], EP shows better efficiency and robustness than BP and
Gaussian tree approximation (GTA) [13], [14], and was further
generalized by the expectation consistency (EC) technique under
a free energy approximation framework [15], [16]. In [17], a
low-complexity EP decoding scheme is given to reduce the
computational burden of the matrix inversion at each iteration.
In [18], EP is considered for MIMO detection under the case
of imperfect channel state information (CSI). Furthermore, EP
was applied to MIMO generalized frequency division multi-
plexing (GFDM) system to achieve the near-optimum detec-
tion [19]. Besides MIMO detection, EP has also been applied
to research fields of low-density parity-check (LDPC) channel
decoding [20], [21], Turbo equalization [22], [23] and so on.
However, the convergence of EP is not guaranteed in theory,
which has always been an inherent problem of EP since it was
introduced. Although in a few special cases like the exponential
family, the resulting KL-divergence is proven to have a stationary
point, the iteration of EP still may not reach it [11], [24]. Even
though it seems that EP works well in the scenario of MIMO
detection, such a risk does always exist. Suffered from it, the
performance gain of EP is always limited no matter how large
size of the iteration number L is.

On the other hand, sampling decoding has emerged as a
promising detection strategy especially for high-dimensional
systems [25]–[29]. Typically, it performs decoding by sampling
from a discrete multi-dimensional Gaussian distribution, where
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the optimal decoding solution with the smallest Euclidean dis-
tance naturally entails the largest probability to be sampled.
Most importantly, during such a problem transformation, sam-
pling decoding introduces a new parameter into the decoding
framework, i.e., the standard deviation σ > 0. Because of the
unimodal distribution, it is encouraged to set a small σ for a
large target sampling probability, thus resulting in an efficient
decoding by sampling [30]. Therefore, the problem of sampling
decoding chiefly lies on how to successfully sample from the
target discrete Gaussian distribution, which is a rather difficult
problem in sharp contrast to the case of continuous Gaussian
density. Fortunately, the classic Markov chain Monte Carlo
(MCMC) method has been demonstrated to approach it with
accessible convergence rate [31]–[33]. Nevertheless, sampling
decoding still severely suffers from the initial setup as it plays an
important role upon the convergence of the approximation [34]–
[36]. In this regard, EP detector serves as a good complement to
sampling decoding by offering a well chosen starting setup. Most
importantly, the posterior distribution sought by EP decoding is
essentially the same with the discrete Gaussian distribution in
sampling decoding, making it possible to unify them together as
a whole.

In this paper, to improve the decoding performance of EP
in large-scale MIMO detection, we propose to incorporate the
sampling decoding into the EP detector, which leads to the
proposed EP-based sampling decoding schemes. From it, several
promising merits can be achieved. Firstly, different from the EP
decoding, the convergence of the proposed EP-based sampling
decoding is guaranteed in theory, which exponentially converges
to the target posterior distribution in an Markov chain Monte
Carlo (MCMC) way. Meanwhile, the usage of EP detector is also
helpful to the following sampling decoding as it provides a better
starting setup for the Markov mixing so that extra potential can
be further exploited in both convergence and performance. Sec-
ondly, based on the convergence, an extra decoding performance
gain can be obtained by simply increasing the number of Markov
moves T in the sampling decoding. This essentially overcomes
the problem of EP decoding in the sense that a near-optimal
decoding performance become possible. Thirdly, the proposed
EP-based sampling decoding enjoys a flexible decoding trade-
off between performance and complexity, as the complexity of
Gibbs sampling decoding O(T · n2) can be freely adjusted by
the Markov moves. Therefore, our work unifies EP detector and
sampling decoding, and they are actually well complementary of
each other for a better decoding trade-off. Moreover, to achieve a
near-capacity performance over MIMO channels, the proposed
EP-based sampling decoding is further applied to MIMO bit-
interleaved coded modulation (BICM) systems for the iterative
detection and decoding (IDD) [37]–[40].

The rest of this paper is organized as follows. Section II in-
troduces the background of MIMO detection as well as the soft-
output decoding in MIMO-BICM systems, and briefly reviews
the basics of EP detector. In Section III, the proposed EP-based
independent Metropolis-Hastings (MH) sampling decoding is
presented, followed by the demonstration of the convergence
as well as the related convergence analysis. In order to further
exploit the decoding potential, the EP-based Gibbs sampling

decoding is proposed in Section IV. Meanwhile, the reasonable
choice of the standard deviation σ in the Markov mixing is
also studied. Section V introduces the EP-based Gibbs sampling
algorithm to the soft-output decoding in MIMO-BICM systems
and in Section VI simulation results based on the massive MIMO
detection are presented to illustrate the performance gain and the
flexible decoding trade-off. Finally, Section VII concludes the
paper.

Notation: Matrices and column vectors are denoted by up-
per and lowercase boldface letters, and the transpose, inverse,
pseudoinverse of a matrix H by HT ,H−1, and H†, respec-
tively. We use hi for the ith column of the matrix H, ĥi for
the i-th Gram-Schmidt vector of the matrix H, and hi,j for
the entry in the ith row and jth column of the matrix H.
The multivariate normal distribution of a random vector y is
represented by N (y : μ,Σ), where μ denotes the mean vector
and Σ represents the variance matrix. In addition, in this paper,
the computational complexity is measured by the number of
arithmetic operations (additions, multiplications, comparisons,
etc.). �(·) indicate the real components while �(·) standards
for the imaginary components. The operator ‖ · ‖TV represents
the total variation distance in the measurement between two
probability distributions.

II. PRELIMINARIES

In this section, we introduce the background and mathematical
tools needed to describe and analyze the following EP-based
sampling decoding algorithms.

A. MIMO Detection

Consider the hard detection of an nt × nr (nr ≥ nt) MIMO
system. Let s̃ ∈ C

n denote the transmitted signal, then the
corresponding received signal ỹ is given by

ỹ = H̃s̃+ w̃. (1)

Specifically, the i-th entry of the transmitted signal s̃, denoted
as s̃i, is a modulation symbol taken independently from an
M -QAM constellation with Gray mapping and w̃ denotes the
noise vector with zero mean and variance σ̃2

w. Meanwhile, it is
assumed a flat fading environment, where the channel matrix
H̃ ∈ C

nt×nr contains uncorrelated complex Gaussian fading
gains with unit variance and remains constant over each frame
duration.

In general, the complex model shown in (1) can be simplified
as [�(ỹ)

�(ỹ)
]
=

[
�(H̃) −�(H̃)

�(H̃) �(H̃)

] [�(s̃)
�(s̃)

]
+

[�(w̃)
�(w̃)

]
, (2)

which gives an equivalent 2nt × 2nr real-valued MIMO system.
Therefore, for the sake of notational simplicity, we consider the
n× n real-valued MIMO system model

y = Hs+w (3)
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Fig. 1. Illustration of the BICM transmitter and IDD receiver in an MIMO system. The subscript “1” denotes processing blocks that are connected with the inner
detection operation while subscript “2” indicates processing blocks connected to the outer decoding operations.

with Gaussian channel matrix H ∈ Rn×n, transmitted signal
x ∈ Xn ⊆ Z

n and noise variance σ2
w = σ̃2

w/2, where the de-
tection extension of cases n×m with n > m is straightfor-
ward [41]. Typically, given the system model in (3), the opti-
mal maximum likelihood (ML) decoding in MIMO detection
computes

ŝml = arg min
s∈Xn

‖Hs− y‖2, (4)

which essentially amounts to solving the closest vector problem
(CVP) in lattice decoding [42]. More precisely, the problem
of MIMO detection can be viewed as a special case of lattice
decoding with finite state space s and Gaussian distributed H
[43].

