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and Yongming Huang

Abstract—In this paper, we introduce a randomized iterative
method for signal detection in uplink large-scale multiple-input
multiple-output (MIMO) systems, which not only achieves a low
computational complexity but also enjoys a global and expo-
nentially fast convergence. First of all, by adopting the random
sampling into the iterations, the randomized iterative detection
algorithm (RIDA) is proposed for large-scale MIMO systems. We
show that RIDA converges exponentially fast in terms of mean
squared error (MSE). Furthermore, this global convergence always
holds, and does not depend on the standard requirements such as
N > K, where N and K denote the numbers of antennas at
the sides of base station and users. This broadly extends the ap-
plications of low-complexity detection in uplink large-scale MIMO
systems. Then, based on a new conditional sampling, optimization
and enhancements are given to further improve both the conver-
gence and efficiency of RIDA, resulting in the modified randomized
iterative detection algorithm (MRIDA). Meanwhile, with respect
to MRIDA, further complexity reduction by exploiting the matrix
structure is given while its implementation by deep neural networks
(DNN) is also presented for a better detection performance.

Index Terms—Massive MIMO detection, low complexity,
iterative methods, linear system solver, deep learning.

I. INTRODUCTION

HE large-scale multiple-input multiple-output (MIMO)
system has become a promising extension of MIMO in
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5 G and beyond 5 G, which boosts the network capacity on a
much greater scale without extra bandwidth [1]-[3]. However,
the dramatically increased system size also places a pressing
challenge on the signal detection in the uplink, where the tra-
ditional near-optimal decoding solutions for MIMO detection
become prohibitive due to the curse of dimensionality [4], [5].
To this end, a number of advanced detection schemes have been
proposed, which aim to achieve the linear detection performance
with low computational complexity [6]-[8]. Nevertheless, most
of them suffer from some specific convergence requirements,
rendering them rather limited in the various scenarios of interest.
In fact, compared to the large number of antennas at the base
station (BS), the number of antennas of each user equipment
(UE) has also improved accordingly. Moreover, with the rapid
increment of UE in the last decade, the total number of antennas
on the UE side has increased significantly, which makes the
environment of wireless communications much more compli-
cated than before [9], [10].

The current methods being deployed to decode the linear
system behind large-scale MIMO detection are either based
on series expansion or matrix splitting iterative methods. The
methods based on series expansion, such as the Neumann series
(NS) [11], [12] method are iterative methods that bypass the
matrix inversion in the linear detection schemes like zero forcing
(ZF) and minimum mean-square error (MMSE). Unfortunately,
it has been shown in [13] that the convergence of Neumann
series is guaranteed only if the number of receive antennas
(denoted by V) is much larger than that of the transmit antennas
(denoted by K), i.e., N > K. Although Newton iteration (NI)
was further employed with a better convergence performance
than Neumann series, it still suffers from the same requirement
for convergence [14], [15]. In fact, such a convergence issue
also exists in message passing-based detection algorithms [16],
[17]. The matrix splitting methods are also iterative methods,
but rather than using a series expansion, are based on splitting
the system matrix [18]. However, the convergence of those
methods are also restricted by some specific requirements. In
Jacobi iteration, the convergence is ensured if the ZF or MMSE
filtering matrix A is strictly diagonally dominant [19]-[21]. As
for Richardson iteration, the relaxation factor 0 < w < 2/9(A)
should be well selected for convergence [22]-[24], where o(+)
denotes the spectral radius of a matrix. Other low-complexity de-
tection schemes can be found in [25]-[27], but their convergence
also depends on the antenna ratio on both sides. If this condition
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of the ratio of antennas is not met, the performance of these
aforementioned detection schemes can be severely degraded or
fail to converge.

Recently, sampling turns out to be a powerful strategy for
solving decoding problems [28], [29]. In particular, the tradi-
tional detection problem can be cast as an equivalent sampling
problem [30]-[32]. By doing this, the optimal detection solution
can be encountered by sampling from a multi-dimensional dis-
crete Gaussian distribution since it naturally entails the largest
sampling probability. By adjusting the standard deviation of the
Gaussian distribution, more decoding gains can be achieved with
a larger sampling probability of the optimal solution [33]. How-
ever, decoding by sampling heavily relies on how to successfully
sample from the target discrete Gaussian distribution [34], [35],
and this is rather difficult in contrast to the case of sampling from
the continuous Gaussian density. Therefore, to effectively ex-
ploit the potential behind the randomness, a number of sampling
decoding schemes have been proposed, which either perform the
sampling over a Gaussian-like distribution [28], [36] or build
the Markov chain to realize the random sampling according to
Markov chain Monte Carlo (MCMC) methods [37]—-[39].

In this paper, in order to achieve a low-complexity signal
detection in various cases of interest, we introduce the con-
cept of sampling into the iterative detection methods, where
the global and exponential convergence can be achieved. We
firstly introduce the randomized iterative detection algorithm
(RIDA) for uplink large-scale MIMO systems, which is based
on the general sketch-and-project scheme for solving linear
systems [40]. By leveraging the convergence theory, we show
that RIDA always converges exponentially fast for NV > K. In
other words, the randomness in the RIDA method has afforded
us a convergence theory that no longer depends on the ratio
of antenna. More specifically, its convergence rate for uplink
signal detection in large-scale MIMO systems is derived. We
then go a step further and introduce the use of conditional
sampling and multi-step conditional sampling, which allows us
to further speed up the convergence of RIDA. Based on the
optimization and enhancement, the modified randomized itera-
tive detection algorithm (MRIDA) is proposed, and an effective
complexity reduction solution is given. Moreover, the extension
of the proposed MRIDA by deep neural networks (DNN) is
also presented, where a better detection performance can be
achieved. Compared to the existing iterative detection schemes,
the merits of the proposed randomized iterative methods are
threefold: low complexity cost, global and fast convergence
performance. Overall, our work provides a novel framework
for the uplink signal detection of large-scale MIMO systems,
where considerable detection gain in terms of both performance
and complexity can be explored.

The rest of this paper is organized as follows. Section II briefly
introduces the traditional linear detection for uplink large-scale
MIMO systems and reviews the low complexity detection
schemes by polynomial expansion and iterative method. In
Section III, the proposed RIDA is described and its convergence
analysis is given to show the global and the exponential con-
vergence. In Section IV, by adopting the conditional sampling
into the randomized iteration, further analysis and optimization
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are carried out. In Section V, MRIDA is proposed to improve
the convergence and efficiency, where its complexity reduction
and implementation by deep neural networks are also given
respectively. After that, simulations of the proposed detection
schemes for uplink large-scale MIMO detection are presented
in Section VI. Finally, Section VII concludes the paper.
Notation: Matrices and column vectors are denoted by up-
per and lowercase boldface letters, and the conjugate trans-
pose, inverse, pseudoinverse of a matrix B by B B~!, and
BT, respectively. We use b; for the ith column of the ma-
trix B, b; ; for the entry in the ith row and jth column of
the matrix B. Let (X,Y)pw-1) = Tr(XAWI'YW™!) de-
note the weighting Frobenius inner product, where X,Y €
C™™ and W € C™*™ is a symmetric positive definite ma-
trix. Furthermore, let || X%y 1) £ Tr(X#WIXW™) =

|[W~2XW 2|2 where || - || is the standard Frobenius norm
with identity matrix I and Tr(-) denotes the trace of the matrix.
R(-) and (-) indicate the real and imaginary components.

