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Abstract—The high precision positioning of global navigation
satellite systems (GNSS), which essentially corresponds to solv-
ing the integer least-squares (ILS) problem in the integer phase
ambiguity estimation, has emerged as a key problem for the de-
velopment of industrial internet-of-things (IIoT). In this paper, a
novel paradigm for solving the ILS problem is introduced to the
integer phase ambiguity estimation. Different from the traditional
paradigm of ILS which only involves one parameter to characterize
the trade-off between performance and complexity, the proposed
ILS paradigm entails two parameters named as the initial searching
size K ≥ 1 and the standard deviation σ > 0, thus introducing
extra degrees of freedom to facilitate the system trade-off. Based on
it, explicit analysis can be carried out for a mathematically tractable
trade-off, where great potentials could be further exploited for the
high precision positioning of GNSS. The equivalent searching algo-
rithm (ESA) is proposed, which achieves the same performance as
the classic Fincke-Pohst strategy in sphere decoding (SD) but with
tractable complexity measured by the number of visited nodes in
the searching stage. Moreover, the candidate protection mechanism
is given to further upgrade the equivalent searching algorithm,
which makes it not only an optimal but also a sub-optimal ILS
estimator given the flexible setup of K.

Index Terms—Integer parameter estimation, integer phase
ambiguity estimation, high precision positioning of GNSS, integer
least-squares (ILS) problem.

I. INTRODUCTION

NOWADAYS, the development of global navigation satel-
lite systems (GNSS) has become indispensable for various
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applications in the industrial internet-of-things (IIoT), which
enables efficient and reliable positioning anytime anywhere [1]–
[4]. Generally, the equipment calculates its position according
to received signals from satellites orbiting the earth, and the
accuracy of positioning in IIoT varies flexibly from meters to
millimeters [5], [6]. In principle, since the noise level (i.e., the
standard deviation of error) of the RF carrier phase measurement
is significantly less than those of other measurements, the high
precision positioning of GNSS for IIoT chiefly relies on the
accurate tracking of the carrier phase of modulated signals [7],
[8]. Typically, the measurement of carrier phase consists of two
parts — a fraction part and an integer part, where the former
could be easily captured by the usage of phase locked loops
(PLLs) [9]. In this condition, how to determine the integer part
of the carrier phase (usually known as integer phase ambiguity)
within a short observation time span has emerged as the key
for the millimeter level accuracy [10]. Meanwhile, in order to
further eliminate the satellite and receiver clock offsets, the
double-difference carrier phase measurement has been well
accepted, which restricts the problem of the phase resolution
into exploiting the integer nature of the double-difference phase
ambiguities [11], [12]. Essentially, this corresponds to solving
the integer least-squares (ILS) problem, which has wide appli-
cations in various applications like magnetic resonance imaging
(MRI), interferometric synthetic aperture radar (InSAR) and
cryptography.

With respect to the double-difference integer phase ambiguity
estimation, the most success approach so far is the least-squares
ambiguity decorrelation adjustment (LAMBDA) proposed by
Teunissen [13], [14]. By providing the unbiased estimates of
integer phase ambiguities, LAMBDA is not only widely applied
in instantaneous ambiguity resolution for GNSS [15], but also
is used for the real-time kinematic (RTK) positioning [16].
Essentially, LAMBDA accounts for solving an ILS problem,
which can be interpreted by two operation stages — “decorre-
lation” and “search”. By decorrelating the integer ambiguities
based on the related variance-covariance matrix, LAMBDA
effectively reduces the integer searching space, which results
in an efficient discrete searching process thereafter [17]. Based
on it, the lattice reduction technique like Lenstra-Lenstra-Lovász
(LLL) reduction from the field of lattice theory was introduced
to generate an equivalent set but with less correlated integer
ambiguities [18]–[20], thus leading to a more efficient ILS
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estimator [21]. Other modified decorrelation works to facilitate
the following searching process can be found in [22]–[26].

On the other hand, a lot of works have also been made to
speed up the searching process at the second state of LAMBDA.
Specifically, the searching process of LAMBDA initially follows
the Fincke-Pohst (FP) strategy in lattice decoding [27], which
enumerates all the candidate integer vectors within a sphere
radius in the space. In [28], a shrinking strategy was proposed,
where the searching radius is dynamically updated as soon
as a valid candidate integer vector is found. This is actually
accordance with the Schnorr-Euchner (SE) strategy in lattice
theory [29] while other modifications about the searching stage
can be found in [30]–[34]. Meanwhile, with the development of
IIoT, the system dimension goes up as the increase in satellite
availability and transmitted signals improves the number of
ambiguity parameters. For this reason, a number of modification
strategies have been given to lower the complexity cost of GNSS
positioning [35], [36].

In this condition, reasonable suboptimal solutions based on
the searching process become alternatives but it is not clear
how the complexity reduction of the searching stage character-
izes the performance loss correspondingly. In other words, the
trade-off between the searching performance and complexity
in addressing the ILS problem is still an open issue. This is
a fundamental question in the field of ILS but has not been
well explained for a long time. For example, once the searching
radius in the searching process is set to guarantee the optimal
output solution for the ILS estimator, it is normally hard to
track the number of visiting nodes along the tree-like traversal,
rendering an untractable complexity cost. Consequently, the
unknown trade-off between the performance and complexity
severely limits the potential to be further exploited in this area
even though a few works have been given to yield the suboptimal
solutions in practice.

In this paper, to achieve the high precision positioning of
GNSS, a new paradigm of solving the ILS problem is introduced
to the integer phase ambiguity estimation in high-dimensional
systems. Specifically, the classic ILS problem is reformulated
into a new formation but with two controllable parameters:
the initial searching size K ≥ 1 and the standard deviation
σ > 0. Different from the conventional paradigm of the ILS
problem with only one tractable parameter (i.e., searching radius
χ > 0) to regulate, extra degrees of freedom in characterizing
the trade-off between performance and complexity can be ob-
tained. Based on it, the equivalent searching algorithm (ESA) is
proposed to achieve the tractable trade-off between performance
and complexity, where the complexity by means of the number
of visited nodes along the searching process for a given specific
sphere radius can be clearly upper bounded. Moreover, with the
sphere radius being characterized byK and σ asχ = σ

√
2 lnK,

we further update the proposed algorithm to a suboptimal ILS
estimator by designing a searching mechanism named as can-
didate guard so that any attempt of complexity reduction in the
accessible expense of performance loss can be carried out freely
by simply tuning K with a fixed σ. By doing this, the proposed
ESA turns out be an optimal scheme when K is large enough

and becomes suboptimal when K is limited, which fully takes
advantages of the complexity cost to efficiently yield solutions
rather than restart the searching again and again with a larger
size of sphere radius. In this way, a more flexible positioning
for GNSS according to the requirements of time consuming and
positioning accuracy is achieved.