B. Soft-Output Decoding

In order to achieve the near-capacity performance over MIMO
channels, bit-interleaved coded modulation (BICM) and itera-
tive detection and decoding (IDD) were introduced, where the
extrinsic information calculated by a priori probability (APP)
detector is taken into account to produce the soft decisions [37].
Typically, as shown in Fig. 1, the extrinsic information LE1 is
calculated by the MIMO detector based on the received y and
a priori information (API) LA1 of the transmitted bits which is
provided by the SISO decoder. Then LE1 is passed through the
deinterleaver to become API LA2 to the SISO decoder, which
computes the new extrinsic information LE2 to feed back to
the MIMO detector. Clearly, one complete cycle of information
exchange between the sections labeled “1” and “2” forms an
iteration.

In particular, the extrinsic information in soft-output decoding
is always calculated through the posterior log-likelihood ratio
(LLR) for each information bit associated with the transmitted
signal s, i.e.,

L(bi|y) = log
P (bi = 1|y)
P (bi = 0|y) (5)

where bi is the i-th information bit in s, 1 ≤ i ≤ nu. Here, u
represents the number of bits per real constellation symbol and
s contains nu information bits in all. Through the exchange
of extrinsic information in each iteration, the performance of
soft-output decoding improves gradually and the posterior LLR

follows

L(bi|y) = LA(bi) + log

∑
s:bi=1 P (y|s) ·exp

∑
j∈Ji

LA(bj)∑
s:bi=0 P (y|s) ·exp

∑
j∈Ji

LA(bj)
(6)

where LA(bi) denotes the API of each transmitted bit in s

LA(bi) = log
P (bi = 1)

P (bi = 0)
(7)

and Ji is the set of indices j with

Ji = {j|j = 1, . . . , nu, j 	= i}. (8)

In the absence of API, it is assumed that all the bits in s have
the same probability to be 0 or 1 before y is observed. Then, the
L-value in (5) becomes [37], [44]

L(bi|y) = log

∑
s:bi=1 exp (− 1

2σ2
w
‖Hs− y‖2)∑

s:bi=0 exp (− 1
2σ2

w
‖Hs− y‖2) . (9)

In principle, the straightforward way to calculate the L-value in
(9) is MAP algorithm which computes the sums that contain 2nu

terms. Unfortunately, the exponentially increased complexity
of MAP renders it inapplicable in practice. For this reason, a
number of works were dedicated to calculate the L-value in an
approximation way [45]–[47].

C. Expectation Propagation Detector

In [10], the expectation propagation (EP) technique from
the field of approximate inference was introduced to MIMO
detection. Specifically, according to the system model in (3),
the posterior probability of the transmitted signal s given the
received signal y satisfies

p(s|y) = p(y|s)p(s)
p(y)

∝ N (y : Hs, σ2
wI) ·

n∏
i=1

Isi∈X (10)

by Bayesian theorem. Here si is the component of s, Isi∈X
is the indicator function that takes value 1 if si ∈ X and 0
otherwise. However, it is intractable to directly perform in-
ference over the posterior distribution p(s|y) in (10). To this
end, the expectation propagation was adopted to approximate
the intractable posterior distribution p(s|y) with a tractable
distribution q(s|y), which minimizes the Kullback-Leibler (KL)
divergence between them. In fact, this is essentially equivalent
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to the moment matching conditions by matching the first and
second moments of p(s|y) and q(s|y) with each other [10].

In particular, to construct a tractable approximation of p(s|y),
q(s|y) is initially set as

q(s|y) = N (y : Hs, σ2
wI) · e−

1
2 s

TΛs+γT s (11)

where γ = [γ1, γ2, . . . , γn]
T , and Λ = diag[Λ1, . . . ,Λn] is a

diagonal matrix. In this condition, the mean vector μ and the
covariance matrix Σ of q(s|y) follow

μ = Σ(σ−2
w HTy + γ)

Σ = (σ−2
w HTH+ Λ)−1 (12)

respectively. Then, with the initial setting of γ0
i = 0 and Λ0

i =
E−1

s (Es standards for the mean symbol energy) for 1 ≤ i ≤ n,
the sequential EP detector in [10] alternatively approaches the
moment matching between the marginalsp(si|y) and q(si|y) for
each i, so that each pair of (γl

i,Λ
l
i) are updated independently

along the iteration index l ≥ 0. To summarize, given the iteration
pair (γl

i,Λ
l
i), the (l + 1)-th iteration of the EP detector works in

the following steps:
1) Update the mean μl

i and the variance σ2(l)
i of the marginal

PDF of ql(si|y), where μi is the i-th element of μl and the
variance σ

2(l)
i equals to the i-th diagonal element of Σl.

2) Compute the mean tli and the variance h
2(l)
i of the cavity

marginal ql\i(si|y) as

ql\i(si|y) =
ql(si|y)

e−
1
2Λis2i+γisi

, (13)

where

tli = h
2(l)
i

(
μl
i

σ
2(l)
i

− γl
i

)

h
2(l)
i =

σ
2(l)
i

(1− σ
2(l)
i Λl

i)
. (14)

3) Compute the mean μl
pi

and the variance σ
2(l)
pi of the

distribution

p̂l(si|y) ∝ ql\i(si|y) · Isi∈X . (15)

4) Update the pair (γl+1
i ,Λl+1

i ) so that the mean and the
variance of the following distribution

ql\i(si|y) · eγ
l+1
i si− 1

2Λ
l+1
i s2i (16)

match μl
pi

and σ
2(l)
pi respectively by setting

Λl+1
i =

1

σ
2(l)
pi

− 1

h
2(l)
i

γl+1
i =

μl
pi

σ
2(l)
pi

− tli

h
2(l)
i

. (17)

Clearly, givenΛl andγl, the mean vectorμl and the covariance
matrixΣl in (12) can be computed, which allows parallel updates
of all pairs (γl+1

i ,Λl+1
i ). Finally, after a number of iterations

(i.e., l = L), the components of decoding solution ŝ in EP is
determined by the following hard decision

ŝi = arg min
si∈X

|si − μL
i |2. (18)

Undoubtedly, with the initial setting γ0
i and Λ0

i for 1 ≤ i ≤ n,
the EP detector yields the decoding result in an MMSE sense.

III. EP-BASED SAMPLING DECODING ALGORITHM

In this section, the concept of sampling decoding is introduced
into the EP detector. Instead of outputting the decoding solution
by hard decision, random sampling is applied to output the
final solution. Besides the decoding gain, such an enhancement
version of the EP detector is also convergence guaranteed in an
MCMC way. Moreover, we not only show it converges exponen-
tially but also try to specify the lower bound of the convergence
rate for the tractable decoding. Most importantly, due to the
convergence nature, the performance of the proposed EP-based
sampling decoding can be improved by simply increasing the
number of Markov moves.