II. PRELIMINARY

In this section, the signal detection in uplink large-scale
MIMO systems is reviewed, followed by the background of low-
complexity iterative detection schemes derived by polynomial
expansion and matrix splitting.

A. Linear Uplink Signal Detection

The base station (BS) in large-scale MIMO system we con-
sidered is equipped with NV antennas, and simultaneously serves
different user equipments (UE), where each UE also equips
multiple antennas. To make it simple and straightforward, we use
K to denote the total number of antennas at UE side (N > K).
Here, we assume the channel matrix to be perfectly known at BS.
Let x denote the /X x 1 transmitted signal vector from UEs and
H ¢ CV*K represent the flat Rayleigh fading channel matrix
whose entries are independent and identically distributed (i.i.d.)
with zero mean and unit variance. Therefore, the N x 1 received
signal vector y € CV at BS can be expressed as

y = Hx +n, ey

where n is an N x 1 additive white Gaussian noise (AWGN)
vector whose entries follow CA/(0, 02).

Accordingly, given the system model in (1), to recover the
transmitted signal vector x from the received signal vector y,
the optimal maximum likelihood (ML) detection computes

X = argmin [|[Hx — y||?, (2)

xeXK

which essentially corresponds to an NP-hard problem. Here, the
i-th entry of x, denoted as x;, is a modulation symbol taken
independently from the discrete QAM constellation X. Due
to the exponentially increased complexity, the ML detection
becomes unaffordable with the increment of system dimension.
For this reason, the low-complexity linear detection turns out to
be an effective alternative for uplink large-scale MIMO systems.

Specifically, with respect to the system model in (2), the
traditional linear ZF and MMSE detectors perform the following
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estimations
x,; = (HTH) 'Hy 3)
and
Xmmse = (HPH + 0%1) " Hy 4)

respectively, where the signal decisions X,r and X s are then
determined by rounding X, and Xmmse according to the modu-
lation constellation XX, namely,

2zf - [Xzfj Round € XK and 2mmse - (XmmseJ Round € XK (5)

Note that MMSE detector is optimal according to MSE measure
if the sources are Gaussian distributed [41], and the MMSE
detection in the context is also denoted as LMMSE in some
literatures [8].

It has been shown in [41] that the optimal maximal like-
lihood (ML) detection performance can be achieved by ZF
and MMSE detection if the number of receive antennas at BS
goes to infinity (i.e., N — o0), thus making linear detections
popular in tackling with signal detection in uplink large-scale
MIMO systems. However, for large dimensional systems, either
MMSE or ZF detection turns out to be prohibitive for hardware
implementation due to the matrix inversion with computational
complexity O(K?). Therefore, a number of low-complexity
detection schemes are proposed as an effective alternative.

B. Low Complexity Iterative Detection

The linear MMSE detection shown in (4) can be transferred
into an equivalent system model by decoding a linear system as
follows

Ax =Db, (6)

where b = HHy € CK, the MMSE filtering matrix A = G +
0?1 € CK*K is symmetric positive, G = HfH € CK*K js a
Gram matrix and I'is a K x K identity matrix.

To decode the linear system in (6), Neumann series can be
applied to arrive at an approximation of matrix inverse about A
by [11]

Al = Z(I — ®A)"O, @)
k=0
where © is a K x K diagonal matrix and k denotes the iteration
index. However, such an approximation holds only if

lim (I - ®@A)* =0, (8)
k—o0

which implies the condition NV >> K should be fulfilled in large-
scale MIMO systems [13], [16], [42].

Alternatively, we can solve (6) by splitting A into A =
P + Q (matrix P € CK*K js nonsingular, Q € CK*K) and
iterating according to

xF) = Bx(F1) 4 £, 9

where B= -P'1Q=1—-P 1A € CK*K is known as the
iteration matrix and f = P~!'b € C¥. Similarly, the iterative

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

methods also have to confront the convergence problem by
satisfying
lim B* = 0.

k—o0

(10)

In particular, Newton iteration (NI) has a faster convergence
rate than Neumann series in dealing with the linear system in (6).
Specifically, it has been pointed out in [14], [15] that the result of
Newton iteration after k iterations is the same as the 2¥ — 1 order
in Neumann series expansion. However, the iterative detection
like Newton iteration still suffers from the same convergence
requirement as Neumann series'.

As for Jacobi and Richardson iterative methods, the itera-
tion matrices are set as Bjycony = I — D 'A (i.e., P = D) and
Bricharason = I — WA (i.e., P = 1T) respectively, where D €
CK*K ig the diagonal component of the matrix A € CK*K
and w > 0 is known as the relaxation parameter. Typically, in
order to guarantee the convergence, the matrix A in Jacobi
iteration should be strictly diagonally dominant (SDD) while
the Richardson iteration is convergent if 0 < w < ﬁ. o(A)
is the spectral radius of matrix A. Moreover, for a better detec-
tion performance, a damping parameter J € R is adopted into
Jacobi iterations to update its iteration matrix as Bgamped Jacobi =
I — D! A.However, it has been shown in [43] that the conver-
gence of damped Jacobi only works with 0 < 6§ < 2/o(D"1A).
Clearly, both the settings of w and § are also related to the specific
requirement of A [21] while both of them should be carefully
selected for the iteration convergence.

For a faster convergence rate, the method of successive over-
relaxation (SOR) was introduced as [44]

(D 4 wL)x* ! = [(1 —w)D —wL¥x* + wb  (11)

with A=D+ L+ L, where D, L and L¥ respectively
stand for the diagonal components, the strictly lower triangular
components and the strictly upper triangular components of
A. Unfortunately, the SOR method can converge only for the
relaxation parameter 0 < w < 2. Besides, the traditional conju-
gate gradient method was also introduced to MIMO detection,
which is convergent in the signal detection of large-scale MIMO
systems [45]. Nevertheless, considerable convergence gain is
still worthy to explore for a better detection performance.

III. RANDOMIZED ITERATIVE DETECTION ALGORITHM

In this section, by capturing the advantages of random sam-
pling, we introduce the randomized iterative detection algorithm
(RIDA) for uplink large-scale MIMO system. More precisely,
RIDA can be viewed as an application of the sketch-and-project
scheme in the complex-valued large-scale MIMO systems [40],
[46].

A. Algorithm Description

To reduce the cost of solving the linear system in (6), we
first introduce a sampling matrix S € C¥*% where ¢ is typically

I'The requirements of N >> K for both Neumann series and Newton iteration
are specified as N/K > 5.83 in [13].
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much smaller than K, and multiply the system in (6) by the
adjoint of S giving

STAx = SHb. (12)

IfSisa K x K (i.e., ¢ = K) invertible matrix, left multiplying
SH on both sides of (12) does not alter the solution. However,
when ¢ < K, then the above equation is reduced to a smaller
dimension than the original one, which becomes much easier
to solve. But this dimension reduction comes at the price of
introducing the existence of more solutions to (12).

To select a unique solution of (12) we use a projection
scheme. For this, let U € C**¥ be a symmetric positive definite
weighting matrix and let V = Uz € CX*X be the symmetric
invertible square root of U. We can now use V to determine a
unique solution to (12) by projecting our current iterate x* onto
the solution space of (12), that is

x*+D) = argmin |V (x — x®)|?
xeCK

subject to Sfo = SkHb7 Sk ~ D, (13)

where k is the iteration index, S;, follows a discrete distribu-
tion D with » > 0 outcomes, i.e., S, € {My,...,M,}, M; €
CK*ai 1 < < risa full column rank matrix with probability

pi =D(Sr, =M;) >0 (14)
and
> pi=L (15)
i=1

According to (13), at each iteration, one samples a new
sampling matrix Sy, from D, and computes the new iterate x (1)
by choosing the solution of (6) that is as close as possible to
x(%) under the metric determined by the weighting matrix U.
Clearly, the distribution D and the weighting matrix U serve
as the system parameters, which should be carefully designed
to guarantee the convergence of the underlying randomized
iteration.

