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Abstract— In this paper, the random iterative method is
introduced to massive multiple-input multiple-output (MIMO)
systems for the efficient downlink linear precoding. By adopting
the random sampling into the traditional iterative methods,
the matrix inversion within the linear precoding schemes can
be approximated statistically, which not only achieves a faster
exponential convergence with low complexity but also experiences
a global convergence without suffering from the various conver-
gence requirements. Specifically, based on the random iterative
method, the randomized iterative precoding algorithm (RIPA) is
firstly proposed and we show its approximation error decays
exponentially and globally along with the number of itera-
tions. Then, with respect to the derived convergence rate, the
concept of conditional sampling is introduced, so that further
optimization and enhancement are carried out to improve both
the convergence and the efficiency of the randomized iterations.
After that, based on the equivalent iteration transformation, the
modified randomized iterative precoding algorithm (MRIPA) is
presented, which achieves a better precoding performance with
low-complexity for various scenarios of massive MIMO. Finally,
simulation results based on downlink precoding in massive
MIMO systems are given to show the system gains of RIPA
and MRIPA in terms of performance and complexity.

Manuscript received 16 October 2021; revised 4 April 2022; accepted 8 June
2022. Date of publication 20 June 2022; date of current version 12 December
2022. This work was supported in part by the National Natural Science
Foundation of China under Grant 61801216, Grant 61771124, and Grant
61720106003; in part by the Natural Science Foundation of Jiangsu Province
under Grant BK20180420 and Grant BK20190337; in part by the State Key
Laboratory of Integrated Services Networks (Xidian University) under Grant
ISN21-31; in part by the Zhi Shan Young Scholar Program of Southeast
University; and in part by the Fundamental Research Funds for the Central
Universities under Grant 2242022k30002. The associate editor coordinating
the review of this article and approving it for publication was H. Q. Ngo.
(Corresponding author: Zheng Wang.)

Zheng Wang is with the School of Information Science and Engineering
and the Frontiers Science Center for Mobile Information Communication
and Security, Southeast University, Nanjing 210096, China, and also with
the State Key Laboratory of Integrated Services Networks, Xidian University,
Xi’an 710071, China (e-mail: z.wang@ieee.org).

Robert M. Gower is with the Center for Computational Mathematics,
Flatiron Institute, Simons Foundation, New York, NY 10010 USA (e-mail:
rgower@flatironinstitute.org).

Cheng Zhang, Yili Xia, and Yongming Huang are with the School of
Information Science and Engineering and the Frontiers Science Center
for Mobile Information Communication and Security, Southeast University,
Nanjing 210096, China.

Shanxiang Lyu is with the College of Cyber Security, Jinan University,
Guangzhou 510632, China.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2022.3182407.

Digital Object Identifier 10.1109/TWC.2022.3182407

Index Terms— Massive MIMO, large-scale MIMO, linear pre-
coding, low complexity, iterative methods, matrix inversion,
convergence analysis and enhancement.

I. INTRODUCTION

AS A promising technique for cellular network in the
5th generation mobile network (5G) and beyond 5G,

massive multiple-input multiple-output (MIMO) systems have
been widely investigated in the last decade, which boosts the
network capacity on a much greater scale without extra band-
width [1]–[4]. By deploying large-scale antenna array at the
base station (BS), significant array gain and spatial resolution
can be achieved, which greatly facilitates the MIMO system
to serve numerous users simultaneously [5], [6]. Specifically,
it has been shown that linear precoding techniques like zero-
forcing (ZF), regularized ZF (RZF) are capable of achieving
the capacity-approaching performance if the number of anten-
nas at BS is sufficiently large [7]–[9]. For this reason, more
efforts have been paid attention to decrease the complexity cost
of the matrix inversion in linear precoding [10]–[15], which
is computational expensive especially in high-dimensional
systems. However, some of these low-complexity precoding
schemes like Neumann series (NS), Newton iteration (NI) and
so on suffer from some specific convergence requirements
(i.e., the number of antennas at BS should be greatly larger
than that of the user side), rendering them rather limited in the
various scenarios of interest. Actually, besides BS, the total
number of antennas at the user side also improves rapidly,
which contains the increments of both the number of users
and the number of antennas at each user equipment (UE)
[16], [17]. This means the environment of wireless communi-
cations becomes much more complicated than before, making
a flexible and effective precoding scheme highly desired.

In particular, to bypass the matrix inversion in linear precod-
ing schemes, a straightforward approximation way is to resort
to the polynomial expansion. In particular, the Neumann series
and the Kapteyn series are introduced respectively, which
transforms the matrix inversion into a precondition matrix with
simple matrix multiplications and summations [18], [19]. With
the increase of the polynomial items, an approximation of the
matrix inversion can be achieved [20]. Unfortunately, the con-
vergence of Neumann series is guaranteed only if the number
of antennas at base station is much larger than that on the
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user side, otherwise its performance will severely degrade [21].
Although Newton iteration was further employed with a better
convergence performance than Neumann series [22], [23],
it still suffers from this requirement in convergence [24].
On the other hand, a low-complexity RZF precoding is pre-
sented in [12], [13], which replaces the matrix inversion within
it by a truncated polynomial expansion (TPE). Nevertheless,
TPE precoding has to deal with a complicated parameter
optimization problems.

Besides polynomial expansion, another general strategy to
avoid matrix inversion is the iterative methods for solving
the linear systems [25]. However, the convergence of these
iterative methods are also somehow restricted [26], [27]. For
example, in Jacobi iteration, the convergence is ensured if the
symmetric positive matrix A (i.e., the matrix inversion of A is
the target matrix) is strictly diagonally dominant [28]. As for
Richardson iteration, the relaxation factor 0 < ω < 2/ρ(A)
that controls the matrix splitting during the iterations should
be well selected to guarantee the convergence [29], [30],
where ρ(·) denotes the spectral radius of a matrix. As for
successive over-relaxation (SOR) and symmetric successive
over-relaxation (SSOR), they both restrict the relaxation factor
as 0 < ω < 2 to ensure the convergence [31], [32]. Meanwhile,
these iterative methods generally have prohibitive computation
overhead, which are not well suited for systems with moderate
to large channel coherence time [10], especially for wireless
communication systems with large bandwidth. Other low
complexity precoding schemes can also be found in [33]–[35].