Besides the posterior probability shown in (10), given the
received signal y, it is also eligible to establish the probability
distribution with respect to the transmitted signal s as

p(s|y) = e
− 1

2σ2
w
‖Hs−y‖2∑

s∈Xn e
− 1

2σ2
w
‖Hs−y‖2 . (19)

Clearly, it is straightforward to see that both the posterior distri-
butions p(s|y) and p(s|y) are essentially the same in the sense
of decoding s, i.e.,

ŝml = arg min
s∈Xn

‖Hs− y‖2 = arg max
s∈Xn

p(s|y)

= arg max
s∈Xn

p(s|y), (20)

where the optimal decoding solution naturally entails the largest
sampling probability. Intuitively, if sampling from the posterior
distribution p(s|y) can be successfully performed, the optimal
decoding solution ŝml will most likely to be encountered by
multiple samplings. Therefore, after the approximation of the
posterior probability p(s|y) in (10) by using q(s|y) with L
iterations, sampling decoding can be applied to continue the
approximation based on the mean vector μL and the covari-
ance matrix ΣL outputted by EP. As for the way to guarantee
the convergence to the target distribution p(s|y), we resort to
the classic MCMC methods.

A. EP-Based Independent Metropolis-Hastings
Sampling Decoding

We now introduce the proposed EP-based independent
Metropolis-Hastings sampling decoding. Specifically, given the
mean μL

i and the variance σ
2(L)
i issued by EP, rather than

outputting the decoding solution by direct rounding in (18), we
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pick up the choice of si randomly as follows

ŝi ∼ p(si) =
e
− 1

2σ
2(L)
i

|si−μL
i |2

∑
si∈X e

− 1

2σ
2(L)
i

|si−μL
i |2 . (21)

Furthermore, by counting the n-times 1-dimensional sampling
from s1 to sn as one iteration, the sampling probability p(ŝ) can
be expressed as

p(ŝ) =

n∏
i=1

p(ŝi) =
e−

1
2 ‖D(s−μL)‖2∑

s∈Xn e−
1
2 ‖D(s−μL)‖2 (22)

with D = diag(ΣL) · I. Clearly, with the initial setting of EP,
i.e., Λ0

i = E−1
s and γ0

i = 0 for 1 ≤ i ≤ n, the decoding solu-
tion given in (22) corresponds to the randomized variant of
MMSE decoding algorithm [48]. As the iteration of EP proceeds,
better choices of μ and Σ would be refined gradually, which
offers a perspective initial setup for the random sampling in the
following.

Given the sampling probability in (22), the following question
is how to guarantee its approximation to p(s|y). In fact, it has
been demonstrated in [48] that p(ŝ) with Λ0

i = E−1
s and γ0

i = 0
approximates p(s|y) within a negligible statistical distance if
σ is sufficiently large. However, such a requirement is too
stringent, rendering the direct approximation by p(ŝ) inappli-
cable in most cases of interest. In this condition, we attempt
to perform the approximation by establishing a valid Markov
chain converging to p(s|y). Once the underlying Markov chain
arrives at the stationary distribution, then the exact sampling
from p(s|y) can be carried out. In fact, when the convergence
rate of the Markov chain is known, the approximation becomes
tractable, since the total variation distance between the built
distribution and the target distribution can be easily estimated.

Therefore, in order to built the Markov chain for the target
distribution p(s|y), the sampling scheme of the Metropolis-
Hastings (MH) algorithm is adopted, where the sampling proba-
bility p(ŝ) in (22) is applied as the proposal distribution1 q(·, ·).
To summarize, given the mean vector μL and the covariance
matrix ΣL outputted by EP after L iterations, the approximation
of p(s|y) induced by the designed Markov chain operates in the
following steps:

1) Sample from the independent proposal distribution to ob-
tain the candidate state g ∈ Xn for the Markov move St+1,

q(s,g) = p(g)

=
e−

1
2 ‖D(g−μL)‖2∑

g∈Xn e−
1
2 ‖D(g−μL)‖2 , (23)

where the sampling of g is independent of s.
2) Calculate the acceptance ratio α(s,g)

α(s,g) = min

{
1,

π(g)q(g, s)

p(s|y)q(s,g)
}

=min

{
1,

π(g)p(s)

p(s|y)p(g)
}

1Theoretically, the proposal distribution q(·, ·) in the MH algorithm can be
any fixed distribution from which we can conveniently draw samples.

Algorithm 1: EP-Based Independent MH Sampling
Decoding.

Require: H, σw,y, L, T ;
Ensure: ŝoutput;

1: use EP detector to get μL and ΣL after L iterations
2: let ŝ in (18) denote the initial state of S0 and ŝoutput = ŝ
3: for t = 1, . . . , T do
4: sample g from the proposal distribution q(s,g) in

(23)
5: calculate the acceptance ratio α(s,g) in (24)
6: generate a sample u from the uniform density U [0, 1]
7: if u ≤ α(s,g) then
8: let St = g
9: else

10: St = s
11: end if
12: if ‖Hg − y‖ < ‖Hsoutput − y‖ then
13: update ŝoutput = g
14: end if
15: end for

= min

⎧⎨⎩1, e
− 1

2σ2
w
‖Hg−y‖2 · e− 1

2 ‖D(s−μL)‖2

e
− 1

2σ2
w
‖Hs−y‖2 · e− 1

2 ‖D(g−μL)‖2

⎫⎬⎭ (24)

with

π(s) = p(s|y) = e
− 1

22w
‖Hs−y‖2∑

x∈Xn e
− 1

2σ2
w
‖Hs−y‖2 . (25)

3) Make a decision forSt+1 based onα(s,g) to acceptSt+1 =
g or not (i.e., St+1 = s).

In this way, a Markov chain {S0,S1, . . .} is established with
the transition probability P (s,g) as follows:

P (s,g) = q(s,g) · α(s,g) = min

{
p(g),

π(g)p(s)

p(s|y)
}
. (26)

Note that the generation of the state candidate g is independent
of the previous one s. This is referred to as the independent
Metropolis-Hastings algorithm [49], where the connection be-
tween two consecutive Markov states only lies in the decision
part. Note that the acceptance ratio α(s,g) > 0 can be further
written as

e−
1
2 [‖H(g−μZF)‖2−‖H(s−μZF)‖2]−1

2 [‖D(s−μL)‖2−‖D(g−μL)‖2], (27)

where H = H/σw, and μZF = H†y denotes the mean vector
yielded by zero-forcing (ZF) detector. Accordingly, μL can be
viewed as the mean vector outputted by an enhanced MMSE
detector. Therefore, once g is a better choice than s in the sense
of Euclidean distance, its acceptance ratio will be improved re-
markably due to the first term ‖H(g−μZF)‖2−‖H(s−μZF)‖2
in (27). To summarize, the operation of the proposed EP-based
independent MH sampling decoding is presented in detail in
Algorithm 1.
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B. Convergence Analysis

In principle, it is easy to verify that the proposed Markov
chain with transition probability given in (26) is irreducible by
satisfying

P (St+k = g|St = s) > 0 (28)

with Markov move index t ≥ 0 and positive integer k > 0,
aperiodic by fulfilling

gcd{k : P (St+k = g|St = s) > 0} = 1 (29)

where “gcd” represents the greatest common divisor, and re-
versible due to

p(s|y)P (St+1 = g|St = s) = π(g)P (St+1 = s|St = g).
(30)

Therefore, according to the convergence theorem of MCMC,
we arrive at the following Theorem to show its geometric
ergodicity,2 where the detailed proof can be found in [34, The-
orem 4.9].