In particular, let us introduce a change of variables X =
V(x — x®) in (13) which after re-arranging gives

arg min |||
subject to S AV~1x = Sl (b - Ax(k)) , S ~D.
(16)

This is now a standard least-norm problem for which the solution
is given by the pseudo-inverse of the the system matrix, that is
%= (SfAV)'sf (b - AxM)), (17

where M denotes the pseudo-inverse of a matrix M. Now using
that Mf = M (MM# )~ for every matrix M we have

%= VAT, (SFAVIVIATS,) ST (b - Ax®)

— VAT, (STAUTATS,) S (b - Ax™M).
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Now switching back to the variable x using x = x(*) 4+ V1%
yields the following expression

xCH)—x® L UTIAHS, (SHAUTAES,) 18 (b— Ax®)
(18)
with S ~ D.
To be more specific, let x* denote the desired detection
solution in (6), i.e., x* = A~ 'b, the iteration in (18) could be
further expressed in a recurrence way as

xFHD _x* = (1-U1'Z)(x® —x*) (19)
with symmetric matrix Z € CX*¥ defined as
Z 2 APS (SHAUTAYS,)ISHA. (20)

From (19), the approximation of x* by x(*) works iteratively
under the introduced randomness contained in Z.

Next, to further simplify the randomized iteration in (18), the
following choices with respect to systems parameters D and U
are made. On one hand, by letting U = I, the iteration in (18)
becomes

x D — x(0) L AFS, (SHAATS,)1SH (b — Ax)).

(2D
On the other hand, let S, = I 4 s, where L ;s denotes a column
concatenation containing ¢; columns of K x K identity matrix
I and the ¢; columns are uniform randomly selected from
{1,..., K}.Here, to facilitate the efficient sampling, the indices
of the g; selected multiple columns at each time are fixed within
a set Q;, namely,

Q; = {index 1, ..., index ¢; }, (22)
thus forming a block operation in the following, e.g.,
{1,2,5}U...U{4,8,12} = {1,..., K} (23)
————

——
A Qr
withq; = -+ = ¢; = 3andr = K/q;. More precisely, itis clear
tosee thatsets Q; N Q; = Pand Y _;_; O, = K.Inthis way, the
matrix I:7q(£ s can be denoted by I. o,. Then, based on it, we have
xF = xW L AFT, (17, AATT )T, (b—Ax(F))
=x®+ AT, o (I, AATT o) 'TH,) (b—Ax)

i

=x" 1A, 0,(Ag, A 0) ' (bo,—Ag, x*)  (24)

:X(k)+ATQz (bQi - AQu:X(k))

,:

(25)

where AL o, = AHT. o, = A. o, € CK*% due to the symme-
try of A. We point out that with the setupsof U = I, S;, = 1. o,
as well as block sampling, the proposed randomized iterations
behaves like the randomized block Kaczmarz algorithm [47].
Hence, various solutions can be achieved by the proposed ran-
domized iteration scheme with different choices of U and D,
and considerable potential can be exploited therein.
Consequently, by iterating x*) according to (25), x* can
be approximated asymptotically. We point out that ¢; < K is
recommended to fully make use of the reduced linear system in
(12). Nevertheless, a larger size ¢; means more components of
x can be updated at the same time within one iteration, which
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Algorithm 1: Randomized Iterative Detection Algorithm
(RIDA) for Uplink Large-Scale MIMO Systems.
Require: A = H?H + ¢%I,b = Hy, x(O = 0, Q
Ensure: near MMSE detection solution X(¥)

1: fork=0,...,Q —1do
2:  randomly sample ¢; column indexes according to (23)
3:  update x(*+1) according to (25)
4
5

: end for
. output X(¥) by rounding x(*) based on constellation X'*

naturally leads to a better convergence performance. As for the
initial choice of x(o), it can be an arbitrary vector and here we
use x(9) = 0 as an alternative. To summarize, the operations of
the proposed randomized iterative detection algorithm (RIDA)
for uplink large-scale MIMO systems is presented in detail in
Algorithm 1.

We now consider the computational complexity of RIDA.
For the sake of simplicity, we set ¢; = ... = ¢, = q. Typically,
regarding to the iteration in (24), the computational complex-
ity of calculating (Ag, .A.g,)" ! is ¢?K + ¢°; the multipli-
cation of A. o, and (Ag, .A. o,) ! requires ¢> K computa-
tional complexity; the computational complexity of (bg, —
AQi?:X(k)) is ¢K while multiplying it with the former term
A o.(Ag, A 0,) ! (e, ATQM) costs ¢K. Therefore, when
1<qg< VK, the total computational complexity of RIDA at
each iteration is no more than O(K?).

B. Convergence Analysis

We now investigate the convergence of RIDA in terms of the
mean squared error (MSE), i.e., E[||V(x®) — x*)||?]. For con-
venience, let M = [M;,...,M,] € CK*Ei=19 and assume
M A has full row rank. We will see that it is straightforward to
choose a discrete distribution D for which this rank assumption
holds.

As shown in (18), the randomness is invoked by the random
sampling Sy ~ D, which is further contained by matrix Z
in (19). Therefore, in order to show the convergence of the
randomized iteration, we firstly characterize Z in the form of
expectation (i.e. E[Z]).

Specifically, in Rayleigh fading channels of large-scale
MIMO systems, since the channel matrix H is a full-rank matrix,
the multiplication Hw for vector w € C¥ equals to 0 only when
w is a zero vector. Therefore, it is straightforward to verify that
the Gram matrix G contained in matrix A is positive definite by

wiGw = wH"Hw = (Hw)"Hw > 0, (26)
which results in a positive definite matrix A due to A = G +
o21. Then, based on the positive definite matrix A and the full
row rank matrix M7 A, the expectation of Z can be proved as
symmetric positive definite by

EZ] =Y pATM;(MAUATM,) M A

i=1

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

— A7 <Z MipéYi_;Y;;p}Mf> A
i=1

= (AFMI)(IM7A) (27)
with invertible block diagonal matrix J € CK*K je.,
11 11
J=diag(p?Y,®,... p2Y; ?). (28)

andY; = MZHAU_lAHMI

According to the symmetric positive definite matrix F[Z], the
following Theorem shows the global exponential convergence of
the proposed randomized iteration for uplink detection in large-
scale MIMO systems while the proof closely follows [40]. More
specifically, it can be viewed as a complex-valued extension of
Theorem 16 in [40] with respect to large-scale MIMO systems,
where more details have been added to the proof for a better
understanding.

Theorem 1: Withrespect to the uplink detection in large-scale
MIMO systems, let Sy, be randomly sampled from the discrete
distribution D, the proposed randomized iteration following (18)
converges by

E[[VE® — x| < oM VD —x)* @9)
with exponential convergence rate
p=1- mn(UE[Z]) < 1, (30)

where \min(+) denotes the minimum eigenvalue of a matrix.
Proof: First of all, to concisely state the result, the following
definition is made

rp = x®) — x*. (31)
Using the above and the rule of total expectation we have that
E[IV(x® —x)|*] = EE[IVre|*lre-a]l, (G2

where the above equality holds according to the law of total
probability for expectation (i.e., E[E[A|B]] = E[A]).