Nowadays, random sampling has emerged as a fundamental
tool in solving various signal processing problems. From
it, extra processing freedom can be introduced while con-
siderable performance and complexity gain can be obtained
[36]–[40]. In this paper, in order to achieve the low-complexity
precoding with better and global convergence performance,
a statistical precoding scheme based on random iterative
method is proposed for various downlink scenarios of massive
MIMO. First of all, by approximating the matrix inversion by
incorporating a random sampling into the traditional iterative
methods, the randomized iterative precoding algorithm (RIPA)
is proposed for downlink massive MIMO systems. Meanwhile,
its convergence rate for iteratively approximating the matrix
inversion is derived and we show that it not only converges
exponentially fast but also enjoys a global convergence. This
means the convergence obstacle of the traditional iterative
methods for massive MIMO systems is successfully overcome.
Secondly, by resorting to the conditional sampling, theoretic
analysis and optimization with respect to the randomized
iteration are given. Finally, based on the equivalent iteration
transformation, the modified randomized iterative precoding
algorithm (MRIPA) is proposed to further improve the precod-
ing performance and efficiency. To summarize, the proposed
MRIPA not only achieves a faster convergence performance
with low complexity cost, but also enjoys a global convergence
to well suited the various cases of massive MIMO systems.

The rest of this paper is organized as follows. Section II
briefly introduces the traditional linear precoding for
downlink massive MIMO systems and reviews the low-
complexity precoding schemes by polynomial expansion and

iterative methods. In Section III, the proposed randomized
iterative precoding algorithm (RIPA) is described and its
convergence analysis is given to show the global and the expo-
nential convergence performance. In Section IV, the concept
of iteration transformation is proposed to lower the complexity
of randomized iteration for precoding. Then, by adopting the
conditional sampling into the randomized iteration, further
optimization and enhancement are given. In Section V, the
modified randomized iterative precoding algorithm (MRIPA)
is presented to improve the convergence and efficiency. After
that, simulations of the proposed precoding schemes for
downlink massive MIMO are shown in Section VI. Finally,
Section VII concludes the paper.

Notation: Matrices and column vectors are denoted by
upper and lowercase boldface letters, and the transpose, con-
jugate transpose, inverse, pseudoinverse of a matrix B by
BT ,BH ,B−1, and B†, respectively. We use bi for the ith
column of the matrix B, bi,j for the entry in the ith row
and jth column of the matrix B. Let 〈X,Y〉F (W−1) �
Tr(XHW−1YW−1) denote the weighted Frobenius inner
product, where X,Y ∈ Cn×n and W ∈ Cn×n is a symmet-
ric positive definite matrix. Furthermore, let ‖X‖2

F (W−1) �
Tr(XHW−1XW−1) = ‖W− 1

2 XW− 1
2 ‖2

F where ‖·‖F is the
standard Frobenius norm with identity matrix I and Tr(·)
denotes the trace of the matrix. �(·) and �(·) indicate the
real and imaginary components.

II. PRELIMINARY

In this section, the linear precoding in downlink massive
MIMO systems is reviewed, followed by the background of
low-complexity linear precoding schemes derived by polyno-
mial expansion and iterative methods.

A. Linear Precoding in the Downlink

The base station (BS) in the massive MIMO system we
considered is equipped with N antennas, and simultaneously
serves K single antenna user terminals (UT) (N ≥ K).
Throughout the context, we assume the channel matrix
H ∈ CN×K to be perfectly known at BS.

Specifically, let s denote the K × 1 transmitted source
information to K users during the downlink transmission,
according to precoding, the signal vector y received at UTs
are [9], [10]

y =
√
ρHHGs + n. (1)

Here, G ∈ C
N×K is the precoding matrix, ρ > 0 is the

average transmit power at BS, and n is a K × 1 additive
white Gaussian noise vector whose entries follow CN (0, σ2).
To satisfy the power constraint, s and G are selected according
to ‖s‖2 = 1 and tr(GGH) = 1.

To eliminate the interference during the downlink transmis-
sion, ZF precoder is defined as

Gzf = βH(HHH)−1, (2)

which transmits the signal toward the intended user while
nulling in the directions of other users. Here, β serves as a
scaling factor to normalize the signal power. Furthermore, as

Authorized licensed use limited to: Southeast University. Downloaded on December 22,2022 at 07:15:47 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: STATISTICAL LINEAR PRECODING SCHEME BASED ON RANDOM ITERATIVE METHOD 10117

an enhanced version of ZF, the regularized ZF (RZF) is
given by

Grzf = βH(HHH + ξI)−1 (3)

according to mean square error (MSE) criterion, making
it also know as the minimum mean-square error (MMSE)
precoding. Here, I is the identity matrix and ξ is the scalar
regularization coefficient. Typically, RZF precoding reduces to
ZF if ξ → 0 while RZF precoding is similar to maximal ratio
transmission (MRT) when ξ → ∞.

From (2) and (3), the precoding matrices Gzf and Grzf are
functions of the channel matrix, which both require the matrix
inversion of large size. Theoretically, this costs O(K3) compu-
tational complexity, which increases rapidly as the dimension
of massive MIMO expands. To this end, a number of advanced
low-complexity precoding schemes has been proposed to avoid
the matrix inversion.

B. Low Complexity Iterative Precoding

Given RZF precoding, the truncated polynomial expan-
sion (TPE) precoding is proposed to reduce the computational
complexity while maintaining the similar performance. In par-
ticular, TPE precoding replaces the matrix inversion in RZF by
a truncated polynomial expansion so that its precoding matrix
is given by

Gtpe =
J−1∑
k=0

ωk(HHH)kHH , (4)

where the coefficient ωi denotes the precoder polynomial
of order J . Intuitively, the selection of J enables a flexible
trade-off and the approximation accuracy gradually improves
with the increment of J .1 However, finding the optimal choice
of coefficients ωi’s turns out to be not easy in practice.

In [18], Neumann series is applied into precoding to approx-
imate the matrix inversion with low complexity cost. For
example, let A = HHH for ZF precoding or A = HHH+ξI
for RZF precoding so that the precoding matrix

G = βHA−1, (5)

then the approximation of the matrix inversion of A
becomes [7]

A−1 =
∞∑

k=0

(I − ΘA)kΘ, (6)

where Θ is a K × K diagonal matrix and k denotes the
iteration index. Based on Neumann series, several modifi-
cations like identity matrix NS (INS), diagonal matrix NS
(DNS) [41], and identity-plus-column NS (ICNS) [14] have
been proposed to further improve the approximation. However,
the approximation in (6) holds only if

lim
k→∞

(I − ΘA)k = 0, (7)

1TPE precoding is equivalent to the traditional MRT precoding when J = 1.
On the other hand, RZF precoding will be achieved if J goes infinity.

which implies the condition N � K is required in massive
MIMO systems. More specifically, this condition is further
specified as N/K ≥ 5.83 in [21].

On the other hand, to approximate the matrix inversion of
A contained in Grzf or Gzf, the following linear system can
be established

At = s (8)

with t = A−1s. In this way, the system model (1) in becomes

y =
√
ρβHHHt + n (9)

with the transmitted signal obtained by

x = Grzfs = βHA−1s = βHt, (10)

where the problem of approximating the matrix inversion of
A turns out to solve the linear systems about t in (8).