Theorem 1: Given the target discrete Gaussian distribution
π(s) = p(s|y), the Markov chain induced by the proposed EP-
based independent MH sampling decoding satisfies

‖P t(s, ·)− π‖TV ≤ M(1− δ)t (31)

where 0 < δ < 1 and M > 0 for all states s ∈ Xn.
Clearly, the convergence of the proposed EP-based sampling

decoding to the target distribution p(s|y) is guaranteed theoret-
ically, which implies the optimal decoding solution ŝml would
be returned along with the Markov mixing. This is different
from EP as its convergence for MIMO detection is not guaran-
teed [10], [11]. Most importantly, the distribution induced by the
underlying Markov chain converges exponentially fast while the
exponential decay coefficient 0 < δ < 1 is the key to determine
the upper bound of the convergence rate (1− δ). Therefore, in
what follows, we try to specify the exponential decay coefficient
δ, so that the mixing time required by the Markov chain to
converge becomes accessible.

Lemma 1: The exponential decay coefficient 0 < δ < 1 in the
proposed EP-based independent MH sampling decoding follows

δ � min
g∈Xn

{e− 1
2 ‖D(g−μL)‖2+ 1

2 ‖H(g−μZF)‖2} · β (32)

with a constant

β =

∑
g∈Xn e−

1
2 ‖H(g−μZF)‖2∑

g∈Xn e−
1
2 ‖D(g−μL)‖2 . (33)

Proof: To begin with, it has been demonstrated that for the
independent MH algorithm, δ actually denotes the lower bound
of the ratio q(·)/π(·) [31]. Therefore, according to (22) and (25),
we have

q(g)

π(g)
=

e−
1
2 ‖D(g−μL)‖2∑

g∈Xn e−
1
2 ‖D(g−μL)‖2 ·

∑
g∈Xn e−

1
2 ‖Hg−y‖2

e−
1
2 ‖Hg−y‖2

2Since the state space of the Markov chain is finite, geometric ergodicity and
uniform ergodicity essentially are the same [50].

≥ min
g∈Xn

{e− 1
2 ‖D(g−μL)‖2+ 1

2 ‖H(g−μZF)‖2} · β

= δ, (34)

completing the proof. �
Therefore, givenD,H, y and μL, δ can be exactly calculated,

thus offering an upper bound for the convergence rate of the
Markov chain. Another point worth being mentioned is that δ
also depends on the size of state space Xn, where a larger state
space size naturally corresponds to a smaller δ. This is because
δ itself only serves as a lower bound for all the possible Markov
moves, and the true value in practice could be much larger than
it. Consequently, based on δ, the upper bound of the mixing time
can be further calculated as [31]

tmix(ε) ≤ (−lnε) ·
(
1

δ

)
, ε < 1, (35)

which leads to a tractable Markov mixing. Clearly, the mixing
time is proportional to 1/δ, and becomes O(1) as δ → 1. Hence,
after a certain burn-in time, the sampling based on the approx-
imation of p(s|y) can be carried out, where the sample with
the closest Euclidean distance among all the candidates after T
times Markov moves is selected as the final decoding solution.

IV. ENHANCEMENT AND OPTIMIZATION

The flexible choice of the proposal distribution q(·, ·) in MH
is beneficial for the establishment of the valid Markov chain.
However, its convergence turns out to be slow if the choice
of q is not well suited. This is mainly due to the acceptance
mechanism in MH as the sampling candidate from the proposal
distribution could be rejected in a large probability. To this end, in
this section, the EP-based Gibbs sampling is proposed to further
exploit the decoding potential. Moreover, under the framework
of sampling decoding, the standard deviation σ is optimized for
a better decoding performance.

A. EP-Based Gibbs Sampling Decoding

As a special case of MH sampling, Gibbs sampling employs
univariate conditional sampling to build the Markov chain [51].
Compared to the MH sampling, the Gibbs sampling from
MCMC is able to further improve the decoding efficiency and
performance in two perspectives. On one hand, the usage of
the proposal distribution in the traditional MH sampling is
removed, whose setting is flexible but appears difficult to find
the optimal one. As the ideal proposal distribution for MH is
unknown, the solution offered by Gibbs sampling to perform the
1-dimensional conditional sampling over the target distribution
turns out to be more promising for a better convergence perfor-
mance. On the other hand, Gibbs sampling is easy to implement,
where the decision by acceptance ratio in the traditional MH
sampling can be avoided (because of the acceptance ratio α in
Gibbs sampling is always 1 [34]). This is rather beneficial for
the sampling efficiency in most cases of interest.

In particular, in the proposed EP-based Gibbs sampling de-
coding algorithm, each coordinate of s is sampled from the
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following 1-dimensional conditional distribution

pgibbs(si|s[−i],y) =
e
− 1

2σ2
w
‖Hs−y‖2∑

si∈X e
− 1

2σ2
w
‖Hs−y‖2 (36)

with s[−i] � [s1, . . . , si−1, si+1, . . . , sn]
T . During this univari-

ate sampling over si, the other n− 1 variables contained in s[−i]

are keeping fixed but are counted into the sampling as well. By
repeating such a procedure with a certain order [51], a valid
Markov chain {S0,S1, . . .} is established. More specifically,
it is also straightforward to verify that the underlying Markov
chain is irreducible and aperiodic so as to the following Theorem,
whose proof is omitted due to its simplicity as well.

Theorem 2: Given the target discrete Gaussian distribution
π(s) = p(s|y), the Markov chain induced by the proposed EP-
based Gibbs sampling algorithm satisfies

‖P t(s, ·)− π‖TV ≤ M(1− δ)t (37)

where 0 < δ < 1 and M > 0 for all states s ∈ Xn.
Clearly, the complexity of Gibbs sampling at each Markov

move is easily accepted with O(n2). Due to this attraction, the
complexity of each Markov move is often insignificant, whereas
the number of Markov moves turns out to be more critical.
Compared to the EP-based independent MH sampling decoding,
the univariate sampling in EP-based Gibbs sampling decoding
fully makes use of the correlation among the components of
s, which naturally leads to a better Markov mixing. Besides,
different from the former who performs the sampling based on
the mean vector μL and the variance diag(ΣL) yielded by EP,
the proposed EP-based Gibbs sampling decoding only takes the
decoding solution of EP detector (i.e., ŝ in (18)) as the initial
starting point s0.

In essence, the initial starting point s0 plays an important
role in the Markov mixing. More precisely, for the small set
{s : V (s) = p(s|y)−c ≤ d, c > 0} and d > 2b/(1− λ), the un-
derlying Markov chain will converge exponentially as [52]

‖P t(s0, ·)− π‖TV ≤ (1− δ′)rt

+

(
Ur

α1−r

)t(
1 +

b

1− λ
+ V (s0)

)
,

(38)

where 0 < r < 1, 0 < λ < 1, U = 1 + 2(d+ b) and α =
1+d

1+2b+λd
. From (38), starting the Markov chain with s0 as

close to the center of the discrete Gaussian distribution (i.e., the
optimal decoding solution ŝml) as possible would be a judicious
choice for the efficient convergence, which is accordance with
our suggestion of using the decoding solution of EP detector.
Since only the output of EP is utilized in the following Gibbs
sampling, the proposed sampling decoding is well compatible
to the most of EP detectors.