Then, with respect to the term || Vry||? in the above equation,
we have the following derivations

[[Vry ||2 = rkHVHVrk

Wl 1 -UZ)HEVEVI - U ' Z)r,
=r (VI-VU ') (VI- VU 'Z)r,

Y1 (U uty-lz—(UHU-z)h zHu- PUtu 7,

Opll (U-Z -2 + ZHU Z)r,,

Dol (U - 22+ 27U Z)ry_,

el (U= Z)ry 1.

(33)
Here, equality (a) comes from (19) as
r=xP—x"=(I-U1Z2)x"—x)=(1-U"'Z)r; 1, (34)

equality () relies on VV = VVH = VHEV = U since V =
U: is a symmetric positive definite matrix, equalities (c) and
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(d) hold due to the symmetry of matrices U and Z. Besides,
equality (e) comes from the fact that Z# U~1Z = Z due to

ATS, (SHAUARS, )" HSHAU'ATS,,
x (SHFAU'ATS,)"1SHA

= A"S, (SEAUTAYS,)ISFA

=17, (35)

where the matrix S# AUTAH S, is symmetric.
Next, based on (33), it follows that
B[ Ver]Plrx-1] = Blrfly (U = Z)ry.]
=Bl VE@ -V HZV Ve, ]
=E[(0I-VH7ZV HVr, 1, Vr, )]
VH)Vr, 1, Vi 1)

V7 Vg |f?

= ((1-V HE[Z]

<|1-V HE[Z]

@

L AT = VI EZIV ) [Veg |2

= (1= Ain (V- IE[Z]V )| VI |
= (1= Auin (U E[Z])) || Vg |?

= pl[Vrpa|? (36)

where the transfer in (f) from operator norm to spectral radius
comes from the symmetry of I — V-2 E[Z]V ™! and Apay ()
indicates the maximum eigenvalue of a matrix.

After that, by substituting (36) into (32), we have

E[IV(x® —x")|*] < pE[[V(x*Y = x)|?]
< PPE[IVED - x|

=AIVED = 6
where x(°) is given at the beginning as an initial setup.

On the other hand, because FE[Z] is a symmetric positive
definite matrix in large-scale MIMO systems, all the eigenvalues
of it are positive, namely, Ayin (E[Z]) > 0. Therefore, it follows

p=1-2mn(U'E[Z]) <1 (38)

which completes the proof. |

According to Theorem 1, the randomized iteration converges
exponentially fast to the detection solution x* of (6). Most impor-
tantly, such an exponential convergence always works by p < 1
for N > K, making it well suited to various cases of large-scale
MIMO systems with respect to both independent, identically
distributed (i.i.d.) and correlated channels. Meanwhile, the re-
quirements about system parameters U and D are rather loose to
be fulfilled, making RIDA different from those aforementioned
iterative detection schemes. Additionally, in order to ensure the
approximation error smaller than a given value

E[IVE® =P < el VD =< (39)
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with 0 < € < 1, the required number of iterations can be esti-

mated by?
1 1
log () ,
) B

which leads to a tractable randomized iteration. Another point
should be paid attention to is the choice of %) From (29),
a closer choice of x(*) to the target solution x* would signifi-
cantly reduce the required number of iterations, which is highly
recommended in practice.

k2 (40)

IV. OPTIMIZATION AND ENHANCEMENT

In this section, by resorting to conditional sampling, the prior
knowledge of the previous samplings can be fully utilized, thus
enabling a better convergence performance. Meanwhile, such a
conditional sampling mechanism can be further upgraded to a
pseudorandom iteration for better efficiency.

A. Optimization by Conditional Random Sampling

Although the usage of sampling Sy from D provides an
effective solution to the problem in (12), it does have a side effect
during the convergence. Since the randomness in the sampling
is hard to control, the sampling diversity would be impeded if a
sampling choice M is sampled repeatedly by S;_1 and Sj. To
remove such a risk for a better sampling diversity, we propose
to update the sampling probability in (14) as a conditional one,
which takes the advantages of the prior knowledge from the last
sampling, i.e.,

P; = D(Sk = M;|Sk_1 =

Pi . .
=—— i#]
1_pj

Mj)v iF]

(41)

Clearly, according to (41), the last sampling S;_; is considered
at the current sampling, and its sampling choice M is removed
from the state space of the current sampling for Si. By doing
this, the aforementioned risk that S,_; = S, is avoided, and the
randomized iteration is able to achieve a better convergence.

We now go through the conditional randomized iteration given
in (41) to confirm its convergence gain. Specifically, based on p,
in (41), the conditional expectation of Z given the last sampling
choice S;,_; = M, becomes

J—

E[Z|S) 4 ZZ

APM(MI AU AT M) TME A
+ > pATM;(MAUTTAT M) M A
i=j+1
= (APMT)TM"A) e CK*K, (42)

which still turns out to be symmetric definite positive with
— - 1
M = [Ml,.. Mj laM]+17--~7Mr] and J :dlag(ﬁf
(MEAULATM,)- 2,...,pj,l(Mf_lAU*AHMj,l)*%,

2The inequality In(1 — §) < —d for 0 < & < 1 is applied here.
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H P2 (MIAUTATM, )~ 3).
Therefore, it is straightforward to verify that the convergence
of such a conditional randomized iteration holds as well and
we can easily arrive at the following Theorem, whose proof is
omitted due to simplicity.

Theorem 2: Given the sampling choice S;_; = M;, M; €
{Mi,...,M,}, let Si be randomly sampled according to the
conditional sampling probability p; in (41), then the conditional
randomized iteration following (18) converges by

Py (M AUTAAM, )75,

E[IVE® —x)P <p|VE*Y —x)P @3
with exponential convergence rate
p=1= Anin(U ' E[Z[S;1]) < L. (44)

Note that the convergence rate p varies at each iteration
given the conditional sample S;_;. Subsequently, with respect
to the convergence of the conditional randomized iteration, we
have the following result by optimization. Here, the squared
Frobenius norm is applied to calibrate the norm of a matrix in
Euclidean space as

IBlZ = ZZ [bi.jI* =

Theorem 3: Given the samphng choice S,y = M;, M; €
{Mi,...,M,}, the convergence rate of the conditional ran-
domized iteration takes the form

Tr(BBY). (45)

7H _
Amin(M7 AU TAHM
p=1 - funlM AU AT (46)
U2 APM][
if the sampling probability D, follows
_ Tr(MZ AU AT M)
' lU~> ATM][3,
Proof: First of all, for notational simplicity, let ¢; =
Tr((MZAUTATM;) andy; = MIAUTAEM,;) L. Then
by simple substitution, we have

LF 47

jQZdiag(tlyh st YL b1 Y - B Yr)

— (48)
[U-AHM|3,
so that
72 tl
)\min J = — 1
U = oA Igél?{/\max(M{{AUlAHMi)}
(9) 1
> (49)
U= AHM]3

where (g) holds because the trace of a matrix is the sum of its
eigenvalues, namely,

ZA

Then, based on (49) and (42), the following derivation can be
achieved

)\min (U

) and Tr(A) > Apax (A) > Amin(A). (50)

TB[Z[Sk-1]) = Auin (U 2E[Z|S),_1]U %)
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= Anin(UTZATMI M AU 2)
= Anin(M7TAUTAHMT)