Therefore, by splitting A into A = P + Q (matrix P ∈
CK×K is nonsingular, Q ∈ CK×K), the linear system in (8)
can also be solved by the following iterations

t(k) = Bt(k−1) + f (11)

where B = −P−1Q = I − P−1A ∈ CK×K is known as the
iteration matrix and f = P−1s ∈ CK . However, the iterative
methods also have to confront the convergence problem by
satisfying

lim
k→∞

Bk = 0. (12)

For this reason, the iterative precoding scheme like Newton
iteration still suffers from the same convergence requirement
as Neumann series.

As for Jacobi and Richardson iterative methods, the iteration
matrices are set as BJacobi = I − D−1A (i.e., P = D) and
BRichardson = I − ωA (i.e., P = 1

ω I) respectively, where
D ∈ C

K×K is the diagonal component of the matrix A and
ω > 0 is known as the relaxation parameter. Typically, in order
to guarantee the convergence, the matrix A in Jacobi iteration
should be strictly diagonally dominant (SDD), i.e.,

|ai,i| >
∑
j �=i

|ai,j | (13)

while the Richardson iteration is convergent if 0 < ω < 2
�(A) .

�(A) is the spectral radius of matrix A. Clearly, this is also
related to a specific requirement of A [28] and ω should be
well selected for the convergence. For a better convergence,
the iteration method of successive overrelaxation (SOR) was
introduced as [42]

(D + ωL)xk+1 = [(1 − ω)D − ωLH ]xk + ωb (14)

with A = D + L + LH , where D, L and LH respectively
stand for the diagonal components, the strictly lower triangular
components and the strictly upper triangular components of A.
However, the SOR method converges only if the relaxation
parameter 0 < ω < 2, which should be carefully selected.
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III. RANDOMIZED ITERATIVE PRECODING ALGORITHM

In this section, the statistical linear precoding based on
random iterative methods for downlink massive MIMO system
is proposed. By capturing the advantages of random sampling,
exponential and global convergence can be achieved by the
random iterations, which leads to the randomized iterative
precoding algorithm (RIPA).

A. Algorithm Description

Given the target matrix A ∈ C
K×K (i.e., A = HHH +

ξI for RZF and A = HHH for ZF), in order to find its
matrix inversion X ∈ CK×K for AX = I, an auxiliary matrix
S ∈ CK×q can be introduced so that the problem of finding
A−1 can be partially characterized by finding the solution to

SHAX = SH . (15)

Theoretically, if S is a K × K (i.e., q = K) invertible matrix,
left multiplying SH to the both sides in (15) will not change
the solution, where solving (15) exactly yields the same result
of solving AX = I. However, if q  K , then the dimension
of (15) will be reduced greatly, making it easier to solve. Most
importantly, the dimension reduction by the introduced matrix
S comes at the price of various solutions to (15), which should
be carefully taken care of.

Then, to seek for the desired result among numerous solu-
tions of X, a certain level of randomness can be introduced
by S to calculate X iteratively and dynamically [43]–[45].
In this way, the most general solution of X that fits every
random matrix S ∈ CK×q in (15) will be obtained gradually,
which means to exploit as much of information learned so far
as possible. Meanwhile, in order to calibrate the norm of a
matrix in the Euclidean space, the squared Frobenius norm is
applied throughout the context, which cycles through all the
entries of a matrix by

‖X‖2
F =

m∑
i

n∑
j

|xi,j |2 = Tr(XXH). (16)

Then, based on Frobenius norm, a symmetric positive definite
matrix W ∈ CK×K is introduced to serve as the weighted
matrix, i.e.,

‖X‖2
F (W−1) � ‖W− 1

2 XW− 1
2 ‖2

F . (17)

From it, the problem in (15) can be expressed in an iterative
way as

Xk+1 = arg min
X∈CK×K

‖X− Xk‖2
F (W−1)

subject to SH
k AX = SH

k , (18)

where k denotes the iteration index, Sk obeys a discrete dis-
tribution D with r > 0 outcomes, i.e., Sk ∈ {M1, . . . ,Mr},
and Mi ∈ CK×qi , 1 ≤ i ≤ r is a full column rank matrix
with probability

pi � D(Sk = Mi) > 0 (19)

and
∑r

i=1 pi = 1.
Based on (18), given the random chosen matrix Sk, the

update of X(k+1) at each iteration is specified as the closest

result to X(k) with the weighted matrix, which results in a
convergent iterations of X(k). We point out that the distribution
D and the weight matrix W are the system parameters, which
should be carefully designed for the sake of convergence.
More specifically, according to optimization theory, the dual
formulation of (18) is

X(k+1) = arg min
X∈CK×K ,Y∈CK×q

‖X(k) − A−1‖2
F (W−1) (20)

subject to X = X(k) + WAHSkYH ,

Sk ∼ D. (21)

Then, by substituting (21) into (15), we can obtain that

YH = (SH
k AWAHSk)−1SH

k (I − AX(k)). (22)

Subsequently, by putting (22) back to (21), we can get an
explicit expression of X(k+1), namely

X(k+1) = X(k) + WAHSk(SH
k AWAHSk)−1SH

k

× (I− AX(k)) (23)

with Sk ∼ D, which could be further expressed by

X(k+1) − A−1 = (I − WZ)(X(k) − A−1) (24)

with the defined symmetric matrix Z

Z � AHSk(SH
k AWAHSk)−1SH

k A ∈ C
K×K . (25)

From (24), it is clear to see that the approximation of A−1

by X(k) proceeds iteratively under the introduced random
sampling brought by Sk.

In order to specify the randomized iteration in RIPA, the
following choices about systems parameters D and W with
respect to (23) are given. On one hand, let W = (AHA)−1,
then the iteration in (23) turns out to be

X(k+1) = X(k) + A−1Sk(SH
k Sk)−1SH

k (I − AX(k)). (26)

On the other hand, we set Sk = AX(k)
:,q′

is
, X(k)

:,q′
is

stands

for a column concatenation of qi columns of matrix X(k)

(i.e., X(k)
:,q′

is
= X(k)I:,q′

is
where I:,q′

is
represents a column

concatenation of qi columns of K × K identity matrix I)
and the qi columns are uniform randomly selected from i ∈
{1, . . . ,K}. Here, to enable an efficient sampling, the index
set of multiple columns related to qi is fixed, which forms
a block operation. For example, each qi corresponds to a set
containing 3 column indices as follows

{1, 2, 5}q1 ∪ . . . ∪ {4, 8, 12}qr = {1, . . . ,K} (27)

with sets {·}qi ∩ {·}qj = ∅ and
∑r

i=1 qi = K .

