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Abstract—In this paper, a learning-aided stochastic strategy
is studied for the non-cooperative spectrum sensing in cognitive
radio (CR) networks. By sampling from the channel availability
distribution in a Markov chain Monte Carlo (MCMC) way, the
proposed learning-aided Metropolis-Hastings (LMH) algorithm
generates the target channel sequence for fine sensing. The
flexible proposal distribution in MH sampling is fully exploited,
and a learning mechanism based on the multiple sampling
stages within one Markov move is proposed, which tries to take
advantages of the samples obtained by the previous stage. The
reversibility of the Markov chain in the proposed LMH sampling
is studied in detail while its faster convergence rate in the Markov
mixing is demonstrated as well, which leads to better spectrum
sensing performance and efficiency in cognitive radio.

Keywords: Learning mechanism, spectrum sensing,
Markov chain Monte Carlo, cognitive radio networks

I. INTRODUCTION

As a promising technique in wireless communications,
cognitive radio (CR) enables an opportunistic access to the
available spectrum resources without affecting the primary
user networks. Specifically, spectrum sensing is performed
firstly to identify the available channels in cognitive radio
via cooperative or non-cooperative methods [1]–[4], where the
following channel access and data transmission are carried out
for a better spectrum utilization given these available channels.

In particular, non-cooperative spectrum sensing aims to
return a set of available channels so that the probability of
obtaining the desired available channels for fine sensing can be
maximized. However, a pressing challenge of non-cooperative
schemes comes from the fact that their sensing performance
chiefly depends on the parametric environment model by
assumption. Since there is a substantial difference between the
ideal traffic model and the one in real world, the demanding
spectrum sensing performance is severely limited in practice.
Due to the rapid development of heterogeneous CR ad hoc
networks with high environment dynamics, the assumption of
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accurate parametric environment model turns out to be more
difficult, which leads to the non-parametric-based sensing
scheme for the non-cooperative spectrum sensing [5].

In [6], a non-parametric sensing scheme was proposed,
where the statistical inference by randomly sampling over
channel availability distributions is performed for a better
sensing performance. By formulating the problem of seeking
the optimal sequence of available channels as to maximize
the probability of channel availabilities, the choices of the
desired available channels are sampled by the way of Markov
chain Monte Carlo (MCMC), where the channel availability
distribution is approximated by the mixing of Markov chain.
By doing so, the sensing performance is guaranteed due to
the fact that the candidate channels with large availabilities
will more likely be returned. In [7], another non-parametric
spectrum sensing named as the refined Metropolis-Hastings
(RMH) is proposed. Based on the MH sampling in MCMC,
the conditional proposal distribution is introduced to improve
the convergence rate of the Markov mixing, which leads to a
better spectrum sensing in cognitive radio networks.

In this paper, the learning-aided Metropolis-Hastings (LMH)
algorithm is proposed for non-parametric spectrum sensing to
improve its performance and efficiency. Typically, due to the
flexibility of the proposal distribution in Metropolis-Hastings
(MH) sampling, multiple sampling stages within one Markov
move are proposed, where convergence acceleration can be
realized by learning from the past samples in the previous
stages. More specifically, the reversibility of the designed
Markov chain is guaranteed. Based on it, the convergence
superiority in Markov mixing is also demonstrated.

II. SYSTEM MODEL

Considering spectrum resources with M non-overlapping
channels, with respect to the secondary user, a fast sensing
is carried out periodically in the way of energy detection.
Based on fast sensing, a channel sequence S = [s1, . . . , sT ]
is generated and a fine sensing over the spectrum is then
performed to facilitate the subsequent channel access and data
transmission. In particular, the problem of seeking the optimal
channel sequence Ŝ for fine sensing can be reformulated as to
maximize the probability of channel availabilities [6]

Ŝ = arg max
s1,...,sT

P (Xs1 = 1, . . . , XsT = 1), (1)

where the available coefficient Xsi ∈ {0, 1} serves as a binary
indicator of the channel si. Clearly, an effective way to obtain
the above target channel sequence is to randomly sample each
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element of S from the following distributions

P (si) = f(si)/K, 1 ≤ si ≤M. (2)