Compared to the EP-based independent MH sampling decod-
ing, the convergence rate analysis of the proposed EP-based
Gibbs sampling decoding is hard to carry out. Nevertheless,
thanks to the univariate sampling over the target posterior dis-
tribution, the Markov chain built by Gibbs sampling still turns

out to be a more attractive solution due to the better convergence
and efficiency.

B. Choice of σ

Generally, the standard deviation σ > 0 in the discrete Gaus-
sian distribution p(s|y) is set as σw by default due to the effect of
noises [26], [27], [35], [53]. However, it is interesting to see that
the setting of σ actually could be flexible as p(s|y) is a unimodal
distribution, which means the optimal decoding solution always
entails the largest sampling probability no matter what σ > 0 is,
namely,

ŝml = arg max
s∈Xn

e
− 1

2σ2
w
‖Hs−y‖2∑

s∈Xn e
− 1

2σ2
w
‖Hs−y‖2

= arg max
s∈Xn

e−
1

2σ2 ‖Hs−y‖2∑
s∈Xn e−

1
2σ2 ‖Hs−y‖2 . (39)

In other words, this means an extra decoding degree of freedom
can be obtained by adjusting σ for a better decoding perfor-
mance. Intuitively, from (39), a small size σ is preferred as it
corresponds to a large sampling probability of ŝml. However,
this also intensively increases the Markov mixing time since the
chain becomes less dynamic [34]. On the contrary, it has been
demonstrated in [54] that when σ is sufficiently large there is
no need of MCMC for approximation as the sampling can be
successfully carried out directly. Unfortunately, in this condi-
tion, the sampling probability of ŝml would be extremely small
due to the near-uniform distribution. In a word, there is a latent
trade-off regarding to the choice of σ, which should be carefully
investigated. Here, to balance this inherent trade-off for a better
decoding performance, a reasonable compromise is to ensure a
reliable sampling probability p(ŝml|y) given moderate σ. To this
end, in the sequel we give guidelines on how to specify σ.

Typically, with respect to any s ∈ Xn to be sampled, we firstly
extract σ from the denominator of p(s|y) by

p(s|y) = e−
1

2σ2 ‖Hs−y‖2∑
s∈Xn e−

1
2σ2 ‖Hs−y‖2

>
e−

1
2σ2 ‖Hs−y‖2∑

s∈Zn e−
1

2σ2 ‖Hs−y‖2

(a)

≥ e−
1

2σ2 ‖Hs−y‖2∑
s∈Zn e−

1
2σ2 ‖Hs‖2

>
e−

1
2σ2 ‖Hs−y‖2∫

s∈Rn e−
1

2σ2 ‖Hs‖2ds

(b)
=

e−
1

2σ2 ‖Hs−y‖2∫
s∈Rn ρ√

2πσ2H−1(H−1)T
(s)ds

(c)
=

e−
1

2σ2 ‖Hs−y‖2

(
√
2πσ)n

√
det(H−1(H−1)T )

= f(σ) · η (40)
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where

η � 1/
√

(2π)n det(H−1(H−1)T ) (41)

is a positive constant and

f(σ) � e−
1

2σ2 ‖Hs−y‖2

σn
(42)

is parameterized by σ. Here, (a), (b) and (c) respectively obey
the facts from lattice theory ([55, Lemma 2.5]) that∑

x∈Zn

e−
1

2σ2 ‖Bx−c‖2 ≤
∑
x∈Zn

e−
1

2σ2 ‖Bx‖2 (43)

for lattice L = Bx, B ∈ Rn×n, x ∈ Z
n, and ρB−1(x) =

e−π‖Bx‖2 for
∫

Rn ρ√Σ(x)dx =
√
detΣ with Σ = BBT .

From (40), it is natural to see that the sampling probability for
any specific s ∈ Xn is actually lower bounded by the function
f(σ). Furthermore, let the derivative of function f(σ) with
respect to σ be zero, we have

σ =
‖Hs− y‖√

n
, (44)

which means the sampling probability lower bound of any
specific s ∈ Xn can be optimized through it. Therefore, to obtain
the target decoding solution ŝml, the corresponding choice of σml

should vary with ‖Hŝml − y‖, i.e.,

σml =
‖Hŝml − y‖√

n
. (45)

Generally speaking, given different configurations of H and
w, such a flexible setting of σml is more beneficial to sampling
decoding by providing a specific rather than statistical choice3

σw [27]. For a small value of ‖Hŝml − y‖, σml tends to get
smaller since y appears close to Hŝml and vice versa, thus adap-
tively guiding the choice of σ for each specific ŝml. However,
in practice, it is impossible to get ŝml for choosing σml in (45),
which imposes a significant request on s0 as an approximation

σapproximate =
‖Hs0 − y‖√

n
. (46)

Intuitively, the closer of s0 to ŝml, the more accurate of the
selected σ, which is also in line with the requirement of Markov
mixing. Therefore, the initial Markov state s0 outputted by the
EP detector can be applied as a high-quality approximation.
Moreover, it is also feasible to follow a dynamic strategy for
updating σ, namely, update σ when a smaller size ‖Hsj − y‖
is obtained:

σdynamic �
mint≥j≥0 ‖Hsj − y‖√

n
. (47)

Hence, it is clear to see that the Euclidean distance
mint≥j≥0 ‖Hsj − y‖ shrinks monotonically along with the
Markov moves, which leads to a more accurate approximation of
the optimal σ. Note that updating σ dynamically is compatible
with the mechanism of MCMC, which is known as adaptive

3The common choice σw also severely suffers from the stalling problem as
shrinks intensively with the increase of SNR.

Algorithm 2: EP-Based Gibbs Sampling Decoding.
Input: H, σdynamic,y, L, T ;
Output: ŝoutput;
1: use EP detector to get ŝ in (18) and let ŝoutput = ŝ

2: let ŝ denote the initial state of S0 and let σ = ‖Hŝ−y‖√
n

3: for t =1, ..., T do
4: for i =n, ..., 1 do
5: sample sti from pgibbs(si|s[−i],y) shown in (36)
6: end for
7: if ‖Hst − y‖ < ‖Hsoutput − y‖ then

8: update ŝoutput = st and σ =
‖Hŝoutput−y‖√

n

9: end if
10: end for

MCMC [56]. Meanwhile, this is also accordance with simulated
annealing (SA) by gradually cooling down the temperature of
the Markov chain, which is widely accepted in various research
fields [57].

Here, because the state space of X is formed by the finite and
discontinuous integers rather than the integer spaceZ, necessary
adjustment has to be made in practice to ensure the sampling
performance. Typically, because the bias brought by the usage of
sj , the sampling has the risk to be uniform especially for the lim-
ited state space X . Therefore, to avoid the related performance
degradation, an upper bound is helpful to the choice ofσdynamic in
practice. To summarize, the operation of the proposed EP-based
Gibbs sampling decoding with dynamic choice ofσ is illustrated
in Algorithm 2. Additionally, we point that the application of
Gibbs sampling also introduces some extra degrees of freedom
in exploited the decoding potential (i.e., the scan order of the
Gibbs sampling, parallel sampling and so on), which will be the
future work in our research.