Therefore, based on W = (AHA)−1 and Sk = AX(k)
:,q′

is
,

the iteration in the proposed RIPA can be expressed as

X(k+1) = X(k) + X(k)
:,q′

is
(X(k)H

:,q′
is

AHAX(k)
:,q′

is
)−1X(k)H

:,q′
is

AH

× (I− AX(k))

= X(k) + X(k)
:,q′

is
(X(k)H

:,q′
is

AHAX(k)
:,q′

is
)−1

× (X(k)H
:,q′

is
AH − X(k)H

:,q′
is

AHAX(k)) (28)

where the sizes of the index set are set equally qi = . . . =
qr = q for the sake of implementation simplicity.
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Algorithm 1 Randomized Iterative Precoding Algorithm
(RIPA) for Downlink Massive MIMO Systems

Require: A = HHH or A = HHH + ξI, X(0) = D−1, Q,
β

Ensure: near ZF or RZF precoding matrix G = βHX(Q)

1: for k = 0, . . . , Q− 1 do
2: randomly sample qi column indexes according to (27)
3: update X(k+1) according to (28)
4: end for
5: output G = βHX(Q)

Therefore, by updating X(k) iteratively according to (28),
A−1 can be asymptotically approximated. As for the initial
choice of X(0), it actually can be set arbitrarily and we
take X(0) = D−1 as an alternative. To summarize, the
operations of the proposed randomized iterative precoding
algorithm (RIPA) for downlink massive MIMO systems is
outlined in Algorithm 1.

We then consider the computational complexity of RIPA.
In particular, as for the iteration in (28), the computational
complexity of calculating (X(k)H

:,q′
is

AHAX(k)
:,q′

is
)−1 is q3 +

q2K + 2qK2; the computational complexity of X(k)H
:,q′

is
AH −

X(k)H
:,q′

is
AHAX(k) is q2K + 3qK2 while multiplying it with

the former terms costs qK2 + q2K . Therefore, the total
computational complexity of RIPA at each iteration can be
approximated by q3 +3q2K +6qK2, which can be expressed
as O(qK2). Considering q  K , it turns out to be competitive
compared to other low-complexity precoding schemes.

B. Convergence Analysis

We now study the convergence of RIPA in terms of the
expectation of the error norm, i.e., E[‖X(k) −A−1‖F (W−1)].
For the sake of convenience, let M = [M1, . . . ,Mr] ∈
C

K×�r
i=1 qi and assume M is full row rank. Actually, because

the discrete distribution D can be designed arbitrarily, this
weak assumption is easily achieved [46].

According to (24), the random ingredients are contained
in the matrix Z. Specifically, given the matrix Sk randomly
sampled from D, the expectation of Z can be derived as

E[Z] =
r∑

i=1

piAHMi(MH
i AWAHMi)−1MH

i A

= AH

(
r∑

i=1

Mip
1
2
i (MH

i AWAHMi)−
1
2

× (MH
i AWAHMi)−

1
2 p

1
2
i MH

i

)
A

= (AHMJ)(JMHA) (29)

with the invertible block diagonal matrix J ∈ C
K×K

J = diag(p
1
2
1 (MH

1 AWAHM1)−
1
2 , . . . , p

1
2
r

× (MH
r AWAHMr)−

1
2 ). (30)

Intuitively, even under the random sampling, E[Z] is still
symmetric by structure.

On the other hand, considering the Rayleigh fading channels
in massive MIMO systems, because the channel matrix H is
full rank matrix, the multiplication Hv for vector v ∈ C

K

equals to 0 if and only if v is a zero vector. Therefore, it is
straightforward to check that the Gram matrix HHH in matrix
A is positive definite due to

vH(HHH)v = (Hv)HHv > 0, (31)

which leads to a positive definite matrix A = HHH + ξI.
Moreover, given the full row rank matrix MH

i A and the
invertible diagonal matrix J, we can verify that E[Z] in (29)
is symmetric positive definite.

Based on the symmetric positive definite E[Z], the follow-
ing results about the convergence of RIPA can be demonstrated
while the proof partially follows [47].

Theorem 1: With respect to the downlink precoding in
massive MIMO systems, let Sk be randomly sampled from
the discrete distribution D, the proposed randomized iteration
following (23) converges by

E[‖X(k) − A−1‖2
F (W−1)] ≤ ρk‖X(0) − A−1‖2

F (W−1)

(32)

with exponential convergence rate

ρ = 1 − λmin(W
1
2E(Z)W

1
2 ) < 1, (33)

where λmin(·) stands for the minimum eigenvalue of a matrix.
Proof: To start with, in order to concisely state the result,

the following definitions are made

Rk = W− 1
2 (X(k) − A−1)W− 1

2 (34)

and

Ẑ = W
1
2 ZW

1
2 . (35)

Then, by multiplying W− 1
2 on the both sides of (24), it fol-

lows that

Rk+1 = (I − Ẑ)Rk, (36)

and from which we can have

E[‖X(k+1) − A−1‖2
F (W−1)] = E[‖Rk+1‖2

F ]
(a)
= E[E[‖Rk+1‖2

F |Rk]] (37)

where equality (a) holds according to the law of total proba-
bility for expectation (i.e., E[E(A|B)] = E(A)).

Then, regarding to the term ‖Rk+1‖2
F in the above equation,

we have the following derivations

‖Rk+1‖2
F = ‖(I − Ẑ)Rk‖2

F

(b)
= Tr((I − Ẑ)RkRH

k (I− Ẑ)H)
(c)
= Tr((I − Ẑ)(I − Ẑ)RkRH

k )
(d)
= Tr((I − Ẑ)RkRH

k )

= ‖Rk‖2
F − Tr(ẐRkRH

k ). (38)
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Here, equality (b) comes from (16), equality (c) holds due
to the symmetry of matrices W and Ẑ. Besides, equality (d)
comes from the fact that ẐẐ = Ẑ due to

W
1
2 AHSk(SH

k AWAHSk)−1SH
k AW

1
2︸ ︷︷ ︸

�Z
× W

1
2 AHSk(SH

k AWAHSk)−1SH
k AW

1
2︸ ︷︷ ︸

�Z
= W

1
2 AHSk(SH

k AWAHSk)−1SH
k AW

1
2

= W
1
2 ZW

1
2

= Ẑ. (39)

Next, based on (38), it follows that

E[‖Rk+1‖2
F |Rk] = ‖Rk‖2

F − Tr(E[Ẑ]RkRH
k )

(e)

≤ ‖Rk‖2
F − λmin(E[Ẑ])Tr(RkRH

k )

= (1 − λmin(E[Ẑ])‖Rk‖2
F

= (1 − λmin(W
1
2E(Z)W

1
2 )‖Rk‖2

F

= ρ‖Rk‖2
F (40)

where the inequality (e) relies on the symmetric property
of E[Ẑ].

After that, by simply substituting (40) into (37), we can
easily arrive at the following result by induction

E[‖X(k) − A−1‖2
F (W−1)] ≤ ρ‖Rk−1‖2

F

= ρE[‖X(k−1) − A−1‖2
F (W−1)]

≤ ρkE[‖X(0) − A−1‖2
F (W−1)]

= ρk‖X(0) − A−1‖F (W−1),

(41)

where the matrix X(0) is given at the beginning as an initial
setup.