Here, K > 0 represents a normalized constant, f(si) =
1
$

∫∞
0

∫∞
λ
l(si)e

− ω
$ dsidω indicates the channel availability

outputted by fast sensing, ω and $ are the instantaneous
signal-to-interference-plus-noise ratio (SINR) and the average
SINR respectively, λ is decided by the probability of false
alarm, and l(si) denotes the probability density function (PDF)
of the test statistics of channel si [8]

l(si) =

{
1

2k/2Γ(k/2)
s

(k/2)−1
i e−si/2, H0;

1
2e
−(si/2+µ)( si2µ )k/4−0.5I(k/2)−1(

√
2µsi), H1,

(3)

where H0 and H1 represent the absence and presence of the
primary network signals on channel i, k denotes the degrees
of freedom, Γ standards for Gamma function and I indicates
Bessel function.

In order to sample from (2), the Metropolis-Hastings (MH)
sampling algorithm from MCMC is introduced, which yields
the channel sequence S by a Markov chain M = [M1 =
m1,M2 = m2, . . .]. Theoretically, the designed Markov chain
exponentially converges to the target distribution P (si)

‖P t(m, ·)− P (·)‖TV ≤ %t, (4)

where samples from P (si) can be obtained after the conver-
gence mixing. Here, t represents the number of Markov move,
‖·‖TV indicates the total variation distance, 0 < % < 1 denotes
the convergence rate, Mt and mt stand for the Markov state at
move t and its realization. Specifically, MH sampling applies
a proposal distribution Q(·) to invoke an acceptance-rejection
mechanism during each Markov move [9]. To summarize,
given the channel sequence [s1, . . . , si−1], 1 ≤ i ≤ T , the
operations of MH sampling algorithm to obtain the channel
choice si in one Markov move can be described as follows:

Markov mixing:
1) Given Mt+1 = mt, sample a candidate state m∗ from

the proposal distribution Q(mt+1|mt).
2) Compute the acceptance ratio α(m∗|mt)

α(m∗|mt) = min
{

1,
P (m∗)Q(mt|m∗)
P (mt)Q(m∗|mt)

}
. (5)

3) Accept m∗ by the Markov state Mt+1 (i.e. Mt+1 = m∗)
with probability α(m∗|mt) , otherwise let Mt+1 = mt.

Channel selection:
4) If m∗ is accepted by Mt+1 and if m∗ /∈ {s1, . . . , si−1},

add si = m∗ to the channel sequence as S = [s1, . . . , si],
otherwise try to generate a valid si in the next Markov move.

Overall, the above sampling process is carried out subse-
quently (i.e., from i = 1 to i = T ) to get the desired channel
sequence S = [s1, . . . , sT ] for fine sensing. It is clear to
see that the sensing performance is mainly determined by
the convergence of the Markov chain as a better sampling
approximation of the target distribution P (·) can be achieved
by a faster Markov mixing.

A salient feature of MH sampling is that its proposal
distribution Q(·) can be any fixed distribution from which one
can conveniently draw samples. To this end, the conditional

proposal distribution is applied by refined Metropolis-Hastings
(RMH) in [7] to enable a faster convergence rate with

Q′(m∗|mt) =
Q(m∗|mt)

1−Q(m∗ = mt|mt)
(6)

and

α′(m∗|mt) = min
{

1,
P (m∗)Q′(mt|m∗)
P (mt)Q′(m∗|mt)

}
, (7)

where the previous Markov state Mt = mt is excluded from
the candidate state space of m∗ in the current sampling for
Mt+1. Note that each channel choice si in sequence S should
be different from each other, and this requirement results in
the channel selection shown above. To this end, the selection
judgement m∗ /∈ {s1, . . . , si−1} at step (4) is also taken
into account as well by the usage of conditional proposal
distribution Q′(m∗|mt).

III. LEARNING-AIDED MH SAMPLING ALGORITHM

To improve the convergence of the Markov chain for a
better spectrum sensing, one can reduce the probability of
having the same state over two consecutive Markov moves
i.e., P (Mt+1 = Mt). Intuitively, with a small probability
P (Mt+1 = Mt) (i.e., large P (Mt 6= Mt+1)), the state space
of the Markov chain will be explored more efficiently, so as
to a faster convergence. Meanwhile, considering the operation
of channel selelction, the case Mt+1 = Mt during Markov
moves should also be avoided by failing to satisfy the selection
judgement, which is harmful to the sensing efficiency.