To summarize, we advance the state of the art of solving the
double-difference integer phase ambiguity estimation in GNSS
in the following several fronts.
� A new paradigm of solving the ILS problem is introduced

to integer phase ambiguity estimation in GNSS, where
extra freedom is introduced in characterizing the trade-off
between performance and complexity.

� Under the new paradigm, the equivalent searching algo-
rithm is proposed to realize the tractable trade-off, where
the sphere radius χ = σ

√
2 lnK corresponds to the num-

ber of visited nodes upper bounded by |S| ≤ nK, where n
is the system dimension.

� The mechanism candidate protection is proposed to make
the equivalent searching algorithm more flexible, where
suboptimal and optimal solutions will be outputted respec-
tively according to different K with a fixed σ.

The rest of this paper is organized as follows. Section II
briefly reviews the basics of carrier-phase measurements in
GNSS, and introduces the related ILS system model based on the
integer phase ambiguity in the double-difference carrier-phase
measurement. In Section III, we introduce the new paradigm to
reformulate the ILS problem in a new formation, and we show
that such a new paradigm is able to interpret the ILS estimator
more tractably in both the perspectives of performance and
complexity. Then, based on the paradigm of ILS, the equivalent
searching algorithm is proposed in Section IV for a tractable
system trade-off. After that, the mechanism of candidate protec-
tion is proposed for the equivalent searching algorithm to output
suboptimal solutions for the consideration of time consuming.
Finally, simulation results are given in Section VI and the paper
is concluded in Section VII.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the transpose, inverse, pseu-
doinverse of a matrix B by BT ,B−1, and B†, respectively. We
use bi for the ith column of the matrix B, bi,j for the entry in
the ith row and jth column of the matrix B. The operator �x�
denotes rounding to the integer closest to x. If x is a complex
number, �x� rounds the real and imaginary parts separately.
Finally, in this paper, the complexity of searching algorithms
is evaluated by the number of visited nodes (i.e., |S|) during the
searching along the tree traversal. Meanwhile, the computational
complexity is measured by the number of arithmetic operations
(additions, multiplications, comparisons, etc.).

II. PRELIMINARIES

In this section, we introduce the background and mathematical
tools, which are necessary to describe and analyze the proposed
ILS estimator under the new paradigm for the high precision
positioning in GNSS.
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A. The Carrier-Phase Measurement in GNSS

Basically, the carrier phase measurementΦ can be represented
as

Φ = ‖r−R‖+ c(dt− dT ) + λN+ ε, (1)

where ‖ · ‖ denotes the Euclidean distance and
r is the unknown receiver antenna position vector at signal

reception time,
R is the given satellite antenna position vector at signal

transmission time,
c is the speed of light in vacuum,
cdt is the receiver clock range offset,
cdT is the satellite clock range offset,
λ is the carrier wavelength of the signal,
N is the carrier phase ambiguity.

Here the term ε accounts for the carrier phase measurement
noise and biases such as satellite ephemeris errors, tropospheric
and ionospheric delays, as well as ranging errors caused by
multipath.

Generally, it is very often to differentiate the carrier phase
measurements between satellites and between receivers to re-
move the satellite and receiver clock offsets. This leads to the
double-difference carrier phase observation model given by

DDΦ = DD‖r−R‖+ λDDN+DDε, (2)

where DD represents the double-difference operator and the
ambiguity-term DDN is known to be integer-valued [31]. Fol-
lowing most of related works, due to the consideration of sim-
plicity we restrict the setup in the following to the two-receiver
situation.1 This actually has no impact upon the general applica-
bility of the proposed method since the method is independent
of the number of receivers [37]. From (2), the linearized double-
difference observation equations are collected in the following
linear system of equations [13]

f = Ax+Bb+ e (3)

where
f ∈ Rm is the vector of observed minus computed double-

difference carrier phase measurements,
x ∈ Zn is the vector of unknown integer double-difference

ambiguities,
b ∈ Rp is the vector that contains the increments of the

unknown baseline coordinates,
e ∈ Rn is the vector of unmodelled errors,
A ∈ Rm×n is the design matrix for the ambiguity terms,
B ∈ Rm×p is the design matrix for baseline coordinates.

Here, m denotes the number of dimensions of the observations
by double-difference carrier phase measurements, n is the num-
ber of ambiguities. The number of baseline coordinates p is min-
imally 3, which is the case when both the receivers are stationary,
but will be a multiple of 3 when the second receiver is moving.

1Normally, one of the receivers is the base station nearby while the other one
is the target position no matter it is stationary or moving.

Generally, it is assumedm ≥ n+ p, and them× (n+ p)design
matrix [A B] is assumed to have full rank equaling (n+ p),
which means enough observations during multiple epochs have
been made to determine x and b. This ensures the uniqueness of
the solution for the mixed least-squares problem in the following

(xoptimal,boptimal) = argmin
x∈Zn,b∈Rp

‖f −Ax−Bb‖2Qf
, (4)

where ‖ · ‖2Qf
= (·)TQ−1

f (·), and Qf is the variance-covariance
matrix of the double-difference carrier phase observables.
Clearly, the more accurate estimations about x and b, the higher
precision positioning that GNSS can achieve.

B. The ILS Problem in Double-Difference Carrier-Phase
Measurement

Given (4), parameter estimations of x and b are normally car-
ried out in three steps — the float solution, the integer ambiguity
estimation and the fixed solution respectively. Firstly, the float
solution solves (4) but in an ordinary unconstrained least-squares
formation with x ∈ Zn replaced by x ∈ Rn. As a result, both
the real-valued estimates of x and b, referred to as x̃ and b̃, are
obtained together with their corresponding variance-covariance
matrices Qx̃ and Qb̃. Then, the integer ambiguity estimation
at the second step tries to solve the integer least-squares (ILS)
problem in the following

xoptimal = argmin
x∈Zn

(x− x̃)TQ−1
x̃ (x− x̃). (5)

Finally, the baseline coordinates b̃ is adjusted accordingly by the
integer ambiguity xoptimal, thereby forming the solution to (4).
Undoubtedly, the difficulty of solving the mixed least-squares
problem in (4) principally lies on solving the integer least-square
problem in (5), making it the key for the high precision position-
ing of GNSS.