(9) 2

> /\mm(M AU TAIM) A\nin(T7)

> )‘min(MHAU_lAHM)

[T~ ATM
where (g) comes from the fact that M\, (EF) >
Amin(E)Amin(F) if matrices E € CK*X F ¢ CE*E  are

positive definite. Considering the system parameter U is set as
symmetric positive definite by default, the matrix multiplication

M7AU AP M is positive definite, and so is the matrix 7.
Finally, by substituting (51) into (43), we can arrive at

) (5D

Amin(MPAU-AHDT) "
B[V =) |?)< [1- ==
U~z AFMJ5
x V(D=2 (52)
Furthermore, it can be further expressed as
E[IVE® —x)|?] <o [VED =x)[P (53)
with
7H —_
min(M AU AAM
po=1-2onMAUA M (54)
U~z ATMJ5,
and the sampling probability setup
MZAU AP M,
= TMLAU A M) (55)
U= AFMIJ3.
completing the proof. |

As shown in (46), the convergence rate p, is partially de-
A (ML AU AHM)
Amn (M T AU-TAHM)
Moreover, according to Theorem 3, it is preferable to improve
the convergence rate p, by optimizing the choice of the matrix
M = [My,...,M;_1,M;;1,..., M,]. In particular, the con-
vergence rate p, can be lower bounded by

termined by the condition number xk =

(M AU AT
U2 AFM|%,

C

Amin(MT AU~ AT M)

Te(M AU-1AHM)
1

ZZ 10+ i @

where the lower bound in (56) is reached if and only if
M”7AU 'AFM = 1. On the other hand, as for the origi-
nal randomized iteration, under the same derivation with p; =
1
Tr(MZ AWATM,)/||[WzAHM|2, its convergence rate p
can be lower bounded as
Amin (M7 AWA 7 M) 1
P = — H Z - T )
Tr(MH AWA X M) die1 i

=1-

; (56)

(57)
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where the lower bound is obtained when MAAUTAAM =1.
Typically, because of Zf;i @i+ D imji1 @ < Doieg GisWecan
arrive at the following result.

Corollary 1: According to (56) and (57), the conditional
randomized iteration outperforms the randomized iteration due
to a smaller convergence lower bound of each iteration.

B. Enhancement by Multi-Step Conditional Sampling

Regarding to the conditional randomized iteration, a straight-
forward enhancement is to involve more previous samplings
being considered, i.e.,

Pr 2 D(Sp =M;[Sk-1,...,Sk-1)

where 1 < L < r — 1 denotes the number of steps with M; ¢
{Sk-1,...,Sk_r} Intuitively, the introduced conditional ran-
domized iteration can be viewed as a special case of multi-
step conditional randomized iteration with L = 1. It is easy
to demonstrate that the exponential convergence of the L-step
conditional randomized iteration, and we have the following
Corollary, whose proof is omitted because of simplicity.
Corollary 2: Given L-step sampling choices
Sk-1,--.,Sk-1, let S be randomly sampled according
to the conditional sampling probability p;, in (58), the L-step
conditional randomized iteration following (18) converges by

(58)

E[VEY =x) 2] <o [VEED =x)|F (59
with exponential convergence rate
pr =1 DAn(UE[Z|S) 1,...,Sk1]) < 1. (60)

Meanwhile, following Theorem 3, we can see that under the
same optimization, the convergence performance of the L-step
conditional randomized iteration gradually improves with the
increment of L. This actually motivates us to set L =7 — 1 to
further exploit the convergence gain due to

Amin(MI AU LA M)

y - 61
Pre1 Te(MF AU TAHM,) 61
1
>1——. (62)
q;

As can be seen clearly, p,_; has a smaller convergence lower
bound than p; in (56), thus resulting in a better convergence
performance. Besides the convergence gain, more interestingly,
when L = r — 1, the L-step conditional randomized iteration
will gradually turn out to be deterministic in selection of Sy.
When k£ > r — 1, there is only one sampling option left for Sy,
given the r — 1 previous sampling choices of Sy 1, ..., Sk_rt1.
Intuitively, such a pseudorandom sampling or derandomization
is the natural result of (r — 1)-step conditional randomized
iteration for the iterations k£ > r — 1. It not only leads to a better
iteration efficiency as the operations of random samplings can be
avoided, but also is well suited to the hardware implementation in
practice. Hence, based on the multi-step conditional randomized
iteration with L = r — 1, the modified randomized iterative
detection algorithm (MRIDA) is proposed in what follows.
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V. MODIFIED RANDOMIZED ITERATIVE DETECTION
ALGORITHM

In this section, based on the aforementioned optimization
and enhancement, the modified randomized iterative detection
algorithm (MRIDA) is proposed. Meanwhile, with respect to
MRIDA, complexity reduction and implementation by deep
neural networks are also presented.

A. Algorithm Description

According to (62), in order to achieve the convergence lower
bound of p,._; in the L-step conditional randomized iteration, the
condition M AU YAH#M; =1 given Sy _1,...,S,_r with
M, ¢ {Sk_1,...,Sk_r} should be satisfied. With respect to it,
a straightforward way is to choose U = A and

2 ol

M; =A 3L, = A (63)

- Kxq;
as € C

respectively. However, this is infeasible since the matrix inverse
of A should be avoided in this work due to the consideration of
complexity.

Following the optimization choice in (63), we give an approx-
imation of it as an alternative. Specifically, with respect to the
symmetric positive matrix A = D + L + L, here we apply
the diagonal matrix D as an approximation of A and we have

M, =D 31, e CK*e, (64)

where the accuracy of the approximation improves with the
increment of the ratio N/ K and vice versa.

Therefore, by applying M/ into (61) with U = A, the pro-
posed MRIDA achieves the convergence rate as
)‘min(M{iHAM'/i)

Tr(MHAM,)
Clearly, the above convergence rate still obeys the lower bound
given in (62).

Nevertheless, it has been shown in simulations that this ap-
proximation still works even though N > K is not fulfilled,
making it a general choice for the conditional randomized itera-
tion. Thanks to the favorable propagation in large-scale MIMO
systems when N >> K, the MMSE filter matrix A = G + 021
becomes diagonally dominant due to h/’h; — 0 fori # j [48].
Meanwhile, because A is symmetric positive definite, we can
conclude thatits inverse matrix A ! is also diagonally dominant.
For this reason, such an approximation is recommended for the
cases N > K.

Consequently, given the » — 1 previous sampling choices
Sk-1s--.,Sk_rt1, the sampling choice S = M can be ef-
ficiently determined, and the randomized iteration in (18) with
U = A becomes

xE) = x® L v (MHE AMY) (M — M Ax(R))
(66)

Pro1 = (65)

with
M; ¢ {Sk—1,...,Sk—rs1}

Here, for simplicity, the assumption » = K/g and g1 = ... =
qr = q is applied in the proposed MRIDA.

(67)

Authorized licensed use limited to: Southeast University. Downloaded on June 24,2022 at 02:14:26 UTC from IEEE Xplore. Restrictions apply.