V. EXTENSION TO SOFT-OUTPUT DECODING IN

MIMO-BICM SYSTEMS

As shown in (9), different from MIMO detection, the optimal
MAP decoding in soft-output detection takes all the possible
candidates s ∈ Xn in the state space into account for the LLR
calculation, which is inapplicable in practice. Therefore, for
the sake of complexity consideration, in this section we intro-
duce the proposed EP-based Gibbs sampling decoding to the
MIMO-BICM systems for the iterative detection and decoding.
Typically, we show that by collecting the samples from the
discrete Gaussian distribution

p(s|y) = e−
1

2σ2 ‖Hs−y‖2∑
s∈Xn e−

1
2σ2 ‖Hs−y‖2 (48)

with σ = ‖Hŝml − y‖/√n, the proposed EP-based Gibbs sam-
pling decoding achieves a flexible trade-off between perfor-
mance and complexity, and near-MAP decoding performance
can be achieved based on a restricted decoding set

C = {s ∈ Xn : ‖Hs− y‖ ≤
√
2π‖Hŝml − y‖}. (49)
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We point out that the decoding output of EP detector s0 is still
applied here to serve as the initial choice of σ by approximating
d(Λ,y). Similarly, σ can also be updated in a dynamic way like
(47). Note that decoding based on the derived decoding set C is
in the same spirit as the list sphere decoding proposed in [37],
but here we give an explicit size of the sphere radius to achieve
the near-MAP performance.

To concisely state the analysis, we extend the discrete Gaus-
sian distribution in (48) into a more general expression as

DH,σ,y(s) =
e−

1
2σ2 ‖Hs−y‖2∑

s∈Zn e−
1

2σ2 ‖Hs−y‖2 , (50)

which is known as lattice Gaussian distribution in literature due
to s ∈ Z

n [54], [58]. Therefore, we will take Z
n as the state

space of s in the following while each specific Hs in referred
to as lattice point belonging to the lattice Λ = Hs ⊆ Rn. On
the other hand, because ‖Hŝml − y‖ indicates the Euclidean
distance between the query point y and lattice Λ, we use

d(Λ,y) � ‖Hŝml − y‖ (51)

to represent it for short.

A. Sphere Radius for Near-MAP Decoding Performance

First of all, according to (43), the summation term∑
s∈Zn e

− 1

2σ2
w
‖Hs−y‖2

in (9) for the calculation of LLR is upper
bounded by∑

s∈Zn

e
− 1

2σ2
w
‖Hs−y‖2 ≤

∑
s∈Zn

e
− 1

2σ2
w
‖Hs‖2

. (52)

Next, because of the following inequality [59]∑
x∈Zn

e−πt‖Bx‖2 ≤ t−
n
2

∑
x∈Zn

e−π‖Bx‖2 (53)

for 0 < t < 1, it follows that∑
s∈Zn

e
− 1

2σ2
w
‖Hs−y‖2 ≤ (2πσ2

w)
n/2 ·

∑
s∈Zn

e−π‖Hs‖2 , (54)

for σw ≥ 1/
√
2π.4 Meanwhile, due to the following relation-

ship [60]∑
x∈Zn

e−
1

2σ2 ‖Bx−c‖2 ≥ e−
d2(L,c)

2σ2 ·
∑
x∈Zn

e−
1

2σ2 ‖Bx‖2 , (55)

we have∑
s∈Zn

e
− 1

2σ2
w
‖Hs−y‖2≤(2πσ2

w)
n
2 · eπd2(Λ,y) ·

∑
s∈Zn

e−π‖Hs−y‖2 (56)

for σw ≥ 1/
√
2π.

On the other hand, according to (55), it is easy to verify that∑
s∈Zn

e
− 1

2σ2
w
‖Hs−y‖2 ≥ e

− d2(Λ,y)

2σ2
w ·

∑
s∈Zn

e
− 1

2σ2
w
‖Hs‖2

4This requirement of σw is easy to fulfill in practice for the soft-output
decoding of MIMO systems especially for high-dimensional systems.

= e
− d2(Λ,y)

2σ2
w ·

∑
s∈Zn

e
− π

2πσ2
w
‖Hs‖2

≥ e
− d2(Λ,y)

2σ2
w ·

∑
s∈Zn

e−π‖Hs‖2

≥ e
− d2(Λ,y)

2σ2
w ·

∑
s∈Zn

e−π‖Hs−y‖2 (57)

for σw ≥ 1/
√
2π. Therefore, by combining (56) and (57),

it is clear to see that for σw ≥ 1/
√
2π, the sums∑

s∈Zn e
− 1

2σ2
w
‖Hs−y‖2

can be characterized by the term∑
s∈Zn e−π‖Hs−y‖2 and a function made up by σw and d(Λ,y):∑

s∈Zn

e
− 1

2σ2
w
‖Hs−y‖2

= g(σw, d(Λ,y)) ·
∑
s∈Zn

e−π‖Hs−y‖2 , (58)

where function g(·) is bounded by

(2πσ2
w)

n/2 · eπd2(Λ,y) ≥ g(σw, d(Λ,y)) ≥ e
− d2(Λ,y)

2σ2
w . (59)

Therefore, in what follows, we will show that the term∑
s∈Zn e−π‖Hs−y‖2 in (58) is mainly determined by the lattice

points within the sphere radius
√
2πd(Λ,y) centered at y.

In particular, with σw ≥ 1/
√
2π, it follows that∑

s∈Zn

e
− 1

2σ2
w
‖Hs−y‖2

=
∑
s∈Zn

e
−π· 1

2πσ2
w
‖Hs−y‖2

=
∑
s∈Zn

e
π(1− 1

2πσ2
w
)‖Hs−y‖2

e−π‖Hs−y‖2

>
∑

s∈Zn,‖Hs−y‖≥√
2πd(Λ,y)

e
π(1− 1

2πσ2
w
)‖Hs−y‖2

e−π‖Hs−y‖2

>e
(1− 1

2πσ2
w
)2π2 d2(Λ,y)·

∑
s∈Zn,‖Hs−y‖≥√

2πd(Λ,y)

e−π‖Hs−y‖2 . (60)

Hence, according to (56) and (60), we have

∑
s∈Zn

e−π‖Hs−y‖2 >
e
(1− 1

2πσ2
w
)2π2 d2(Λ,y)

(2πσ2
w)

n
2 · eπd2(Λ,y)

∑
s∈Zn,‖Hs−y‖≥√

2πd(Λ,y)

e−π‖Hs−y‖2 ,

(61)
so as to ∑
s∈Zn,‖Hs−y‖<√

2πd(Λ,y)

e−π‖Hs−y‖2> [k(σw)− 1] ·
∑

s∈Zn,‖Hs−y‖≥√
2πd(Λ,y)

e−π‖Hs−y‖2 , (62)

where

k(σw) = (2πσ2
w)

−n
2 · e(2π

2− π

σ2
w
−π)d2(Λ,y)

. (63)

Therefore, if the function k(σw) is sufficiently large, the value of∑
s∈Zn e−π‖Hs−y‖2 is dominantly decided by the lattice points

within ‖Hs− y‖ <
√
2πd(Λ,y).