A. Algorithm Description

The proposed LMH algorithm employs multiple sampling
stages in the generation of the sample for si, where the sample
candidate rejected by the previous stage can be utilized in a
learning way to serve the following sampling in the current
stage. From it, a faster convergence rate can be achieved by
effectively reducing the probability P (Mt+1 = Mt).

Basically, Q′(m∗|mt) in (6) can be viewed as the proposal
distribution at the first stage. If m∗ generated by Q′(m∗|mt)
is accepted by the Markov state M t+1, then the Markov chain
continues the next move in the traditional way. However,
once m∗ is rejected by the acceptance-rejection mechanism,
instead of letting M t+1 = mt, a second stage of the proposal
distribution is employed to obtain another sample candidate
m′ as

Q′′(m′|mt,m
∗)=

Q(m′|mt)

1−Q(m′=mt|mt)−Q(m′=m∗|mt)
. (8)

Then, another judgement with respect to the acceptance ratio
α′′(m′|mt,m

∗) should be carried out to decide whether accept
the new sample candidate m′ by Mt+1 or not. Because of the
second stage of the proposal distribution, there is an extra
chance to produce the sample candidate for Markov state
Mt+1. Meanwhile, besides mt, m∗ is taken into account as
well in the sampling of m′ for Mt+1, which corresponds to a
learning mechanism during the Markov mixing.

However, the second stage of the proposal distribution
Q′′(m′|mt,m

∗) may destroy the detailed balance of the
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underlying MCMC, which also refers to the reversibility as
an important Markovian property [10]. If reversibility is not
satisfied, the global convergence of the underlying chain to the
target distribution will never hold, which means the acceptance
ratio α′′(m′|mt,m

∗) at the second stage should be carefully
designed. Therefore, we give the following solution to preserve
the stationary distribution

α′′(m′|mt,m
∗)

= min

{
1,
P (m′)Q′(m∗|m′)Q′′(mt|m′,m∗)[1−α′(m∗|m′)]
P (mt)Q′(m∗|mt)Q′′(m′|mt,m∗)[1−α′(m∗|mt)]

}
= min

{
1, β · 1− α′(m∗|m′)

1− α′(m∗|mt)

}
, (9)

with
β,

P (m′)Q′(m∗|m′)Q′′(mt|m′,m∗)
P (mt)Q′(m∗|mt)Q′′(m′|mt,m∗)

. (10)

Proposition 1. With the designed acceptance ratio
α′′(m′|mt,m

∗) at the second sampling stage, the underlying
Markov chain induced by the proposed LMH sampling
algorithm is reversible by satisfying

P (mt)P (mt,m
′) = P (m′)P (m′,mt). (11)

Proof: First of all, we omit the proof of the reversibility
with respect to the sampling at the first stage, which is straight-
forward to confirm. If sample candidate m∗ is rejected at the
first stage, then the sampling at the second stage is invoked
while the transition probability P (Mt = mt,Mt+1 = m′) of
the Markov chain can be written as
P (mt,m

′)

=Q′(m∗|mt)·[1−α′(m∗|mt)]·Q′′(m′|mt,m
∗)·α′′(m′|mt,m

∗),
(12)

where the reversibility can be verified by

P (mt)P (mt,m
′)

=min{P (mt)Q
′(m∗|mt)Q

′′(m′|mt,m
∗)[1− α′(m∗|mt)],

P (m′)Q′(m∗|m′)Q′′(mt|m′,m∗)[1− α′(m∗|m′)]}

= P (m′)P (m′,mt). (13)

This completes the proof.
In order to obtain the numerator of the acceptance ratio

at the second stage, it seems that one needs to compute the
acceptance probability α′(m∗|m′). However, this is only a
mental trial, which is not implemented in fact. Clearly, if the
sampling candidate at the second stage is also rejected, it is
possible to move on to a third stage and so on to further exploit
the convergence potential. For simplicity, only the second stage
in LMH is described through the context while the operations
of the extension stages can be designed in the same way.
Thanks to the flexible setting of the proposal distributions in
MH samplings, the proposal distribution at each stage could
be different [11]. Therefore, given the incomplete channel se-
quence [s1, . . . , si−1], the sampling operations in the proposed
LMH algorithm for the target choice si within one Markov
move Mt can be summarised as follows:

Markov Mixing:
Stage 1:

1) Sample from the proposal distribution Q′(m∗|mt) in (6)
to obtain the candidate m∗.