Specifically, the ILS problem in (5) can be solved by a discrete
search over an ellipsoidal space, where the shape and orientation
of such an ellipsoid are determined by the variance covariance
matrix of the integer variables. For this reason, the decorrelation
in LAMBDA tries to seek out an equivalent ellipsoid but is
much sphere-like, thus making the search within it more effi-
ciently. More precisely, through the integer unimodular matrix
Z ∈ Zn×n with | det(Z)| = 1, the ILS problem in (5) becomes

ẑ = argmin
z∈Zn

(z− z̃)TQ−1
z̃ (z− z̃) (6)

with z = ZTx, z̃ = ZT x̃, Qz̃ = ZTQx̃Z, and the correlation
among components of z becomes less correlated than that of x
through this transformation2. Then, based on (6), the searching
stage of LAMBDA is performed to enumerate a subspace in Zn

by satisfying

(z− z̃)TQ−1
z̃ (z− z̃) ≤ χ2, (7)

which contains the optimal solution zoptimal within it. Hereχ > 0
represents a constant to depict the sphere radius in the space.

2There are many methods (e.g., LLL reduction) to realize this transformation
by providing various solutions ofZ for a more diagonalized variance-covariance
matrix Q [38].
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After zoptimal is determined, xoptimal in (5) can be got efficiently
through xoptimal = Z−T zoptimal.

III. NEW PARADIGM OF THE ILS PROBLEM

Intuitively, given the ILS problem in (5), it is not hard to
transfer it into an equivalent form as

xoptimal = argmin
x∈Zn

‖c−Gx‖2 (8)

due to

‖c−Gx‖2=(x− x̃)TGTG(x− x̃)

+cT(I−G(GTG)−1GT)c (9)

with x̃ = (GTG)−1GT c and GTG = Q−1
x̃ . This is also the

methodology applied in [21], [25], [31], where the optimal
solutionxoptimal in (8) accounts for the results under the maximal
likelihood (ML) criterion. Moreover, for a better illustration on
the searching process, a QR-decomposition with G = QR is
applied and we express the system model in (8) as y = QT c,
where Q is an orthogonal matrix and R is an upper triangular
matrix. Accordingly, this corresponds to

xoptimal = argmin
x∈Zn

‖Rx− y‖2. (10)

A. Solving ILS Problem by Sphere Decoding

Clearly, given the ILS problem in (10), it can be addressed by
enumerating the integer candidates within a sphere radiusχ > 0

‖Rx− y‖ ≤ χ, (11)

which is known as the sphere decoding (SD) in mathemat-
ics [30], [32].

Thanks to the special structure contributed by QR-
decomposition, the discrete searching of sphere decoding based
on (11) can be simply expressed as

|x̂i − x̃i|≤
⎡
⎣χ2−

n∑
j=i+1

∣∣∣∣∣∣yj−
n∑

l=j

rj,lx̂l

∣∣∣∣∣∣
2⎤
⎦

1
2

/|ri,i| (12)

in a backwards order layer by layer (i.e., i = n, n− 1, . . . , 1),
where

x̃i =
yi −

∑n
j=i+1 ri,j x̂j

ri,i
. (13)

Here, at the i-th searching layer, the integer candidate x̂j
i who

denotes the j-th closest integer candidate node to x̃i will be
saved if it satisfies (12). Finally, among the collected integer
candidate vectors, the one with the closest Euclidean distance
‖Rx̂− y‖ will be outputted as the solution. This is actually
known as Fincke-Pohst strategy in sphere decoding [27]. At this
point, we should mention that the above searching process is
essentially the same with that in LAMBDA method, in which
Cholesky decomposition is used to perform the related searching
upon (5) layer by layer. Nevertheless, we emphasize that such a
transformation of the ILS problem from (5) to (10) is meaningful
as it paves the way for the analysis of the following work.

Intuitively, the selection of χ becomes a vital point in ILS
estimator. In particularly, if χ is set too small, no candidate
vectors can be found, and the searching has to restart again
but with a larger size of χ. On the other hand, a large size
χ would lead to considerable complexity waste. Although a
few suggestions have been given for a reasonable choice of χ,
solving a high-dimensional ILS problem within a limited time
span still turns out to be impractical [33]. One inherent problem
arising here is that there is only one parameter χ to coordinate
the balance between performance and complexity, making such
a trade-off untractable in theory. To this end, we propose to
reformulate the paradigm of ILS problem, thus leading to more
degrees of freedom in characterizing the trade-off between per-
formance and complexity.

B. ILS Problem Transformation

The ILS problem in (5) or (10) can be viewed as an opti-
mization problem, which attempts to return the target x with the
smallest Euclidean distance ‖Rx− y‖. To expand its capability
for interpreting the ILS problem, we now introduce the following
function

F (x) = e−
1

2σ2 ‖Rx−y‖2 (14)

with σ > 0 to establish the new paradigm for the ILS problem
transformation, i.e.,

xoptimal = argmax
x∈Zn

F (x) = argmin
x∈Zn

‖Rx− y‖2, (15)

which corresponds to finding the integer candidate vector xwith
the largest value in the function F (·).

According to such a transformation, the parameter standard
deviationσ > 0 is introduced as the above paradigm equivalence
always holds no matter what σ is, which means extra degrees
of freedom can be obtained to interpret the system trade-off
between performance and complexity. More precisely, a small
σ is able to intensively enlarge the value difference among
F (x)’s while a large σ will enable a more uniform values of
F (x)’s. With respect to returning the optimal solution xoptimal,
it is strongly encouraged to use a small σ to emphasize the
value difference between F (xoptimal) and others. Note that x
andF (x) are one-to-one correspondence, based on the enhanced
F (xoptimal), one can enumerate over the function F (x) through
a value threshold

F (x) = e−
1

2σ2 ‖Rx−y‖2 ≥ 1

K
(16)

with initial searching size K > 1 to pick up the optimal solution
xoptimal.

In particular, (16) is similar to (11) but characterized by
two parameters K and σ rather than the single one χ. More
specifically, (16) can be rewritten as

‖Rx− y‖≤σ
√
2 lnK �χ, (17)

which means the sphere radius χ in (11) is exactly interpreted
by K and σ. In other words, the traditional Fincke-Pohst SD
based on (12) can be applied directly for any given K and σ but
it fails to fully take advantage of the two parameters K and σ to
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explore more. Therefore, with respect to the paradigm in (15),
how to design the related searching algorithm to fully make use
of K and σ becomes the key to exploit the system potential.