Moreover, since E(Z) is a symmetric positive definite
matrix in massive MIMO systems, all the eigenvalues of it
are positive, i.e. λmin(E(Z)) > 0. Therefore, we have

ρ = 1 − λmin(W
1
2 E(Z)W

1
2 ) < 1 (42)

because the weighted matrix W is also symmetric positive
definite.

By Theorem 1, the proposed randomized iteration in
RIPA converges exponentially fast to A−1. More importantly,
we point out that such an exponential convergence works
globally without suffering from the requirement about the ratio
N/K . Meanwhile, the requirements about system parameters
W and D are easy to achieve. Moreover, in order to guarantee
the approximation error smaller than a given value 0 < ε < 1

E[‖X(k) − A−1‖2
F (W−1)] ≤ ε‖X(0) − A−1‖2

F (W−1), (43)

the required number of iterations is lower bounded by2

k ≥ 1
1 − ρ

log(
1
ε
) (44)

2The inequality ln(1 − δ) < −δ for 0 < δ < 1 is applied here.

so as to a tractable iteration. Besides, according to (32),
a closer choice of X(0) to the target solution A−1 is beneficial
to boost the convergence, which is rather recommended in
practice.

IV. OPTIMIZATION AND ENHANCEMENT

In this section, the iteration transformation with respect to
the randomized iteration is firstly proposed for the sake of
efficiency. Then, by adopting the conditional sampling into
iterations, the previous samplings from D can be learnt by
the current randomized iteration, where considerable conver-
gence gain can be exploited. Moreover, the mechanism driven
by conditional sampling can be further strengthened to a
pseudorandom iteration, which leads to better convergence and
efficiency.

A. Iteration Transformation

Given (24), it is possible to convert the iteration about
matrix X into the iteration about vector t by right multiply-
ing s as

t(k+1) − A−1s = (I − WZ)(t(k) − A−1s). (45)

By doing this, the approximation of A−1s would be outputted
by t(k+1) in an iterative way, which follows the counterpart
of the system model shown in (9). Similar to (15), this
corresponds to solving the linear system shown below

SHAt = SHs (46)

with the auxiliary matrix S ∈ CK×q.
Subsequently, based on (45), the related iteration in (23)

naturally becomes

t(k+1) = t(k) + WAHSk(SH
k AWAHSk)−1SH

k (s − At(k))
(47)

with Sk ∼ D. More specifically, it is straightforward to verify
that the exponential convergence of the iteration in (47) still
holds globally, and we have the following result with omitted
proof due to simplicity.

Corollary 1: With respect to the downlink precoding in
massive MIMO systems, let Sk be randomly sampled from
the discrete distribution D, the proposed randomized iteration
following (47) converges by

E[‖t(k) − A−1s‖2
F (W−1)] ≤ ρk‖t(0) − A−1s‖2

F (W−1)

(48)

with exponential convergence rate

ρ = 1 − λmin(W
1
2E(Z)W

1
2 ) < 1, (49)

where λmin(·) stands for the minimum eigenvalue of a matrix.
It is clear that both the iterations in (23) and (47) regarding

to X and t respectively are able to provide the effective
solutions to the downlink precoding even with the same
convergence expression. Note that the convergence rates ρ
in (53) and (49) are the same, where the difference of
convergence performance lies on the different Frobenius norms

Authorized licensed use limited to: Southeast University. Downloaded on December 22,2022 at 07:15:47 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: STATISTICAL LINEAR PRECODING SCHEME BASED ON RANDOM ITERATIVE METHOD 10121

of ‖X(0)−A−1‖F (W−1) and ‖t(0)−A−1s‖F (W−1). Neverthe-
less, we claim that the latter one is a better choice since the
computational complexity of each iteration can be reduced.
In particular, the computational complexities of s − At(k)

in (47) is much smaller than I−AX(k) in (23), thus leading to
a more efficient iteration scheme. For this reason, the following
optimization and enhancement are carried out based on the
iteration transformation about t in (45).

B. Optimization by Conditional Random Sampling

Although the random sampling of Sk from D offers an
effective way for the linear system in (46), it does have a
side effect during the iteration. Because the randomness during
the sampling is difficult to control, the sampling diversity
could be constrained if a certain sampling choice Mi is
obtained repeatedly by two consecutive sampling operations
Sk−1 and Sk. This is straightforward to understand since the
convergence comes from various choices of Sk rather than a
single one.

In order to overcome such an issue, it is possible to update
the sampling probability in (19) as a conditional one, so that
the prior knowledge from the last sampling can be utilized, i.e.,

pi � D(Sk = Mi|Sk−1 = Mj), i �= j

=
pi

1 − pj
, i �= j. (50)

Intuitively, from (50), the sampling Sk−1 of the last iteration
is taken into account by the sampling at the current iteration,
where the sampling choice Mj is discarded by the current
sampling for Sk. In this way, the aforementioned issue that
Sk−1 = Sk can be avoided, which results in a better conver-
gence for the randomized iterations.

We now consider the convergence of the conditional ran-
domized iteration. Typically, according to pi in (50), the
conditional expectation of Z given the last sampling choice
Sk−1 = Mj can be written as

E[Z|Sk−1] =
j−1∑
i=1

piA
HMi(MH

i AWAHMi)−1MH
i A

+
r∑

i=j+1

piA
HMi(MH

i AWAHMi)−1MH
i A

= (AHMJ)(JM
H
A) ∈ C

K×K , (51)

which still turns out to be symmetric definite positive
with M = [M1, . . . ,Mj−1,Mj+1, . . . ,Mr] and J = diag

(p
1
2
1 (MH

1 AWAHM1)−
1
2 , . . . , p

1
2
j−1(M

H
j−1AWAHMj−1)−

1
2 ,

p
1
2
j+1(M

H
j+1AWAHMj+1)−

1
2 , . . . , p

1
2
r (MH

r AWAHMr)−
1
2 ).

Then, it is clear to confirm the convergence of the conditional
randomized iteration so that the following Theorem can
be achieved, where the related proof is omitted because of
simplicity.

Theorem 2: Given the sampling choice Sk−1 = Mj , Mj ∈
{M1, . . . ,Mr}, let Sk be randomly sampled from D accord-
ing to the conditional sampling probability pi defined in (50),

then the conditional randomized iteration following (47) con-
verges by

E[‖t(k) − A−1s‖2
F (W−1)] ≤ ρ‖t(k−1) − A−1s‖2

F (W−1)

(52)

with exponential convergence rate

ρ = 1 − λmin(W
1
2E(Z|Sk−1)W

1
2 ) < 1. (53)

Note that the convergence rate ρ varies at each iteration
given the conditional sample Sk−1. After that, regarding to the
convergence of the conditional randomized iteration, we can
arrive at the following result by optimization.