2) Make a judgement based on α′(m∗|mt) in (7) about
whether accept m∗ by Mt+1.

a) if m∗ is accepted: go to 5)
b) if m∗ is rejected: go to the operations at stage 2.

Stage 2:
3) Sample from the proposal distribution Q′′(m′|mt,m

∗)
in (8) to obtain the candidate m′.

4) Make a decision for St+1 based on α′′(m′|mt,m
∗) in

(9) to accept m′ or not.
c) if m′ is accepted: go to 5)
d) if m′ is rejected: let Mt+1 = mt, try to obtain a valid

si at the next Markov move.
Channel selection:
5) If m∗ or m′ /∈ {s1, . . . , si−1}, add si = m∗ or m′

into the channel sequence as S = [s1, . . . , si], otherwise try
to obtain a valid si at the next Markov move..

B. Convergence Analysis and Performance Enhancement
Compared to MH and RMH sampling algorithms, LMH

sampling learns the prior knowledge obtained at different
stages within the same Markov move, which still retains
the Markovian property of the Markov mixing. As for the
proposed learning mechanism, we show that LMH sampling
is able to achieve a faster convergence rate than both RMH and
MH samplings. Therefore, a better sampling accuracy can be
achieved by LMH sampling in the approximation of the target
distribution P (st), which accounts for an enhanced spectrum
sensing performance.

Theorem 1. Given the target distribution P (·), LMH sampling
achieves a better convergence performance than MH and RMH
samplings by a smaller convergence rate, i.e,

%LMH < %RMH < %MH. (14)

Proof: To perform the convergence analysis about the
Markov mixing, the probability P (Mt = Mt+1) between two
consecutive Markov states is evaluated.

Specifically, given Mt = mt, the probability P (Mt =
Mt+1) in the original MH sampling consists of two parts.
On one hand, mt will be accepted by Mt+1 if it is sampled
from the proposal distribution Q while the acceptance ratio α
in (5) equals to 1 in this condition. On the other hand, mt will
be accepted by Mt+1 if the sampled candidate m∗ 6= mt from
the proposal distribution Q is rejected. Therefore, it follows
that

PMH(Mt = Mt+1) = PMH(Mt+1 = mt|Mt = mt)

= Q(mt|mt)α(mt|mt) +
∑

m∗ 6=mt

Q(m∗|mt)(1− α(m∗|mt))

= Q(mt|mt) +
∑

m∗ 6=mt

Q(m∗|mt)(1− α(m∗|mt))

= 1−
∑

m∗ 6=mt

Q(m∗|mt)α(m∗|mt) (15)

As for RMH sampling, according to the conditional proposal
distribution Q′ in (6), the choice mt is removed from the
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candidate list of Mt+1. For this reason, its probability P (Mt =
Mt+1) can be expressed as

PRMH(Mt = Mt+1) =
∑
m∗

Q′(m∗|mt)(1− α′(m∗|mt))

=
∑
m∗

Q′(m∗|mt)−
∑
m∗

Q′(m∗|mt)α
′(m∗|mt)

= 1−
∑

m∗6=mt

min
{

Q(m∗|mt)

1−Q(m∗=mt|mt)
,

P (m∗)Q(mt|m∗)
P (mt)(1−Q(mt=m∗|m∗))

}

< 1−
∑

m∗6=mt

min
{
Q(m∗|mt),

P (m∗)Q(mt|m∗)
P (mt)

}
= PMH(Mt = Mt+1). (16)