IV. EQUIVALENT SEARCHING ALGORITHM

In this section, inspired by the proposed paradigm of solving
the ILS problem, we investigate how to utilize K and σ to
perform the specific searching process. First of all, the equivalent
searching algorithm (ESA) is proposed, which is essentially the
same with Fincke-Pohst SD but parameterized by the initial
searching sizeK and the standard deviation σ. Based on it, since
extra degrees of freedom are obtained, the relationship between
performance and complexity can be revealed, thus leading to a
tractable trade-off in solving the ILS problem.

A. Algorithm Description

First of all, similar to Fincke-Pohst SD, the tree-search struc-
ture in a backwards order from i = n to i = 1 layer by layer is
retained. Then, based on it, the searching size K(x̂j

i ) for each
integer candidate node x̂j

i is defined as

K(x̂j
i ) � K(x̂j

i ) · f(x̂j
i ) (18)

where the defined weighted function is

f(x̂j
i ) � e

− 1

2σ2
i

‖x̂j
i−x̃i‖2

(19)

with σi = σ/ri,i. Here, x̂j
i ∈ Z with j ∈ {1, 2, . . .} denotes the

j-th closest integer candidate node to x̃i, x̂
j
i represents the parent

node of x̂j
i at the last searching layer i+ 1 and several children

candidate nodes x̂j
i may share a same parent node x̂j

i . Moreover,

the children candidate node x̂j
i will be retained only if the

following searching threshold

K(x̂j
i ) ≥ 1 (20)

is satisfied. Otherwise, x̂j
i as a candidate node will be pruned, and

the searching moves to the next layer based on those survived
candidate nodes. As clearly shown in Fig. 2, candidate node x̂3

i−1

is pruned due to K(x̂3
i−1) < 1 while candidate nodes x̂1

i−1 and
x̂2
i−1 are saved by satisfying the searching threshold.
Clearly, in this way, the initial searching size K actually cor-

responds to the root searching size for the following operations,
i.e., K = K(x̂j

n). More specifically, the initial searching size K
essentially serves as a parameter to adjust the searching threshold
flexibly, where a larger size K amounts for a smaller searching
threshold at each layer. Finally, the integer candidate vector with
the closest Euclidean distance ‖ Rx̂− y ‖ in the candidate list
will be outputted as the estimator solution.

Theorem 1: The proposed equivalent searching algorithm is
exactly the same with Fincke-Pohst SD but with sphere radius
being characterized by K and σ

χequivalent = σ
√
2 lnK. (21)

Proof: From (18) and (20), the searching threshold can be
further specified as

f(x̂j
i ) ≥

1

K(x̂j
i )

=
1

K · f(x̂j
i+1) · · · f(x̂j

n)
. (22)

According to (22), for any integer candidate vector x̂ being
collected by the proposed algorithm, the following relationship
holds

f(x̂1) ≥ 1

K · f(x̂2) · · · f(x̂n)
, (23)

which leads to
n∏

i=1

f(x̂n−i+1) =
n∏

i=1

e
− 1

2σ2
n−i+1

‖x̂n−i+1−x̃n−i+1‖2

= e−
1

2σ2 ‖Rx−y‖2

≥ 1

K
. (24)

Clearly, this corresponds to obtain the integer candidate vectors
within the sphere radius

‖Rx− y‖ ≤ σ
√
2 lnK, (25)

which is exactly the same to (17) in the new paradigm of ILS. �
According to Theorem 1, the proposed equivalent searching

algorithm is capable of collecting all the integer candidate
vectors within the sphere radius χequivalent = σ

√
2 lnK by fully

taking advantages of K and σ. Therefore, extra degrees of free-
dom are introduced to reexamine the ILS problem. Moreover, it
is also straightforward to verify the equivalence of the proposed
equivalent searching algorithm and Fincke-Pohst SD by showing
they have the same searching space of x̂i at each layer. In
particular, according to the searching threshold shown in (22),
the searching space of x̂i given x̃i can be derived as

|x̂i − x̃i|equivalent≤
⎡
⎣2σ2 lnK−

n∑
j=i+1

∣∣∣∣∣∣yj−
n∑

l=j

rj,lx̂l

∣∣∣∣∣∣
2⎤
⎦

1
2

/|ri,i|,

(26)
which is exactly the boundary of |x̂i − x̃i|Fincke-Pohst in (12) for
1 ≤ i ≤ n by letting χ = σ

√
2 lnK.

B. Trade-Off Analysis Between Performance and Complexity

Clearly, given the parameters K and σ, the proposed equiv-
alent searching algorithm is able to obtain integer candidate
vectors within a sphere radius χequivalent = σ

√
2 lnK. Interest-

ingly, note that in this searching process, either K or σ can be
adjusted freely to control the size of sphere radius χequivalent,
which provides a more feasible way for the analytical diagnose
in both performance and complexity of solving the ILS problem.

Lemma 1: In the proposed equivalent searching algorithm, for
each parent candidate node x̂j

i with K(x̂j
i ) ≥ 1, the number of

its saved children candidate nodes at searching layer i, denoted
by Ksave, satisfies

Ksave ≤ K(x̂j
i ) (27)
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for σ ≤ mini |ri,i|/(2
√
π).

Proof: Based on the searching threshold given in (20), the
condition shown in (27) holds if the 	K(x̂j

i ) + 1�-th closest
integer candidate to x̃i will be pruned for sure, that is

K(x̂j
i )f(x̂

	K(x̂j
i )+1�

i ) < 1. (28)

Next, because the distance |x̂j
i − x̃i| is bounded by

(j − 1) · 1
2
≤ |x̂j

i − x̃i| ≤ j · 1
2
, (29)

the condition in (28) can be guaranteed if

K(x̂j
i ) · e

− 1

8σ2
i

(	K(x̂j
i )+1�−1)2

< 1, (30)

or equivalently

σ2 <
(	K(x̂j

i ) + 1� − 1)2

8 lnK(x̂j
i )

· r2i,i. (31)

Subsequently, it is straightforward to justify that the right-
hand term of (31) is lower bounded as

(	K(x̂j
i ) + 1� − 1)2

8 lnK(x̂j
i )

· r2i,i >
1

8 ln 2
· r2i,i. (32)

Therefore, by setting σ ≤ mini |ri,i|/(2
√
π) for 1 ≤ i ≤ n,

it it easy to check the condition in (31) is satisfied, which means
the 	K(x̂j

i ) + 1�-th closest integer candidate to x̃i will definitely

be pruned so that Ksave ≤ K(x̂j
i ). �

Lemma 2: In the equivalent searching algorithm, for each
parent candidate node x̂j

i with K(x̂j
i ) ≥ 1, the summation of

searching sizes of its children candidate nodes at searching layer
i is non-increasing, i.e.,

∑
j

K(x̂j
i ) < K(x̂j

i ) (33)

for σ ≤ mini |ri,i|/(2
√
π).