2942

Algorithm 2: Modified Randomized Iterative Detection Al-
gorithm (MRIDA) for Uplink Large-Scale MIMO Systems.
Require: A = H?H + ¢%I,b = Hy, x(O) = D~'b, Q
Ensure: near MMSE detection solution X(*)

1: compute M/ = D~ #

2: fork=0,...,QQ — 1do

3: getM,¢#{Sk1,...,Skrp1} by L-conditional
sampling

4:  update x**t1) according to (66)

5: end for

6: output X(*) by rounding x*) based on constellation X%

On the other hand, as can be seen from (43) in Theorem 2 and
(59) in Corollary 2, a better choice of x(0) which is closer to x*
could effectively shorten the need of iterations, so as to a more
efficient randomized iterative detection. To this end, the matrix
D is also employed here to determine the initial choice of x(*)
as

x© =D 'p. (68)

Because D is a diagonal matrix, the computational complexity
of obtaining x(?) in (68) is low, which only requires K multipli-
cations. To summarize, the operation procedures of the proposed
MRIDA for uplink large-scale MIMO systems are outlined in
Algorithm 2.

B. Complexity Reduction of MRIDA

With respect to the computational complexity of MRIDA,
we can see that the computational complexity of calculating
(M/HAM) "L in (66) is ¢ K + qK? + ¢*; the computational
complexity of M//Tb — M/ Ax(*) is 2¢ K 4 ¢ K? while mul-
tiplying these several terms costs ¢>K + ¢K. To summarize,
when 1< ¢ < VK, the total computational complexity of
MRIDA at each iteration is no more than O(K?%). However,
in what follows we show that the computational complexity of
MRIPA is actually much lower than that by well taking the
structure of matrix M into account.

According to (64), it is straightforward to see that the matrix
M, = D’%I%q; s € CK*4 entails a special structure. In partic-
ular, we can express the selected matrix M/ as the following
way:

0--- 0my (i—1)sgr1 0 -+ 0 0---0
. . 0 . . . .
e : 0
0---0 0 0 mg (i-1)4q+q 0+ 0

This means the operations of M, or M/ are actually executed
by the ¢ X ¢ nonzero submatrix within it. Moreover, it is notice-
able that the ¢ X ¢ nonzero submatrix is built by the diagonal
elements, where other elements in it are 0 as well. Obviously, this
leads to further complexity reduction so that the computational
complexity of MRIDA can be expressed in a much lower way.
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Specifically, the computational complexity of computing
(M AM,)~! in (66) can be reduced to ¢K + q¢° + ¢3; the
computational complexity of M/'b — M/H Ax(*) is ¢ + 2¢K
and multiplying these several terms costs g? + ¢ . Considering
the choice of 1 < ¢ < V'K, the computational complexity of
MRIDA at each iteration is no more than O(K!®), which is
much lower than O(K?) of RIDA. This means MRIDA not only
achieves a faster convergence rate than RIDA, but also is much
more efficient than RIDA, leading to a better detection trade-off
between performance and complexity.

Different from the traditional iterative detection schemes
which update all the components of x at each iteration, according
to (66) and (25), only ¢ components of x are updated at each
iteration in MRIDA and RIDA. Therefore, for a fair comparison,
K/ q times iterations are required to complete a full iteration of x
for MRIDA and RIDA. Considering the choice of 1 < ¢ < \/E s
this corresponds to computational complexities O(K?) and
O(K??) respectively, which are still competitive compared
to those traditional iterative detections. To be more specific,
the computational complexities of various low-complexity de-
tection schemes per iteration are listed in Table I. Note that
Neumann series only achieves the low complexity (i.e., O(K?))
when the number of iteration is limited by k < 2.

C. Extension by Deep Neural Network

We now upgrade the proposed MRIDA with deep neural
networks (DNN), where a non-linear projection operation by
training via deep learning (DL) is designed to improve the
detection performance.

In [52], the DetNet for large-scale MIMO detection is pro-
posed. Typically, the traditional gradient descent (GD) method
is aided by a trained projection operator via DNN as

x40 = 11 []—'GD(X(’“) )} , (69)

the projection trained by DNN

thus forming an effective iteration to solve the problem in (2).
Here II[-] represents a nonlinear projection operation imple-
mented by DNN and Fgp(+) stands for a specific iteration of
gradient descent. Thanks to the nonlinear projection trained
by DNN, a better performance than MMSE detection can be
archived by DetNet.

Motivated by DetNet, we now try to introduce such anonlinear
projection trained by DNN into the proposed MRIDA in a similar
way. First of all, to adopt with deep neural networks, one has to
convert the complex-valued system model in (1) to an equivalent
one but with real values,

y =Hx +n, (70)
namely,
361~ (5 w1 BR8],

Clearly, each entry of n follows A/ (0, ‘772) On the other hand, it
is straightforward to verify that the proposed MRIDA can also
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TABLE 1
COMPUTATIONAL COMPLEXITIES OF VARIOUS LOW-COMPLEXITY DETECTION SCHEMES PER ITERATION
MMSE NS [11] Newton [15] Jacobi [19] | Damped Jacobi [43]|| Steepest Descend [49] || Richardson [22]
O(K3) O(KQ) for k <2 O(KQ) O(KQ) O(KQ) O(KQ) O(KQ)
GS [25] SOR [50] CG [45] AMP-G [16] GAIMP [51] RIDA MRIDA
O(K?) O(Kg) O(K?) O(NK) O(NK) O(K“‘) O(K?)
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Fig. 1.

The structure of MRIDA-Net.

be carried out in the real domain with

x® = x® 4 M (MTAM) T (MTD — M Ax W),
(72)
where the related confirmation process is omitted here due to
the simplicity.
Then, in the proposed MRIDA-based detection network
(MRIDA-Net), a nonlinear projection operation II(-) is incor-
porated into each iteration as

X(]H_l):l—[ X(k)'f' M; (M/ZTAM;)fl(M;Tb _ M;TAX(k))

operations of MRIDA

(73)
More specifically, to elaborate this, the following operations are
carried out at each iteration

AR = x® L M (MFAM) H (MTb - M"AxY),  (74)

v — ReLU(W[A®) v(®)] £ b,), (75)

xFHD) = Wy L p (76)

where the structure of the proposed MRIDA-Net is illustrated
in Fig. 1. Here, W, € ROEx(e+2)K W ¢ R2ExaK ¢
RK, b, € R*?X are weights and bias required to quantify
during the training phase, [-] is the concatenation, ReLU(-) is the
rectified linear activation function, the hidden vector v € R®%
is initialized as zero vector 0, and the coefficient o« > 2 is an
even integer to adjust the dimension.?

3The size of the real system 2K x 2 K is also considered in « so that « is an
even integer.

According to (74), (75)) and (76), the following learnable
parameters are introduced into each iteration of MRIDA-Net to
build the projection operation II[-]

0= {vawxabvva}~ (77)

Compared to the gradient descent method in DetNet, the pro-
posed MRIDA achieves a better convergence performance.
This means less number of iterations is required by MRIDA,
which well suits the parameter-sharing structure of the DNN
implementation [53]. Therefore, to enable an efficient training
phase, the parameter-sharing structure is employed so that the
parameters in set 6 are shared among all the projections at each
iteration. Meanwhile, we set W, and W as sparse matrices,
where 70 % of the elements in them are zero-valued. This sparse
representation is proposed in [54], and serves as a regularization
technique especially beneficial in this high-dimensional case.
By doing so, not only the over-fitting issue can be alleviated, but
also the total amount of training parameters is further reduced
since most of them are set as zero.

Next, the back-propagation algorithm is carried out during the
training phase to update 6 that minimizes the following weighted
loss function

Q

fLoss = Z IOg(k + 1)”§ - K(k) ||2
k=1

(78)

Clearly, the transmitted signal x serves as the training label.
Meanwhile, to effectively alleviate the problem of vanishing
gradient during back-propagation, all the @ outputted x(*) are
taken into account by the logarithm weighted structure [52],
[55].