Next, regarding to P (Mt = Mt+1) of the proposed LMH
sampling, we have

PLMH(Mt = Mt+1) =
∑
m∗

[Q′(m∗|mt)(1− α′(m∗|mt)) · γ]

<
∑
m∗

Q′(m∗|mt)(1− α′(m∗|mt))

= PRMH(Mt = Mt+1), (17)

where the inequality holds because of the coefficient γ

γ =
∑
m′

[Q′′(m′|mt,m
∗)(1− α′′(m′|mt,m

∗))] < 1. (18)

Therefore, it follow that

PLMH(Mt=Mt+1)<PRMH(Mt=Mt+1)<PMH(Mt=Mt+1) (19)

which corresponds to

PLMH(Mt 6=Mt+1)>PRMH(Mt 6=Mt+1)>PMH(Mt 6=Mt+1). (20)

Intuitively, this means the Markov states in LMH are more
dynamic than those in RMH and MH so as to a better
convergence performance. More precisely, each off-diagonal
element in the transition matrix PLMH is always larger than
those of PRMH and PMH while accordingly each diagonal
element in the transition matrix PLMH is always smaller than
those of PLMH and PMH. According to literatures of MCMC,
this is named as Peskun ordering written by [12]

PLMH(Mt,Mt+1)�PRMH(Mt,Mt+1)�PMH(Mt,Mt+1).
(21)

We now recall the following Lemma to specify the relation
between Peskun ordering and convergence rate.

Lemma 1 ([12]). Given reversible Markov chains P and
G with stationary distribution π, if P � G, then their
convergence rates satisfy %P ≤ %G.

The definition of Peskun ordering P (Mt,Mt+1) �
G(Mt,Mt+1) is based on the inequality P (Mt,Mt+1) ≥
G(Mt,Mt+1), where the equality %P = %G holds only if
P (Mt,Mt+1) = G(Mt,Mt+1). Since the case of equality is
excluded here, we can immediately obtain %LMH < %RMH <
%MH based on (21) and Lemma 1.

From Peskun ordering, a Markov chain has smaller prob-
ability of staying in the same state (i.e., P (Mt = Mt+1))
will explore the state space more efficiently, which results in

a better Markov mixing [13]. Therefore, the performance of
spectrum sensing will be enhanced by the proposed LMH sam-
pling algorithm accordingly. Meanwhile, with the increasing
probability P (Mt 6= Mt+1), the sensing efficiency will also
be strengthened as the risk of failing to satisfy the selection
judgement m∗or m′ /∈ {s1, . . . , si−1} is reduced.

C. The Choice of the Proposal Distribution Q

To reduce the computational cost of each Markov move,
the conditional symmetric Gaussian proposal distribution Q is
applied in proposed LMH sampling algorithm as

Q(m∗|mt) =
e−

1
2σ2
|m∗−mt|2∑

m∗ e
− 1

2σ2
|m∗−mt|2

= Q(mt|m∗), (22)

where the standard deviation σ > 0 is flexible to choose to ad-
just the Markov mixing. In this way, the proposal distribution
Q′(m∗|mt) in (6) becomes symmetric as well, which leads to
a simplified acceptance ratio at the first sampling stage

α′(m∗|mt) = min
{

1,
P d(m

∗)

P d(mt)

}
. (23)

Clearly, m∗ is accepted by M t+1 if P d(m∗) > P d(mt),
otherwise it will be accepted with probability Pd(m∗)

Pd(mt)
. If m∗

is rejected, then another candidate m′ will be sampled from the
proposal distribution Q′′(m′|mt,m

∗) with m′ 6= m∗ 6= mt,
mt and m∗ are learnt as the prior knowledge at the second
stage to enhance the convergence. Due to the symmetry, the
acceptance ratio α′′(m′|mt,m

∗) at the second stage becomes

α′′(m′|mt,m
∗)=min

1,
P d(m

′)[1−min
[
1, Pd(m∗)

Pd(m′)

]
]

P d(mt)− P d(m∗)

,
(24)

which can be further expressed as

α′′(m′|mt,m
∗)=min

{
1,

max{0, P d(m′)− P d(m∗)}
P d(mt)− P d(m∗)

}
=F

(
P d(m

′)− P d(m∗)
P d(mt)− P d(m∗)

)
, (25)

where F denotes the cumulative distribution function (CDF)
of a uniform random variable over the interval (0, 1). To make
it specific, the following three cases are summarized:

1) if P d(m′) > P d(mt), then α′′(m′|mt,m
∗) = 1, accept

m′ and let M t+1 = m′.
2) if P d(mt) > P d(m

′) > P d(m
∗), accept m′ with

probability Pd(m′)−Pd(m∗)

Pd(mt)−Pd(m∗)
.