Theorem 3: Given the sampling choice Sk−1 = Mj , Mj ∈
{M1, . . . ,Mr}, the convergence rate of the conditional ran-
domized iteration takes the form

ρ = 1 − λmin(M
H
AWAHM)

‖W 1
2 AHM‖2

F

(54)

if the sampling probability pi follows

pi =
Tr(MH

i AWAHMi)
‖W 1

2 AHM‖2
F

, i �= j. (55)

Proof: To start with, for the sake of notational simplicity,
let ti = Tr(MH

i AWAHMi) and yi = (MH
i AWAHMi)−1,

then we have

J
2

=
diag(t1y1, . . . , tj−1yj−1, tj+1yj+1, . . . , tryr)

‖W 1
2 AHM‖2

F

(56)

so that

λmin(J
2
) =

1
‖W 1

2 AHM‖2
F

min
i�=j

{
ti

λmax(MH
i AWAHMi)

}
(f)

≥ 1
‖W 1

2 AHM‖2
F

, (57)

where inequality (f) holds due to the fact that the trace of a
matrix equals the sum of its eigenvalues, i.e.,

Tr(A) =
∑

i

λi(A) and Tr(A) ≥ λmax(A) ≥ λmin(A).

(58)

Therefore, according to (57) and (51), we can arrive at the
following derivation

λmin(W
1
2E(Z|Sk−1)W

1
2 ) = λmin(W

1
2 AHMJ

2
M

H
AW

1
2 )

= λmin(M
H
AWAHMJ

2
)

(g)

≥ λmin(M
H
AWAHM)λmin(J

2
)

≥ λmin(M
H
AWAHM)

‖W 1
2 AHM‖2

F

, (59)

where (g) holds because λmin(EF) ≥ λmin(E)λmin(F) if
matrices E, F ∈ CK×K are both positive definite. Intuitively,
considering the fact that the system parameter W is sym-
metric positive definite by default, the matrix multiplication
M

H
AWAHM is also positive definite, and so is the diagonal

matrix J
2
.
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Finally, by substituting (59) into (53), we can easily obtain
that

ρ = 1 − λmin(M
H
AWAHM)

‖W 1
2 AHM‖2

F

(60)

with the sampling probability

pi =
Tr(MH

i AWAHMi)
‖W 1

2 AHM‖2
F

, i �= j, (61)

completing the proof.
Based on Theorem 3, it is possible to improve the con-

vergence rate ρ through optimizing the choice of the matrix
M = [M1, . . . ,Mj−1,Mj+1, . . . ,Mr]. More specifically, the
convergence rate ρ can be lower bounded as

ρ = 1 − λmin(M
H
AWAHM)

‖W 1
2 AHM‖2

F

= 1 − λmin(M
H
AWAHM)

Tr(M
H
AWAHM)

≥ 1 − 1∑j−1
i=1 qi +

∑r
i=j+1 qi

, (62)

where the lower bound in (62) holds if and only if
M

H
AWAHM = I. On the other hand, with respect to

the original randomized iteration in RIPA, the lower bound
of its convergence rate ρ given sampling probability pi =
Tr(MH

i AWAHMi)/‖W 1
2 AHM‖2

F can be derived by sim-
ple substitution

ρ = 1 − λmin(MHAWAHM)
Tr(MHAWAHM)

≥ 1 − 1∑r
i=1 qi

, (63)

where the lower bound is achieved when MHAWAHM = I.
Moreover, due to

∑j−1
i=1 qi +

∑r
i=j+1 qi <

∑r
i=1 qi = K ,

we have the following result.
Corollary 2: According to (62) and (63), the conditional

randomized iteration outperforms the randomized iteration
due to a smaller convergence lower bound.

C. Enhancement by Multi-Step Conditional Sampling

Given the convergence gain brought by the conditional sam-
pling, a straightforward enhancement for randomized iterations
is to recall more previous samplings, namely,

pL � D(Sk = Mi|Sk−1, . . . ,Sk−L) (64)

where 1 ≤ L ≤ r − 1 indicates the number of previous
samplings with Mi /∈ {Sk−1, . . . ,Sk−L}. In this way, the
introduced conditional randomized iteration can be actually
viewed as a special case of the multi-step conditional ran-
domized iteration with L = 1. Similarly, it is straightforward
to verify the exponential convergence of L-step conditional
randomized iteration. To this end, we have the following
Corollary, where its proof is omitted.

Corollary 3: Given L-step sampling choices
Sk−1, . . . ,Sk−L, let Sk be randomly sampled according to
the conditional sampling probability pL in (64), the L-step
conditional randomized iteration following (47) converges by

E[‖t(k) − A−1s‖2
F (W−1)] ≤ ρL‖t(k−1) − A−1s‖2

F (W−1)

(65)

with exponential convergence rate

ρL = 1 − λmin(W
1
2E(Z|Sk−1, . . . ,Sk−L)W

1
2 ) < 1. (66)

Meanwhile, following Theorem 3, it is clear to see that the
convergence performance of L-step conditional randomized
iteration improves gradually with the increase of L. Therefore,
it is encouraged to set L = r − 1 to fully take advantages of
conditional sampling by

ρr−1 = 1 − λmin(MH
i AWAHMi)

Tr(MH
i AWAHMi)

(67)

≥ 1 − 1
qi
. (68)

Clearly, the lower bound of ρr−1 is smaller than that of
ρ1 in (62), which leads to a better convergence perfor-
mance. Apart from the convergence gain, with the increase
of L, the L-step conditional randomized iteration gradually
becomes deterministic in selection of Sk. More specifically,
when k > r − 1 and L = r − 1, there is only one
sampling option left for Sk given these r − 1 previous
sampling choices of Sk−1, . . . ,Sk−r+1. Interestingly, such a
pseudorandom or derandomized sampling is also beneficial
to the implementation of L-step conditional randomized iter-
ation, making it more efficient in practice. Therefore, with
L = r − 1, the following modified randomized iterative pre-
coding algorithm (MRIPA) based on the multi-step conditional
randomized iteration is proposed based on the randomized
iteration in (47).

V. MODIFIED RANDOMIZED ITERATIVE

PRECODING ALGORITHM

In this section, based on iteration transformation and multi-
step conditional sampling, the modified randomized iterative
precoding algorithm (MRIPA) is proposed for a better conver-
gence and efficiency.

A. Algorithm Description

In particular, from (68), in order to obtain the conver-
gence lower bound of ρr−1 in L-step conditional random-
ized iteration, the condition MH

i AWAHMi = I given
Sk−1, . . . ,Sk−L with Mi /∈ {Sk−1, . . . ,Sk−L} should be
fulfilled. Therefore, a straightforward way to simplify the ran-
domized iteration is to apply W = A−1 and MH

i AHMi = I
respectively. Unfortunately, finding the optimal Mi =
A− 1

2 I:,q′
is

= A− 1
2

:,q′
is

∈ CK×qi is hard to realize in practice.