Here, we resort to statistics with respect to d(Λ,y) to illustrate
the relationship behind k(σw). Typically, because w in (5)
entails the additive white Gaussian noise (AWGN) with zero
mean and variance σ2

w, the expectation of ‖Hs− y‖2 satisfies

E[‖Hs− y‖2] = nσ2
w (64)
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by the law of large numbers. Hence, we have

E[k(σw)] =

(
e(2π

2−π)σ2
w−π

√
2πσw

)n

. (65)

Clearly, given σw ≥ 1/
√
2π, the average value of k(σw)

increases exponentially with the system dimension n (e.g., with
σ2
w = 0.3, E[k] = 4.577n), making the lattice points within

sphere radius ‖Hs− y‖ <
√
2πd(Λ,y) dominant in the sums∑

s∈Zn e−π‖Hs−y‖2 . In fact, we have to admit that the bound in
(60) is rather loose while the true value of E[k] could be much
larger than that of (65).

From the relationship shown in (62), the sums in (58) can be
well approximated by∑

s∈Zn

e
− 1

2σ2
w
‖Hs−y‖2≈ g(σw, d(Λ,y)) ·

∑
s∈Zn,‖Hs−y‖<√

2πd(Λ,y)

e−π‖Hs−y‖2 , (66)

which indicates that a near-MAP decoding situation is enabled
by those lattice points within the sphere radius ‖Hs− y‖ <√
2πd(Λ,y) centered at y.

B. Flexible Trade-Off in Soft-Output Decoding

We now show that the proposed EP-based Gibbs sampling
decoding with σ = d(Λ,y)/

√
n enjoys a flexible decoding

trade-off by efficiently collecting lattice points within the sphere
radius ‖Hs− y‖ <

√
2πd(Λ,y) centered at y.

Theorem 3: With the choice σ = d(Λ,y)/
√
n, the collected

lattice points Hs by the proposed EP-based Gibbs sampling
decoding satisfy

Ps∼DH,σ,y
[‖Hs− y‖<

√
2πrd(Λ,y)] ≥ 1− 2−Ω(n) (67)

for r ≥ 1/
√
2π.

Proof: To start with, we invoke the following Lemma
from [61].

Lemma 2 ([61]): For any lattice L = Bx ⊂ Rn, σ > 0, c ∈
Rn and r ≥ 1/

√
2π, it follows that

Px∼DB,σ,c
[‖Bx− c‖≥r

√
2πnσ]<

ρσ(L)
ρσ(L − c)

(
√
2πer2e−πr2)n,

(68)
where x ∈ Z

n is sampled from the lattice Gaussian distribution
DB,σ,c, and ρσ(L − c) =

∑
x∈Zn e−

1
2σ2 ‖Bx−c‖2 .

According to Lemma 2, given σ = d(Λ,y)/
√
n, we have

Ps∼DH,σ,y
[‖Hs− y‖ ≥

√
2πrd(Λ,y)] < (

√
2πr · e1−πr2)n

= 2−Ω(n), (69)

and the inequality holds due to (55), completing the proof. �
Based on Theorem 3, it is straightforward to observe that with

r = 1, the probability of lattice points sampled from DH,σ,y

locating within the sphere radius
√
2πd(Λ,y) centered at y is

lower bounded by

Ps∼DH,σ,y
[‖Hs− y‖<

√
2πd(Λ,y)] ≥ 1− 0.2945n, (70)

which is almost 1 especially in high-dimensional systems. On
the other hand, since the lattice points closer to the center point

Fig. 2. Symbol error rate versus average SNR for the uncoded 12× 12MIMO
system using 4-QAM.

y naturally have larger probabilities to be sampled, the pro-
posed EP-based Gibbs sampling decoding is able to efficiently
collect those high-quality lattice points from DH,σ,y. Conse-
quently, in the soft-output decoding, the proposed EP-based
Gibbs sampling decoding enjoys a flexible trade-off between
performance and complexity by simply adjusting the number of
Markov moves, and the near-MAP decoding performance can
be achieved with the increase of the sample size.

VI. SIMULATION

In this section, the performance of the proposed EP-based
sampling decoding schemes in MIMO systems are studied by
simulations in full details.

In Fig. 2, the performance comparison about the proposed
EP-based sampling decoding is illustrated in a 12× 12 uncoded
MIMO system with 4-QAM. The decoding performance is
evaluated in terms of the symbol error rates (SERs), and the
iteration numbers of the basic EP detector are set as L = 2 and
L = 10 respectively. Then, based on the EP detector, the pro-
posed independent MH sampling and Gibbs sampling schemes
are shown, where the numbers of Markov moves are set as
T = 50. Clearly, the proposed EP-based independent MH sam-
pling achieves a better decoding performance than the original
EP detector for both cases of L = 2 and L = 10. As expected,
with the standard deviation σw, the EP-based Gibbs sampling
outperforms the EP-based independent MH sampling, implying
a better convergence performance. Note that the EP-based Gibbs
sampling with L = 10 obtains a better decoding performance
than that with L = 2, which indicates the importance of the
choice of the starting point. Furthermore, an extra decoding
gain can be obtained by the application of σdynamic, which is
able to achieve the near-optimal decoding performance. This
is also accordance with the afore-mentioned analysis about the
choice of σ. Therefore, considering the superiority of σdynamic,
we apply it to the EP-based Gibbs sampling by default in the
rest of performance comparisons.
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Fig. 3. Symbol error rate versus average SNR for the uncoded 12× 12MIMO
system using 16-QAM.

In Fig. 3, the symbol error rates (SERs) of the EP decod-
ing with different iteration numbers (i.e., L = 2, 10, 100) and
the EP-based Gibbs sampling decoding with different numbers
of Markov moves (i.e., T = 50, 100, 200) are illustrated in a
12× 12 uncoded MIMO system with 16-QAM. Here, we point
out that all the EP-based Gibbs sampling decoding schemes
applied in the following are based on the decoding output of
EP detector with L = 10. This is straightforward to understand
as the decoding performance of EP is limited by convergence and
there is no obvious difference between the cases of L = 10 and
L = 100. For a better comparison, the performance of an MMSE
detector is also presented. Clearly, with L = 0, the EP detector
yields the equivalent MMSE decoding performance while a
better decoding performance is achieved with the increment of
L. Meanwhile, the optimal ML decoding, which is impractical
due to the exponentially increased decoding complexity, serves
as a baseline for the performance comparison.

Undoubtedly, the performance of the EP decoding with L =
100 almost remains the same with that of L = 10. In other
words, the decoding performance of EP detector can not be
always improved by simply increasing L. On the other hand,
as for the EP-based Gibbs sampling decoding, an extra decod-
ing performance gain can be achieved with the increment of
Markov moves T . Clearly, with an increase in Markov moves,
the near-optimal performance can be achieved by the proposed
EP-based Gibbs sampling decoding. We emphasize that this is
quite different from EP detector since the decoding performance
gain of EP vanishes rapidly along with the number of iterations
L, thus resulting in a performance limit after a number of
iterations. In addition, the usage of EP also offers a good initial
setting for the underlying Markov mixing, thus leads to a better
decoding performance due to the faster convergence to the target
distribution.