3) if P d(m′) < P d(m
∗), then α′′(m′|mt,m

∗) = 0, reject
m′ and let M t+1 = mt.

Based on the symmetric Gaussian distribution, the genera-
tions of candidate samples m∗ and m′ from Q′ and Q′′ respec-
tively are significantly simplified while the acceptance ratio
α′′(m′|mt,m

∗) of the second stage in (25) becomes much
more straightforward than that in (9). From this, the sampling
with respect to the average energy detection probability P d(·)
can be easily carried out. In addition, if m′ is also rejected,
it is possible to move on to the next stage and obtain another
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Fig. 1. Average percentage of the missed opportunities under different traffic
models.

candidate from the proposal distribution Q′′′(·) based on the
previous samples mt, m∗ and m′. We emphasize that the
coefficient γ in (18) will be getting smaller with the extension
of multiple sampling stages, implying a better convergence if
more sampling stages are applied.

IV. SIMULATION RESULTS

To confirm the performance and efficiency gains of the
proposed LMH sampling algorithm for spectrum sensing, the
following simulations are carried out over M = 40 channels
in the licensed spectrum with SINR= 20 dB. Meanwhile, the
the probability of false alarm is set as 0.01.

Fig. 1 evaluates the average percentages of the missed spec-
trum opportunities for different spectrum sensing schemes,
where two different traffic models (i.e., exponential packet ar-
rival with an average arrival rate of 10 arrival/sec and constant
packet arrival with an average arrival rate of 10 arrival/sec)
are applied for a better comparison with nmax = 8. Here, nmax
indicates the maximum number of channels for fine sensing,
and the percentage of the missed spectrum opportunities is
defined as pm = 1 − n∗

nmax
, where n∗ is the obtained number

of available channels, nava denotes the average number of
available channels, nreq stands for the number of request avail-
able channels [6]. Clearly, under different traffic models, the
proposed LMH sampling achieves the smallest probabilities
of missing opportunities than both MH and RMH sampling
schemes, which is accordance with the results of convergence.

As for sensing efficiency, the sensing overhead in obtain-
ing the available channels is applied, which is defined as
o = nmax − n∗ for n∗ = nreq and o = nmax for n∗ 6= nreq.
According to it, the average overhead to obtain an available
channel (i.e., n∗ = 1) for fine sensing is presented in Fig. 2.
In particular, the average sensing overhead of the proposed
LMH sampling is smaller than those of MH and RMH
sampling schemes, which comes from the a higher probability
P (Mt 6= Mt+1) in channel selection. To make it more specific,
Table I is given to show the acceptance rates in selection
judgement for these MCMC-based sampling schemes, and
the proposed LMH sampling entails a most efficient sensing
process by the highest acceptance ratio for all cases of i.
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Fig. 2. Average overhead of obtaining an available channel with different
maximum numbers of fine sensing.

TABLE I
AVERAGE ACCEPTANCE PROBABILITIES BY CHANNEL SEQUENCE S .

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

MH 1 0.71 0.51 0.41 0.36 0.27

RMH 1 0.84 0.75 0.69 0.61 0.56

LMH 1 0.91 0.83 0.75 0.69 0.63

V. CONCLUSION

In this paper, the learning-aided Metropolis-Hastings (LMH)
sampling algorithm is proposed for non-cooperative spectrum
sensing in cognitive radio networks. By learning the knowl-
edge from the designed multiple sampling stages within one
Markov move, the probability that the Markov chain stays
at the same state will be reduced significantly. Therefore, a
faster convergence rate in Markov mixing can be achieved,
which brings considerable performance and efficiency gains
to spectrum sensing.
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