As for the complexity of MRIDA-Net, besides the complexity
of MRIDA itself (i.e., expressed by (74), the additional compu-
tational complexity introduced by the nonlinear projection II[-]
consists of calculating the hidden vector v¥*! in (75) and the
projected point x**! in (76), where 2(a + 2)? K* and 202 K
multiplications are involved respectively. Therefore, the total
computational complexity of MRIDA-Net is O(K?) while an
enhanced detection performance can be achieved under the help
of DNN.

VI. SIMULATIONS

In this section, the performance of the proposed RIDA and
MRIDA schemes for uplink large-scale MIMO systems are
studied by simulations in full detail. For a fair comparison, the
full iteration that updates all the components of x is applied
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Fig. 2. Bit error rate versus average SNR per bit for the uncoded 16 x 128

large-scale MIMO system.

by both RIDA and MRIDA. As for the setup of deep neural
networks, the training procedure works on the deep learning
(DL) library PyTorch, and MRIDA-Net is trained with Adam
Optimizer using a batch size of 20. The learning rate is set
as 0.0005 and would decay by 0.97 after each epoch. 50,000
training data are drawn on for each SNR per bit with respect
to the training of MRIDA-Net for 32 x 128 MIMO system
with 16-QAM, and 25,000 are utilized under 64 x 128 scheme
with 4-QAM. In our simulations we set & = 8 and the overall
convergence of the training needs nearly 50 epochs.

In Fig. 2, the initial choices of x(°) for the proposed ran-
domized iteration schemes are investigated in a 16 x 128 un-
coded large-scale MIMO system. Specifically, two choices of
x(® =0 and x(°) = D~'b are evaluated respectively while
both 16-QAM and 64-QAM are employed to RIDA and MRIDA
for a better performance comparison in terms of the bit error
rates (BERs). To be more specific, the number of iterations
here for RIDA is set as k = 3, and the size ¢ in the random
selection is set as g = 4. Clearly, we can observe that both
the detection performance of RIDA and MRIDA with initial
settings x(9) = D~b outperform those with x(*) = 0. This is
accordance with our analysis as the choice x(*) = D~'b offers
a better approximation to the final detection solution x*. More
precisely, according to Theorem 1, the convergence performance
of the proposed randomized iteration scheme is partially deter-
mined by the choice of x(0) 5o that a reasonable choice of x(?)
naturally leads to a better detection performance. Meanwhile,
considering the low complexity of computing x(©) = Db, it
is highly recommended in practice. For this reason, we apply it
in the following simulations by default.

In Fig. 3, the performance comparison of the proposed RIDA
and MRIDA schemes is illustrated in a 16 x 128 uncoded
large-scale MIMO system with 16-QAM. The detection per-
formance is evaluated in terms of the bit error rates (BERs)
while MMSE detection is applied as the baseline. For a fair
comparison with other iteration detection schemes, here RIDA
and MRIDA update all the components of x within one full
iteration and we set ¢ = 4 by default for RIDA and MRIDA
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Fig. 3. Bit error rate versus average SNR per bit for the uncoded 16 x 128
large-scale MIMO system using 16-QAM.
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Fig. 4. Bit error rate versus average SNR per bit for the uncoded 16 x 128
large-scale MIMO system using 64-QAM.

in all the following simulations. For a better illustration of the
convergence, the iteration numbers of RIDA and MRIDA are set
ask = 2,3,4and k = 1, 2, 3respectively. As can be seen clearly,
with the increment of iterations, both the detection performance
of RIDA and MRIDA improve gradually, thus confirming the
convergence of the proposed randomized iteration. We can ob-
serve that MRIDA achieves a better convergence performance
than RIDA under the same number of iterations. This is in line
with the afore-mentioned analysis about the convergence rate
and MRIDA does have a better convergence performance by
optimization and enhancement. Note that both RIDA with k = 4
and MRIDA with k£ = 2 approach the detection performance of
MMSE while the MMSE detection performance will be obtained
with the increase of k.

The detection performance comparison between RIDA,
MRIDA and other conventional iteration schemes are presented
in Fig. 4 with respect to a 16 x 128 uncoded large-scale MIMO
system with 64-QAM. Besides MMSE detection scheme, low-
complexity detection schemes like the Neumann series in [11],
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Fig. 5. Bit error rate versus average SNR per bit for the uncoded 16 x 128
large-scale MIMO system with imperfect CSI using 64-QAM.

Newton iterations in [15], Jacobi iterations in [19], Richard-
son iterations in [22] with relaxation factor w = 1/(N + K)*,
the Gaussian approximation of interference message passing
(GAIMP) detection in [51] and the approximate message passing
with Gaussian approximation (AMP-G) in [16] are also em-
ployed. Clearly, under the same iteration number k = 3, both
RIDA and MRIDA outperform the Neumann series, Jacobi iter-
ations and Richardson iterations, implying a better convergence
performance. Meanwhile, with the increment of &, the detection
performance of RIDA and MRIDA gradually approach that of
MMSE, which verifies the valid convergence performance.

On the other hand, as a counterpart of Fig. 4, Fig. 5 is
given to evaluate the detection performance of the proposed
RIDA and MRIDA without perfect channel state information
(CSI)in a 16 x 128 uncoded large-scale MIMO systems using
64-QAM. Specifically, H = H + AH stands for the imperfect
CSI at the receiver side, where AH ~ CN (0,021 y) denotes
the channel estimation errors with 0'3 = nLE [56]. Here, n),
and F, indicate the number and the powgr of pilot symbols
respectively, and we set n, - E, = 160 (i.e., 02 = 0.1) for the
simulation. Compared to the results of perfect CSI in Fig. 4, the
performance of all the detection schemes under imperfect CSIin
Fig. 5 degrade accordingly. Clearly, the performance superiority
of RIDA and MRIDA can still be confirmed. Note that Newton
iterations also achieves a competitive performance in this case.
However, it suffers from the convergence condition N > K
and turns out to be rather limited in various cases of interest
in large-scale MIMO systems. To make it clear, the following
simulation results are given to further reveal the detection per-
formance when the condition N > K is not satisfied.

Besides the independent, identically distributed (i.i.d.) chan-
nels, the impact of correlated channels of large-scale MIMO
systems is also investigated to reveal the convergence perfor-
mance of the proposed RIDA and MRIDA schemes. Specifi-
cally, following the setups of correlation channels in [57], the

1 1
correlated channel matrix is set by R&:HTé,, where R €

4This setting of relaxation factor w is also same with that in [14].
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Fig. 6.  Bit error rate versus average SNR per bit for the uncoded 16 x 128
large-scale MIMO using 64-QAM with normalized correlation index ¢ = 0.1.
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Fig. 7. Bit error rate versus average SNR per bit for the uncoded 16 x 128
large-scale MIMO using 64-QAM with normalized correlation index ¢ = 0.2.