Proof: According to the definition of K(x̂j
i ) in (18), the

summation of searching sizes of its children candidate nodes
at searching layer i follows that∑

j

K(x̂j
i ) = K(x̂j

i ) ·
∑
j

f(x̂j
i )

< K(x̂j
i ) ·

∑
x̂i∈Z

e
− 1

2σ2
i

‖x̂i−x̃i‖2

(a)

≤ K(x̂j
i ) ·

∑
x̂i∈Z

e
− 1

2σ2
i

‖x̂i‖2

(b)
= K(x̂j

i ) · ϑ3(|ri,i|2/2πσ2)

(c)≈ K(x̂j
i ). (34)

Here, inequality (a) holds due to the following relationship∑
x̂i∈Z

e
− 1

2σ2
i

‖x̂i−x̃i‖2 ≤
∑
x̂i∈Z

e
− 1

2σ2
i

‖x̂i‖2
(35)

where the equality happens only when x̃i ∈ Z. Inequality (b)
recalls the Jacobi theta function ϑ3 [39]

ϑ3(ν) =

+∞∑
n=−∞

e−πνn2

(36)

while the approximation in (c) obeys

ϑ3(|ri,i|2/2πσ2) ≤ ϑ3(2) = 1.0039 ≈ 1 (37)

forσ ≤ mini |ri,i|/(2
√
π) asϑ3(ν) is monotonically decreasing

with ν > 0. �
Based on Lemmas 1 & 2, the complexity of the proposed

equivalent searching algorithm can be derived by means of the
number of visited nodes as follows.

Theorem 2: In the equivalent searching algorithm, let σ ≤
mini |ri,i|/(2

√
π), the number of visited nodes denoted by |S|

is upper bounded by

|S| < nK. (38)

Proof: First of all, based on Lemma 1, the number of saved
candidate nodes at searching layer 1 ≤ i ≤ n, i.e., K layer i

save , is
upper bounded by the summation of searching sizes at the
previous layer i+ 1,

K layer i
save =

∑
Ksave ≤

∑
K(x̂j

i ) = K layer i+1
searching size. (39)

On the other hand, according to Lemma 2, it is easy to check
that the summation of searching sizes at each searching layer is
decreasing as

K layer 1
searching size < . . . < K layer n

searching size < K layer n+1
searching size = K (40)

so that the number of visited nodes in the proposed equivalent
searching algorithm is upper bounded by

|S| =
n∑

i=1

K layer i
save < n ·K layer n+1

searching size = nK, (41)

completing the proof. �
The clear complexity upper bound for the proposed equiva-

lent searching algorithm in Theorem 2 answers a fundamental
question in solving the ILS problem since it is rather difficult to
estimate the required complexity based on the single parameter
χ. Instead, based onK andσ, the trade-off between performance
and complexity turns out to be analytical. Therefore, one can
simply fix σ = mini |ri,i|/(2

√
π) and enjoy the trade-off by

tuning the initial searching size K > 1, which leads us to the
following Theorem.

Theorem 3: In the equivalent searching algorithm, let σ =
mini |ri,i|/(2

√
π), the performance measured by the sphere ra-

dius χequivalent =
√

lnK
2π mini |ri,i| corresponds to the tractable

complexity upper bounded by |S| < nK.
According to Theorem 3, in order to achieve a larger sphere

radius χequivalent, the initial searching size K should increase
accordingly, which also implies more visited nodes being upper
bounded by nK. Subsequently, consider solving the ILS prob-
lem in (10), the required initial searching size K as well as the
complexity |S| can be derived in the following.
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Theorem 4: To solve the ILS problem, the initial search-
ing size K by the proposed equivalent searching algorithm is
e2π‖Rxoptimal−y‖2/min2

i |ri,i|, which corresponds to the complexity
upper bounded by |S| < n · e2π‖Rxoptimal−y‖2/min2

i |ri,i|.
On the other hand, as the number of saved candidate nodes

at the final searching layer i = 1 accounts for the number of
collected integer candidate vectors, i.e., K layer 1

save = |L|, the fol-
lowing result can be achieved.

Corollary 1: The number of integer candidate vectors col-
lected by the proposed equivalent searching algorithm, denoted
by |L|, is upper bounded by

|L| < K. (42)

Corollary 1 is rather meaningful for the study of ILS by
bounding the number of collected integer candidate vectors. To
the best of our knowledge, this is the first time that the number of
visited integer candidate vectors can be quantized, thus making
the related ILS estimator more tractable and analytical. Here, we
also point out the significance of LLL reduction, which is able
to effectively improve the value of mini |ri,i| (i.e., mini ‖b̂i‖,
where b̂i’s are the Gram-Schmidt vectors of the lattice basis B)
through the matrix transformation [19], [40].

zoptimal = argmin
x∈Zn

‖Rz− y‖2, (43)

where x and z are one-to-one correspondence according to R =
RU,z = U−1x,U ∈ Zn, and |U| = 1 is the unimodular matrix
produced by LLL reduction.

V. FURTHER ENHANCEMENTS OF THE EQUIVALENT

SEARCHING ALGORITHM

Since the summation of searching sizes is decreasing layer
by layer, there is a potential risk in the equivalent searching
algorithm: it only works well when the initial searching sizeK is
large enough. As for small value K, the searching still performs
but it may terminate at early layers because all the possible
candidate nodes are pruned due to a limited searching size
K(x̂j

i ). Actually, such a problem does also exist in Fincke-Pohst
SD, where no valid solutions will be outputted by a small sphere
radiusχ. In this condition, even though considerable complexity
cost has been consumed for searching in the early layers, no
integer candidate vectors can be saved at the end, making the
searching process meaningless. This in essence poses an inherent
question to the proposed equivalent searching algorithm: how
to deterministically achieve the performance by yielding valid
solutions whenK is small? In what follows, we try to answer this
question by rescuing a few valuable integer candidate vectors
from the mechanism of searching threshold.