Therefore, given the symmetric positive matrix A = D +
L + LH , we use the diagonal matrix D as an approximation,
namely,

Mi = D− 1
2 I:,q′

is
∈ C

K×qi . (69)

Consequently, the related convergence rate can be derived as

ρr−1 = 1 − λmin(M
H

i AMi)

Tr(M
H

i AMi)
. (70)

Intuitively, the above convergence rate obeys the lower bound
in (68) as well. Similar to RIPA, the setup q1 = . . . = qr = q is
also applied in the proposed MRIPA for the sake of simplicity.
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To summarize, based on the r − 1 previous samplings
Sk−1, . . . ,Sk−r+1, the sampling choice Sk = Mi can be
efficiently determined especially when k > r − 1, and the
randomized iteration of MRIPA with W = A−1 becomes

t(k+1) = t(k) + Mi(M
H

i AMi)−1(M
H

i s − M
H

i At(k))
(71)

with

Mi /∈ {Sk−1, . . . ,Sk−r+1}. (72)

On the other hand, according to (52) in Theorem 2 and (65)
in Corollary 2, a closer choice of t(0) to A−1s is able to
significantly accelerate the convergence, which leads to a more
efficient randomized iterative precoding. For this reason, the
matrix D can be applied here to serve as the initial choice of
t(0), i.e.,

t(0) = D−1s, (73)

where the approximation improves with the increase of the
ratio N/K and vice versa. Note that because D is a diagonal
matrix, the computational complexity of t(0) is rather low,
which only requires K multiplications. Overall, the operation
procedures of the proposed MRIPA for downlink massive
MIMO systems are outlined in Algorithm 2. In addition,
we point out that the usage of multi-step conditional sampling
is also compatible to the proposed RIPA scheme despite of
the different choices of system parameters W and Sk.

Algorithm 2 Modified Randomized Iterative Precoding
Algorithm (MRIPA) for Downlink Massive MIMO Systems

Require: A = HHH or A = HHH + ξI, t(0) = D−1s, Q,
β

Ensure: near ZF or RZF precoding solution Gs = βHt(Q)

1: for k = 0, . . . , Q− 1 do
2: randomly sample qi column indexes according to (72)
3: update t(k+1) according to (71)
4: end for
5: output Gs = βHt(Q)

B. Complexity Reduction of MRIPA

As for the computational complexity of MRIPA, the compu-
tational complexities of computing (M

H

i AMi)−1 and M
H

i s−
M

H

i At(k) in (71) are q2K+qK2+q3 and 2qK+qK2 respec-
tively, and multiplying these several terms costs q2K + qK .
Therefore, the total complexity of MRIPA at each iteration
can be approximated by 3qK + q3 + 2q2K + 2qK2, which
is smaller than that of RIPA. Moreover, in the following we

show that the computational complexity of MRIPA can be
further reduced by well taking advantages of the initial setup
given in (73).

According to (69), the matrix Mi has a special structure,
which can be further expressed as M

H

i , shown at the bottom
of the page. Clearly, the operations of Mi or M

H

i are
essentially performed by the q × q nonzero submatrix within
it. Meanwhile, we can observe that the q × q submatrix
only contains the nonzero diagonal elements, where the rest
of elements in it are also 0. Therefore, further complexity
reduction can be achieved by well exploiting these special
structures of Mi.

In particular, the computational complexity of calculating
(M

H

i AMi)−1 can be reduced to qK + q2 + q3; the com-
putational complexity of M

H

i s − M
H

i At(k) is q + 2qK and
multiplying them together costs q2 + qK . To summarize, the
total complexity of MRIPA at each iteration is reduced as
q + q2 + q3 + 4qK . Meanwhile, to fulfill the requirement of
q  K in practice, we set 1 < q ≤ √

K as a solution, which
means the reduced computational complexity of MRIPA at
each iteration is no more than O(K1.5). We point out that
the average complexity of each iteration in RIPA can also
be reduced as O(K2) in the same way. According to (71),
in the proposed MRIPA only q components of t are updated
at each iteration. Therefore, for a fair comparison, K/q times
iterations are needed as a full iteration to update all the K
elements of t. Nevertheless, the complexity of MRIPA in
a full iteration is O(K2) with 1 < q ≤ √

K, making it
still competitive compared to traditional iterative precoding
schemes.

VI. SIMULATIONS

In this section, the proposed randomized iterative precoding
schemes for downlink massive MIMO systems is examined by
simulations. Here, we assume a flat fading environment, and
the channel matrix H ∈ CN×K is perfectly known at the base
station, which contains uncorrelated complex Gaussian fading
gains with unit variance and remains constant over each frame
duration.

In Fig. 1, the proposed randomized iterative precoding algo-
rithm (RIPA) is evaluated in a uncoded massive MIMO system
with N = 128 and K = 32, where the average achievable rate
per user terminal (i.e., rate = 1

K

∑K
i E[log2(1 + SINRi)])

is applied as the comparison measurement. More precisely,
given the corresponding precoding matrix G, the signal to
interference and noise ratio (SINR) at the i-th user is expressed
as [12], [48]

SINRi =
hH

i gigH
i hi

hH
i GGHhi + σ2

, (74)

M
H

i =

⎡⎢⎢⎢⎢⎣
0 · · · 0 m1,(i−1)∗q+1 0 · · · 0 0 · · · 0
... · · · ... 0

. . .
. . .

...
... · · · ...

... · · · ...
...

. . .
. . . 0

... · · · ...
0 · · · 0 0 · · · 0 mq,(i−1)∗q+q 0 · · · 0

⎤⎥⎥⎥⎥⎦ .
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Fig. 1. Average achievable rate per UT versus average receive SNR for a
uncoded massive MIMO system with N = 128 and K = 32.

Fig. 2. Bit error rate versus average SNR for a uncoded massive MIMO
system with N = 128 and K = 16.

where gi is the i-th column of the precoding matrix G. For
a better illustration, RZF precoding scheme is employed as
the performance benchmark while the Neumann series (NS)
in [21] and Newton iteration (NI) in [22] are also applied
as the comparison baselines. Clearly, under k = 4 iterations,
a comparable performance can be achieved by RIPA with
q = 8 compared to Neumann series. On the contrary, the
Newton iteration does not work well in this case as its
convergence requirement of N � K is not satisfied. With the
increment of k, we can observe that the performance of RIPA
improves gradually, which is accordance with the convergence
result in Theorem 1. To further study the proposed RIPA and
MRIPA schemes with more details, the bit error rate (BER)
performance is employed in the following simulations.