CN*N and T.o, € CE*XE denotes the receive correlation matrix
and the transmit correlation matrix respectively. Note that the
normalized correlation coefficient 1 > 1) > 0 is employed to
adjust the correlation degree within them. More precisely, a
totally uncorrelated scenario corresponds to ¢ = 0 while a fully
correlated scenario implies 1) = 1. As can be seen clearly, with
1 = 0.1 in Fig. 6, the detection performance of MMSE slightly
degrades compared to the i.i.d. case in Fig. 4. Meanwhile, the
convergence of the traditional iteration methods like Neumann
series, Newton, Jacobi, Richardson suffer from the correlated
channels so much, resulting in a terrible detection performance.
On the other hand, both the proposed RIDA and MRIDA still
work but with slower convergence rates accordingly, which is
in line with the derived convergence results. As expected, by
increasing the number of iterations, the detection performance
of both RIDA and MRIDA improve gradually. The same obser-
vations also can be found in the case with ¢ = 0.2 in Fig. 7,
where the channel matrix becomes more correlated. In this
condition, the performance of MMSE continues deteriorating.
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Fig. 8.  Bit error rate versus average SNR per bit for the uncoded 32 x 128

large-scale MIMO system using 16-QAM.

Here, the performance curves of Neumann series, Newton, Ja-
cobi, Richardson are omitted due to their poor performance and
we mainly focus on the convergence of RIDA and MRIDA.
Clearly, the convergence rates of RIDA and MRIDA become
much slower than before. Nevertheless, the convergence of them
are still guaranteed but more number of iterations are required
to achieve the near MMSE performance. Given the simulation
results of ¢ = 0.1 and ¢ = 0.2, we can see that the convergence
of the proposed RIDA and MRIDA are guaranteed but with
slower convergence rates, which is different from the traditional
iteration schemes.

In Fig. 8, the bit error rates (BERs) of RIDA and MRIDA
with different iteration numbers are illustrated in a 32 x 128
uncoded large-scale MIMO system with 16-QAM. For a bet-
ter comparison, the detection schemes like MMSE, Neumann
series, Newton iterations, Jacobi iterations and Richardson it-
erations are added as well. Intuitively, as the convergence re-
quirement N > K is not fulfilled in this case, all the conver-
gence performance of Neumann series, Newton iterations and
Jacobi iterations are poor, which result in the terrible detection
performance accordingly in uplink large-scale MIMO systems.
On the contrary, the convergence of both RIDA and MRIDA
work well as expected. As demonstrated in Theorem 1, this is
because their convergence always hold without suffering from
the convergence requirement like N > K. Therefore, further
system gains are exploited by RIDA and MRIDA, which are
still at low computational complexity cost. Undoubtedly, with
the increase of the iteration number, the detection performance
of RIDA and MRIDA improve smoothly while MMSE detection
performance can be achieved.

In Fig. 9, we extend the detection performance comparison
to a 64 x 128 uncoded large-scale MIMO system with 4-QAM
while the antenna ratio N/K gets smaller. We can observe that
the conventional iteration schemes like Neumann series, Newton
iterations and Jacobi iterations do not converge any more so that
the detection schemes based on them do not work at all. In sharp
contrast with them, the proposed RIDA and MRIDA work as
usual, and their detection performance gradually improve with
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Fig. 10.  Bit error rate versus average SNR per bit for the uncoded 64 x 128
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the increment of the number of iterations. It is interesting to
see that more iteration numbers are needed compared to the
cases 16 x 128 and 32 x 128. This is easy to interpret since
more correlations over components of x should be taken into ac-
count with the system dimension going up. Clearly, near-MMSE
detection performance still can be obtained by the proposed
randomized iteration schemes with relatively low computational
complexity. On the other hand, based on MRIDA, more detection
performance gain can be achieved by the proposed MRIDA-Net.
As expected, thank to the nonlinear projection by training via
DNN, MRIDA-Net outperforms MMSE considerably.

As a counterpart of Fig. 9, the detection performance com-
parison between MRIDA and other advanced iterative detection
schemes are presented in Fig. 10 with respect to a 64 x 128 un-
coded large-scale MIMO system with 4-QAM. Besides MRIDA,
the steepest descent method in [49], the damped Jacobi iterations
in [43] with damped parameter § = N/(N + K), Richardson
iterations in [22], Gauss Seidel iterations in [25], successive
over-relaxation (SOR) iterations in [50] with relaxation factor
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2

- 1+4/1-[e(1-D-1A)]2
tions in [45] are employed. As clearly can be seen, with £ = 3, all
these iterative detection schemes function well without suffering
from the requirement N > K. More specifically, these iterative
detection schemes entail different convergence performance
while the proposed MRIDA achieves the best convergence,
which results in the best detection performance among them
for uplink large-scale MIMO systems. Therefore, considerable
detection performance gain can be confirmed by adopting the
randomness into iterative schemes while the low computational
complexity is still maintained. Moreover, under the help of
deep neural networks, extra detection performance gain can be
obtained by MRIDA-Net.

To investigate the impact of the size ¢ in the proposed ran-
domized iteration schemes, Fig. 11 is presented to illustrate
the difference among different choices of ¢ for both RIDA and
MRIDA in a 64 x 128 uncoded large-scale MIMO system with
4-QAM. In particular the choices of ¢ = 8, 16, 32 are employed
and the numbers of iterations here for RIDA and MRIDA are set
as k = 18 and k = 4 respectively. Clearly, with the increment
of size g, the detection performance of both RIDA and MRIDA
improve gradually. This is because a larger size ¢ means more
components of x could be updated at one time, so that the
correlations between these components can be fully exploited.
However, a larger size ¢ also implies more computational cost
in the proposed randomized iterative detection schemes so that
areasonable size 1 < ¢ < V'K should be selected.

In order to illustrate the computational costs of the proposed
RIDA and MRIDA, Fig. 12 is given to show the complexity com-
parison in average elapsed running times per iteration. In partic-
ular, the uncoded MIMO system with NV = 128 receive anttenas
takes 16-QAM at SNR per bit = 8dB, and the simulation is
conducted by MATLAB R2019a on a single computer, with an
Intel Corei7 processor at2.8 GHz, a RAM of 8 GB and Windows
10 Enterprise Service Pack operating system. As can be seen
clearly, the average elapsed running times per iteration of all the
detection schemes increase accordingly with the increase of the

> and conjugate gradient (CG) itera-

SThis setting of relaxation factor w comes from [44].
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number of transmit antennas K. Specifically, the average time
cost per iteration of MRIDA is lower than that of RIDA, which
is competitive compared to GS and SOR iteration schemes. On
the other hand, we can observe that Newton iteration, Jacobi
iteration and Richardson iteration have smaller average running
times than MRIDA and RIDA, but the detection schemes based
on them could be poor due to the convergence limitation.

VII. CONCLUSION

In this paper, the uplink detection in large-scale MIMO sys-
tems is investigated, and two low-complexity iterative detection
schemes are proposed to overcome the convergence obstacle in
various cases of interest. First of all, by introducing random-
ness into iteration schemes, the randomized iterative detection
algorithm (RIDA) is proposed with computational complex-
ity O(K?). Then, by analysis, we show that it converges in
an exponential way to the target solution, where its conver-
gence rate is also derived. Most importantly, the convergence
of the proposed RIDA is always guaranteed for N > K. This
means it does not suffer from the convergence requirements
like other iterative detection schemes, thus greatly extending
the applications of low-complexity detection schemes in up-
link large-scale MIMO systems. After that, by resorting to the
conditional sampling, further optimization and enhancement are
given, and the modified randomized iterative detection algorithm
(MRIDA) is presented for better convergence and efficiency,
which leads to a better detection performance in large-scale
MIMO systems. Moreover, as for MRIDA, further complexity
reduction and implementation by deep neural networks are also
given to strengthen its detection efficiency and performance.
Therefore, by simply adjusting the number of iterations, flexible
detection trade-off between performance and complexity can be
achieved by both RIDA and MRIDA in uplink large-scale MIMO
systems.
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