A. Candidate Protection

In order to maintain a desired performance of the proposed
equivalent searching algorithm for small sizes of K, the can-
didate protection mechanism is proposed. Specifically, for a

candidate node x̂j
i with small searching size

1 ≤ K(x̂j
i ) < e

π
2min2 |ri,i | , (44)

the searching along this branch in the following layers is broke
off, while the closest candidate nodes x̂1

i−1, . . . , x̂
1
1 in the rest

of layers are computed directly, thereby outputting an integer
candidate vector x̂. The motivation behind this mechanism is
mainly because the searching solution consists of the closest
candidate nodes x̂1

i′s in the rest of layers normally has the
largest sampling probability along that branch. Therefore, rather
than removing those candidate nodes with small searching sizes
directly, the candidate protection mechanism effectively extends
the searching threshold in (20) by reserving some high-qualified
integer candidate vectors.

Remark 1: With σ = mini |ri,i|/(2
√
π), for parent candidate

node x̂j
i with K(x̂j

i ) ≥ e
π

2min2 |ri,i | , there does exist its children
node according to the pruning threshold. On the contrary, the
children node existence of the parent candidate node x̂j

i with

1 ≤ K(x̂j
i ) < e

π
2min2 |ri,i | is not guaranteed so that the candidate

protection is invoked.
Note that the added candidate protection works compatibly

with the searching threshold as it tries to rescue a few can-
didate vectors discarded by the latter. Clearly, the usage of
candidate protection expands the initial searching size K > 1
to K ≥ 1. Interestingly, when K = 1, the performance of the
Babai’s nearest plane algorithm will be achieved by the pro-
posed algorithm, which establishes a flexible performance trade-
off through tuning K. Therefore, candidate protection can be
simply carried out through Babai’s nearest plane algorithm since
x̂1
1, . . ., x̂

1
n is exactly the decoding result of it. By doing this, the

final candidate list L consists of two parts: integer candidate
vectors collected by candidate protection, i.e., Lprotection and
searching threshold, i.e., Lsearching, where the candidate vector
with the closest Euclidean distance ‖ Rx̂− y ‖ among the
set L = Lprotection

⋃
Lsearching is outputted as the final solution.

Intuitively, even though Lsearching = ∅, there are still searching
outputs due to Lprotection.

The update by the proposed candidate protection is mean-
ingful as it converts the ESA from an optimal scheme (i.e.,
when K is sufficient) to a suboptimal scheme (i.e., when K
is limited). It yields the suboptimal solutions rather than restart
the searching with a larger K, which not only fully exploits
the complexity cost but also achieves a better performance
than the traditional LAMBDA algorithm. As shown in Fig. 3,
according to the candidate protection, the candidate node x̂2

i−1

with 1 ≤ K(x̂2
i ) < e

π
2min2 |ri,i | is saved to yield the candidate

vector x̂1 directly while the candidate node x̂3
i−1 is pruned due

to K(x̂3
i ) < 1.

To summarize, at each searching layer, the proposed equiva-
lent searching algorithm operates in the following two steps
� Compute the searching size K(x̂j

i ) by (18);
� Obtain candidate nodes x̂j

i by (20). If 1 ≤ K(x̂j
i ) <

e
π

2min2 |ri,i | , invoke the Babai’s nearest plane algorithm to
directly return a searching candidate x̂,
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Algorithm 1: Babai’s Nearest Plane Algorithm.

Require: G ∈ Rn×n, c ∈ Rn

Ensure: x ∈ Zn

1: let G = QR and y = Q†c
2: for i = n, ..., 1 do
3: let x̃i =

yi−
∑n

j=i+1 ri,jxj

ri,i

4: get x̂i by directly rounding as x̂i = �x̃i�
5: end for
6: return x

where the implementation of the Babai’s nearest plane algorithm
for candidate protection is outlined in Algorithm 1.

B. Complexity Analysis

Next, we show that even with the candidate protection, the
complexity by means of the number of visited nodes |S| and the
number of collected candidates vectors |L| still remain the same
upper bound as before.

Theorem 5: Given the initial searching size K ≥ 1 with σ =
mini |ri,i|/(2

√
π), the number of candidate vectors collected

by the equivalent searching algorithm under both the searching
threshold and the candidate protection is upper bounded by

|L| < K (45)

with bounded total number of visited nodes

|S| < nK. (46)

Proof: Because the collected integer candidate vectors come
from searching threshold and candidate protection respectively,
and because the summation of the searching size at each layer
is decreasing, it follows that

K = K(xj
n)

>
∑

K(xprotection
n ) +

∑
K(xsearching

n )

>
∑

K(xprotection
n ) +

∑
K(xprotection

n−1 ) +
∑

K(xsearching
n−1 )

> · · ·

>

n∑
i=2

[∑
K(xprotection

i )
]
+
∑

K(xsearching
2 ), (47)

where 1 ≤ K(xprotection
i ) < e

π
2min2 |ri,i | and K(xsearching

2 ) ≥
e

π
2min2 |ri,i | .
According to candidate protection, only one integer candidate

vector can be saved for eachK(xprotection
i ),2 ≤ i ≤ n. Therefore,

the number of integer candidate vectors obtained by candidate
protection from searching layer n to 2 in all is upper bounded
by

|Lprotection| ≤
n∑

i=2

[∑
K(xprotection

i )
]
. (48)

Algorithm 2: Equivalent Searching Algorithm.

Require: K,R,y, σ = mini |ri,i|/(2
√
π), L = ∅

Ensure: x ∈ Zn

1: invoke Function 1 with i = n to search layer by layer
2: add all the candidates x̂’s generated by Function 1 to

L
3: output x̂ = argmin

x∈L
‖y −Rx‖ as the solution

Function 1: Searching at Layer i Given [x̂n, . . . , x̂i+1]

1: compute x̃i according to (13)
2: compute the probability f(x̂j

i ) by (19) with
j ∈ [1, 2, 3]

3: compute the searching size K(x̂j
i ) according to (18)

4: for each specific integer candidate x̂j
i do

5: if K(x̂j
i ) < 1 then

6: prune x̂j
i from the tree search

7: else
8: save x̂j

i to form the searching result
[x̂n, . . . , x̂i+1, x̂

j
i ]