In Fig. 4, to investigate the impact of modulation orders, the
performance comparison of the proposed EP-Gibbs sampling
decoding is illustrated in a 12× 12 uncoded MIMO system with

Fig. 4. Symbol error rate versus average SNR for the uncoded 12× 12MIMO
system using 64-QAM.

64-QAM. As can be seen, the decoding performance of the EP
detector can not be further improved by simply increasingL. Dif-
ferent from it, the performance of EP-Gibbs sampling decoding
still improves accordingly with the increment of T . However,
due to the higher modulation order, more Markov moves are
needed to guarantee the performance gain. This is expected
because the whole state space of s is greatly expanded, resulting
in a slower convergence rate. Nevertheless, the convergence of
the Markov chain is still ensured and the near-ML decoding
performance can be got if a large enough T is allowed. Note
that the complexity of the proposed EP-based Gibbs sampling
decoding turns out to be mild (the sampling complexity by
Gibbs sampling is O(T · n2)) so as to a flexible decoding trade-
off between performance and complexity. Another observation
should be mentioned is that all the EP-based sampling decoding
schemes fail to achieve the full receive diversity, which makes
the EP-based decoding less attractive in the area of high SNRs.

Fig. 5 shows the SER of the proposed EP-Gibbs sampling
decoding in a 24 × 24 uncoded MIMO system with 16-QAM.
This corresponds to a lattice decoding scenario with the re-
stricted state space in dimension n = 48. Similarly, with the
increase of iteration number L, the performance of EP decoding
improves gradually but is limited at L = 10. As can be seen,
no extra performance gain can be obtained even if L = 100. On
the other hand, a better decoding performance can be achieved
when the proposed EP-Gibbs sampling decoding is applied,
where cases of T = 100, T = 200 and T = 500 are given.
Therefore, a flexible trade-off with respect to the EP-Gibbs
sampling decoding is established by adjusting the parameter T .
Moreover, the related performance comparison regarding to a
32 × 32 uncoded MIMO system with 16-QAM is presented in
Fig. 6. Compared to cases of 12× 12 and 24× 24, it has a much
higher system dimension so as to a much larger state space of
s, which means more Markov moves are required to ensure a
certain performance gain. Note that the EP and EP-based Gibbs
sampling decoding fail to achieve the full receive diversity gain
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Fig. 5. Symbol error rate versus average SNR for the uncoded 24× 24MIMO
system using 16-QAM.

Fig. 6. Symbol error rate versus average SNR for the uncoded 32× 32MIMO
system using 16-QAM.

in all the cases. Because of this, the superiority of EP-based
algorithms vanishes gradually with the increment of SNR. This
means considerable decoding potential can be further exploited,
which is one of our research work in future.

Fig. 7 shows the frame error rate (FER) for a coded 8× 8
MIMO bit-interleaved coded modulation iterative detection
and decoding system with 4-QAM, using a rate-1/2, irregular
(256,128,3) low-density parity-check (LDPC) code of codeword
length 256 (i.e., 128 information bits). Each codeword spans
one channel realization and a random bit interleaver is used.
The parity check matrix is randomly constructed, but cycles
of length 4 are eliminated. The maximum number of decoding
iterations for LDPC is set at 50. Clearly, after three itera-
tions between MIMO detector and soft-output decoder in IDD,
the proposed EP-based Gibbs sampling decoding with T = 50
Markov moves performs better than FCA, embedding decod-
ing [62], Metropolis-within-Gibbs sampling [63] and Klein’s

Fig. 7. Frame error rate versus average SNR per bit in the coded 8× 8 MIMO
BICM-IDD system using 4-QAM.

Fig. 8. Symbol error rate versus number of Markov moves for the uncoded
12× 12 MIMO system using 16-QAM with SNR = 18 dB.

sampling [64]. Note that the EP-based Gibbs sampling decoding
also outperforms the conventional Gibbs sampling with starting
point outputted by SIC-LLL decoder due to a better starting point
for the Markov mixing. For a better comparison, the performance
of the proposed sampling algorithm after one iteration is also
given. On the other hand, the proposed EP-based Gibbs sampling
decoding is able to achieve the near-MAP decoding performance
with the increment of Markov moves. Therefore, by adjusting
the number of Markov moves T , the whole system enjoys a
flexible trade-off between performance and complexity.

In Fig. 8 illustrates the SER decoding performance of EP-
based sampling algorithms with fixed SNR= 18 dB in a 12× 12
uncoded MIMO system with 16-QAM. For a fair comparison,
MMSE decoding and ML decoding are applied to serve as the
baselines. Clearly, with the increase of iterations from L = 2
to L = 10, the decoding performance of EP decoding gradually
improves. However, the performance limitation does exist as
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Fig. 9. Complexity comparison in average time cost for the uncoded MIMO
system using 16-QAM at SNR = 18 dB.

few gain can be obtained even by L = 100. Differen from
EP decoding, the EP-based sampling decoding schemes (based
on EP with L = 10) are able to achieve a better performance
with the number of Markov moves. More specifically, near-
optimal decoding performance can be obtained by EP-based
Gibbs sampling with T = 200 while the decoding trade-off
between performance and complexity is flexible by adjusting
T . Note that EP-based Gibbs sampling has a better decoding
performance than EP-based IMH sampling due to a better con-
vergence performance. This is easy to understand as the former
fully takes advantages of the correlation among components
of s.

As a complement to illustrate the computational cost, Fig. 9 is
given to show the complexity comparison in terms of the average
elapsed running times. In particular, the uncoded MIMO system
takes 16-QAM at SNR= 18 dB, and the simulation is conducted
by MATLAB R2019a on a single computer, with an Intel Core
i7 processor at 2.3 GHz, a RAM of 8 GB. Clearly, the average
elapsed running time of EP and EP-based decoding scheme in-
crease mildly with the increase of system dimension from 8× 8
to 20× 20 MIMO systems. On the contrary, the optimal ML
decoding from [65] takes an exponentially increasing average
elapsed running time, which is unaffordable in high-dimensional
cases. As expected, under the same number of Markov moves
T = 50, the complexity of the proposed EP-based Gibbs sam-
pling decoding is comparable to that of the EP-based IMH
sampling decoding. This is accordance to the derived complexity
O(Tn2), making them easy to be implemented especially in
high-dimensional MIMO systems.

VII. CONCLUSION

In this paper, the framework of the EP-based sampling de-
coding scheme has been proposed to achieve a better decoding
trade-off between performance and complexity in large-scale
MIMO detection. By performing the random sampling over the
mean vector yielded by EP, extra decoding gain can be obtained,

and the convergence of the approximation of the target posterior
distribution can be ensured as well. In order to further improve
the convergence performance and decoding efficiency, we have
proposed the EP-based Gibbs sampling decoding algorithm.
Meanwhile, the choice of the standard deviation σ of the tar-
get discrete Gaussian distribution has also been investigated,
thus resulting in a better trade-off between the target sampling
probability and the Markov mixing. Moreover, we have inte-
grated the proposed algorithm with the soft-output decoding in
MIMO-BICM systems, where a flexible decoding trade-off can
be achieved by adjusting the number of Markov moves. Finally,
simulation results based on the massive MIMO detection have
been presented to confirm the advanced decoding trade-off in
both MIMO detection and soft-output decoding.
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