9: if 1 ≤ K(x̂j
i ) < e

π
2min2 |ri,i | then

10: output candidate x̂ by Babai’s nearest plane
algorithm

11: else if K(x̂j
i ) ≥ e

π
2min2 |ri,i | then

12: if i = 1 then
13: output the candidate x̂
14: else
15: invoke Function 1 to search the next layer

i− 1
16: end if
17: end if
18: end if
19: end for

Meanwhile, the number of candidate vectors collected by the
searching threshold corresponds to K layer 1

save can be bounded as

|Lsearching| = K layer 1
save ≤

∑
K(xsearching

2 ) (49)

due to (39) in Theorem 2. Therefore, by simply substituting (48)
and (49) into (47), we have

|L| = |Lsearching|+ |Lprotection| < K. (50)

Consequently, based on (50), the number of visited candidate
nodes can be easily derived by

|S| < nK, (51)

since all the visited nodes are counted to generate |L| integer
candidate vectors. �

Therefore, it is clear to see that the proposed ESA establishes
a flexible and tractable trade-off, which bridges the suboptimal
and the optimal performance from complexity |S| = n to |S| <
n · e2π‖Rxoptimal−y‖2/min2

i |ri,i| by simply tuning K. Furthermore,
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according to Theorem 5, the computational complexity of the
equivalent searching algorithm actually can be calibrated by
the Babai’s nearest plane algorithm (i.e., O(n2) with n visited
candidate nodes). More specifically, it can be easily derived to be
upper bounded by O(K · n2) due to less than nK visited nodes.
Therefore, to achieve a better performance, the computational
complexity increases accordingly for a larger sphere radius

χequivalent =
√

lnK
2π mini |ri,i|. Nevertheless, once the optimal

solution is ensured to return for a certain sphere radius, in-
creasing K would turn out to be meaningless as the system
performance would never improve anymore.

C. Complexity Reduction in Implementation

According to (18), the searching size K(x̂j
i ) of a candi-

date integer node x̂j
i ∈ Z decreases with the increment of j ∈

{1, 2, . . .}. Thanks to this monotonicity, we now study the size
of index j in the equivalent searching algorithm for practical im-
plementation, which reduces the state space of j from {1, 2, . . .}
to {1, . . . , N}.

In particular, according to (18), the searching size K(x̂j
i ) of

a parent node is allocated to its children nodes by the weight
f(x̂j

i ). More specifically, let us rewrite f(x̂j
i ) at searching layer

i as

f(xj
i )=

⎧⎨
⎩e

− 1

2σ2
i

((j−1)/2+d)2

when j is odd,

e
− 1

2σ2
i

( j
2−d)2

when j is even,
(52)

where 1
2 ≥ d = |x1

i − x̃i| ≥ 0. In this way, the summation of
f(x̂j

i ) for the first 2N candidate nodes with respect to x̃i (i.e.,
x̂1
i , . . . , x̂

2N
i ∈ Z) can be derived as

2N∑
j=1

f(xj
i ) =

N∑
j=1

(
e
− 1

2σ2
i

(j−1+d)2

+ e
− 1

2σ2
i

(j−d)2
)
. (53)

On the other hand, the weight except those 2N candidate
nodes can be derived as

∞∑
j=2N+1

f(xj
i ) =

∑
j≥N+1

(
e
− 1

2σ2
i

(j−1+d)2

+ e
− 1

2σ2
i

(j−d)2
)

<
∑

j≥N+1

2 · e−
1

2σ2
i

(j−1)2

<
∑

j≥N+1

2 · e−
1

2σ2
i

[(j−1)2− 1
4 ]

= O
(
e−2πN2

)
. (54)

Clearly, the tail bound in (54) decays exponentially fast due to
e2π � 1. Meanwhile, with σ = mini |ri,i|/(2

√
π), from (37) it

is easy to check

1 <

∞∑
j=1

f(xj
i ) ≤ ϑ3(2) = 1.0039, (55)

so that the ratio
∞∑

j=2N+1

f(xj
i )/

∞∑
j=1

f(xj
i ) (56)

becomes negligible with the increment of N .
Therefore, j = 3 is recommended in practice because the

computation of f(xj
i ) for j > 3 is valueless unless the initial

searching size K is sufficiently large. To summarize, Overall,
the proposed equivalent searching algorithm is presented in
Algorithm 2, where enhancement mechanisms of candidate
protection and complexity reduction are included for a better
system trade-off.

VI. NUMERICAL SIMULATIONS

In this section, to compare different search strategies for
GNSS high-dimensional ambiguity resolution, the performance
and complexity of the proposed equivalent searching algorithm
(ESA) is evaluated by simulations based on MATLAB. Given
the system model in (3), we consider its equivalent ILS version
in (8). Therefore, the following system model is established

c = Gx+w, (57)

which is essentially the same with (5) via x̃ = (GTG)−1GT c
and GTG = Q−1

x̃ . Here, we set x ∈ Xn ⊆ Zn, X =
[−4,−3,−2,−1, 0, 1, 2, 3], and assume the matrix G ∈ Rn×n

contains Gaussian-distributed components with unit variance.
Meanwhile, w denotes the noise vector with zero mean and
variance σ2

w, so that the hardness of solving the ILS problem
can be adjusted by tuning the value σ2

w. Furthermore, to verify
the system performance for solving (8) (i.e., (5)), the integer
error probability (IEP) is applied to describe the percentage of
error estimated integers (x̂i �= xi) by Monte Carlo methods (i.e.,
computed by 2000 random variates),

PIEP =
number of errors in recovering x

total number of x being recovered
(58)

where a smaller IEP corresponds to a better performance of the
underlying ILS solver. Intuitively, if xoptimal could be returned,
then the problem of integer phase ambiguity estimation in (4)
for GNSS can be successfully solved. The smaller PIEP, the
more accurate GNSS positioning.3 In this way, the performance
difference between optimal and suboptimal schemes can be
clearly illustrated in terms of IEP. As a flexible and tractable
ILS solver to bridge the suboptimal and optimal performance,
the proposed ESA enjoys the trade-off between performance and
complexity through the initial searching size K.

Fig. 4 shows the integer error probabilities of the proposed
equivalent searching algorithm (ESA) in 16× 16 and 20× 20
ILS systems with σ2

w = 0.705 and σ2
w = 0.8812 respectively.

Here, the suboptimal LLL-reduction-aided Babai’s nearest plane
algorithm serves as a performance baseline and the LAMBDA
algorithm from [14] based on the maximal likelihood (ML)
criterion is added as the optimal performance. Note that Babai’s

3Other metrics like success rate and voronoi region for performance evaluation
also exist, see [41] and [34] for more details.
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Fig. 1. Illustration of the sphere decoding for solving the ILS problem. The searching stage is carried out in a tree structure under the constraint of sphere radius
χ.

Fig. 2. Illustration of searching process via the searching threshold.

Fig. 3. Illustration of the candidate protection.

nearest plane algorithm actually works the same with the integer
bootstrapping, where sequential processing is applied by full
utilizing the correlations over elements of x. As for the perfor-
mance comparison in the 16× 16 system, there is a substantial
performance gap between suboptimal and optimal solutions for
solving the ILS problem in (57). As expected, with the increment
of K, the integer error probability of ESA decreases gradually
for a better performance. Observe that with K = 50, the perfor-
mance of ESA suffers negligible loss compared with the optimal
solution. Therefore, with a moderate K, near-ML performance

Fig. 4. Integer error probability versus initial searching size K for 16× 16
and 20× 20 ILS systems.

can be achieved. Of course, the system performance can be
further improved by increasing K until the optimal solution
is obtained by ESA. However, as demonstrated in Theorem 4,
exponential increment of K would be required, which is not
necessary in practice. On the other hand, with respect to cases
of 20× 20, due to the larger system dimension, a larger size
K is needed to achieve the near-ML performance compared to
curves in cases of 16× 16. By adjusting the initial searching
size K, the proposed equivalent searching algorithm enjoys a
flexible trade-off between performance and complexity. This
is rather meaningful in practice since the optimal solution can
be well approximated by a moderate size K, especially for the
application of real-time accurate positioning. Most importantly,
the complexity of ESA can be tracked according to K.

For a better understanding, the comparison about the average
number of the visited nodes |S| obtained by equivalent searching
algorithm for both 16× 16 and 20× 20 ILS systems is given in
Fig. 5. In particular, the number of visited nodes invoked by the
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Fig. 5. Average number of visited nodes |S| versus initial searching size K
in 16× 16 and 20× 20 ILS systems.

searching threshold, i.e., |S|searching, is indicated by the red bar
while the number of visited nodes invoked by the candidate pro-
tection, i.e., |S|protection, is represented by the blue bar, thus form-
ing the total number |S| = |S|searching + |S|protection together. In-
tuitively, in both cases, we can see that |S|protection > |S|searching,
implying the mechanism of candidate protection plays a more
important role in outputting the candidate vectors. Meanwhile,
this also means that most of searching attempts are terminated
at the early stages. If the mechanism of candidate protection is
removed, then few candidate vectors could be obtained due to
the limited sphere radius, which is in line with the operation
of the traditional sphere decoding. On the other hand, it is
clear that |S| increases with the initial searching size K while
the increment of system dimensions n would also improve the
number of visited nodes. This is straightforward to understand
as the increase of n will greatly expand the tree structure in the
searching process. Meanwhile, with the increase of K, the ratio
|S|searching/|S|protection improves accordingly, indicating a better
searching capability of the proposed ESA algorithm. In addition,
it is easy to verify that the total number of visited nodes |S|
follows the upper bound given in (46), thus providing a tractable
complexity measurement for the proposed ESA algorithm.

On the other hand, Fig. 6 shows the complexity comparison
of the proposed ESA in terms of the average number of the
collected candidate vectors |L| in both 16× 16 and 20× 20
ILS systems. In particular, as K increases, |L| improves grad-
ually as more qualified candidate vectors are obtained by the
relaxed searching threshold. Clearly, |L| is always much smaller
than the initial searching size K, which is accordance with
Theorem 5. More specifically, this means the upper bound
|L| < K is actually rather loose, where further modifications
can be given to exploit the potential therein. Meanwhile, as
expected, with the increase of the system dimension, more
candidate vectors will be returned for the final output due to
the larger depth of the tree structure. In addition, note that few
eligible candidate vectors could be collected in most cases if

Fig. 6. Average number of collected candidate vectors |L| versus initial
searching size K in 16× 16 and 20× 20 ILS systems.

TABLE I
AVERAGE RUNNING FLOPS FOR COMPLEXITY COMPARISON IN ILS SYSTEMS

WITH VARIOUS DIMENSIONS

the mechanism of candidate protection is removed, which is just
the case of the traditional sphere decoding with limited sphere
radius.

Table I shows the complexity comparison in flops of the
proposed equivalent searching algorithm with different system
dimensions, where the flops evaluation scenario that we use
comes from [42]. Clearly, the proposed ESA needs much lower
flops than the optimal LAMBDA solution, and the complexity
increases accordingly with the size ofK. Note that the complex-
ity also increases with the increment of system dimension but
it can be well controlled by adjusting K. This is quite different
from the optimal LAMBDA solution as its complexity increases
exponentially with the system dimension, making it impractical
especially for high-dimensional GNSS systems.

Following the same scenario in Table I, as a complement to
illustrate the computational cost, Table II is given to show the
complexity comparison in average elapsed running times for
100 runs. Typically, the simulation is conducted by MATLAB
R2016a on a single computer, with an Intel Core i7 processor at
2.7 GHz, a RAM of 8 GB and Windows 10 Enterprise Service
Pack operating system. As can be seen clearly, the average
elapsed running times of the equivalent searching algorithm
grow mildly with the increase of system dimension. On the
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TABLE II
AVERAGE RUNNING TIMES FOR COMPLEXITY COMPARISON IN ILS SYSTEMS

WITH VARIOUS DIMENSIONS

contrary, the optimal LAMBDA solution takes an exponentially
increasing average elapsed running time, which is unaffordable
in most of cases.

VII. CONCLUSION

In this paper, a new paradigm of solving the ILS problem
has been adopted to the integer phase ambiguity estimation for
high precision GNSS positioning of IIoT, where the original ILS
problem originated from the integer phase ambiguity estimation
is converted into an equivalent one but characterized by two
parameters rather than one. Thanks to the introduced extra
degrees of freedom in interpreting the system trade-off between
performance and complexity, significant potential can be further
exploited. Based on it, the equivalent searching algorithm has
been proposed, which addresses the ILS problem tractably with
a clear complexity upper bound. Furthermore, the equivalent
searching algorithm has been upgraded by adding the candidate
protection mechanism, which generalizes the searching results
from optimal to sub-optimal solutions. In this way, the proposed
equivalent searching algorithm suits well for various position-
ing requirements, where the positioning trade-off for GNSS is
adjusted through the single parameter K freely.
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