In Fig. 2, the initial setups of RIPA and MRIPA are
examined by BER performance in a uncoded massive MIMO
system with N = 128 and K = 16, where 16-QAM and
64-QAM are applied respectively for a better understanding.
Specifically, two initial choices of X(0) = I and X(0) = D−1

Fig. 3. Bit error rate versus average SNR for a uncoded massive MIMO
system with N = 128 and K = 16 using 64-QAM.

are evaluated for RIPA while two choices of t(0) = Is and
t(0) = D−1s are estimated for MRIPA. Meanwhile, with
q = 4, we set k = 6 for RIDA and k = 2 for MRIPA
respectively, where MRIPA applies a full iteration. Typically,
from Theorem 1 and Corollary 3, the convergence performance
of RIPA and MRIPA are also determined by the choice of
X(0) and t(0). Therefore, by offering better approximations,
the choices X(0) = D−1 and t(0) = D−1s for RIPA and
MRIPDA achieve better performance than those with X(0) = I
and t(0) = Is. Given the low complexity of computing D−1,
such choices of X(0) = D−1 and t(0) = D−1s are highly
recommended in practice, and we also apply them in the
following simulations by default. Meanwhile, as expected,
MRIPA achieves a better BER performance than RIPA, which
is due to its faster convergence shown in Corollary 2.

In Fig. 3, the BER performance comparison between RIPA,
MRIPA and other conventional iteration precoding schemes
are presented with respect to a 128 × 16 uncoded massive
MIMO system with 64-QAM. Besides the Neumann series and
Newton iteration, the Jacobi iteration, Richardson iteration,
SOR iteration, Gauss Seidel method and random Kaczmarz
iterations [40] are also employed for a better comparison,
where RZF serves a performance benchmark. Note that the
condition N � K is satisfied here, so that these traditional
iterative methods like Neumann series, Newton iteration and
so on work as usual. In order to show the convergence
behaviour in a better way, the iteration numbers of RIPA and
MRIPA are set as k = 4, 6, 8 and k = 1, 2, 3 respectively
with q = 4. As can be seen clearly, with the increment
of iterations, both the precoding performance of RIPA and
MRIPA improve gradually, thus confirming the convergence
of the proposed randomized iterations. More specifically,
with k = 8 and k = 3, near RZF performance will be
obtained by RIPA and MRIPA respectively while MRIPA
achieves a better performance than RIPA. This is line with
the afore-mentioned analysis about the convergence rate and
MRIPA does have a better convergence by optimization and
enhancement.
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Fig. 4. Bit error rate versus average SNR for a uncoded massive MIMO
system with N = 128 and K = 16 using 64-QAM under imperfect CSI.

As a counterpart of Fig. 3, Fig. 4 is presented to evaluate the
BER performance of the proposed RIPA and MRIPA without
perfect channel state information (CSI) in a 128 × 16 uncoded
massive MIMO systems using 64-QAM. Specifically, let Ĥ =
H + ΔH stand for the channel matrix with imperfect CSI.
Here, ΔH denotes the channel estimation errors and each of
its elements follows CN (0, σ2

e) with σ2
e = 0.1 [49], [50].

Due to the imperfect CSI, the BER performance of all the
precoding schemes deteriorate in general compared to the case
with perfect CSI in Fig. 3. Nevertheless, the performance gain
of MRIPA still can be verified while near RZF performance
can be achieved by it with the increment of k.

Besides the independent, identically distributed (i.i.d.) chan-
nels, the impact of correlated channels is also studied to
reveal the convergence performance of the proposed RIPA and
MRIPA schemes with q = 4. Specifically, following the setups
of correlation channels in [51], [52], the correlated channel
matrix is set by R

1
2
b HR

1
2
u , where Rb ∈ CN×N and Ru ∈

CK×K denote the correlation matrices at base station side
and user side respectively. Here, the normalized correlation
coefficient 1 ≥ ψ ≥ 0 controls the correlation degree of the
channels, where ψ = 0 means an uncorrelated scenario and
ψ = 1 implies a fully correlated one. Compared to the i.i.d.
case in Fig. 3, the precoding performance of RZF slightly
degrades with normalized correlation index ψ = 0.05 in Fig. 5.
However, the performance of traditional iteration methods
like Neumann series, Newton, Jacobi, Richardson are terrible
because their convergence severely suffer from the correlated
channels. More precisely, this is because a more correlated
channel naturally leads to a large condition number, which has
a negative effect upon their convergence. On the contrary, both
the proposed RIPA and MRIPA work as usual but with slower
convergence rates. Meanwhile, their precoding performance
improve gradually with the increase of k, which is accordance
with the derived convergence results. Note that under the
same iteration number MRIPA achieves a better performance
than GS, SOR and random Kaczmarz. In Fig. 6, the similar

Fig. 5. Bit error rate versus average SNR for the uncoded 128 × 16 massive
MIMO using 64-QAM with normalized correlation index ψ = 0.05.

Fig. 6. Bit error rate versus average SNR for the uncoded 128 × 16 massive
MIMO using 64-QAM with normalized correlation index ψ = 0.1.

observations can also be found, where the channel matrix
becomes more correlated with the normalized correlation index
ψ = 0.1. Due to the illness of the channel matrix, the
performance of RZF also gets worse than before. In this case,
traditional iterations like Neumann series, Newton, Jacobi,
Richardson do not work any more. Different from them, the
convergence of RIPA and MRIPA are ensured even though
more number of iterations are required to achieve the near RZF
performance. Nevertheless, considerable performance gain still
can be verified by MRIPA compared to GS, SOR and so on
under the same iterations.

In Fig. 7, the BER performance comparison with respect
to RIPA and MRIPA is presented in a uncoded massive
MIMO system with N = 128 and K = 32 using 16-QAM.
For a better comparison, the precoding schemes like RZF,
Neumann series, Newton iteration, Jacobi iteration, Richard-
son iteration and so on are added as well. Intuitively, as the
convergence requirement N � K is not fulfilled in this case,
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Fig. 7. Bit error rate versus average SNR for a uncoded massive MIMO
system with N = 128 and K = 32 using 16-QAM.

Fig. 8. Bit error rate versus average SNR for a uncoded massive MIMO
system with N = 128 and K = 64 using 16-QAM.

the convergence performance of Neumann series, Newton
iteration and Jacobi iteration are poor, which result in the
terrible BER performance in the downlink massive MIMO
systems. In contrast, the convergence of both RIPA and
MRIPA with q = 8 work well as they converge globally
according to Theorem 1. Meanwhile, under the same iterations,
the performance of MRIPA outperforms GS, SOR and random
Kaczmarz. With the increase of the iteration number, the
precoding performance of RIPA and MRIPA improve grad-
ually while the RZF precoding performance can be achieved
subsequently.

In Fig. 8, we extend the precoding performance comparison
to a uncoded massive MIMO system with N = 128 and
K = 64 using 16-QAM. Compared to Fig. 7, the antenna ratio
N/K between the base station side and the user side gets
smaller. Clearly, we can observe that the conventional iteration
schemes like Neumann series, Newton iteration and Jacobi
iterations do not converge any more so that the precoding

Fig. 9. Bit error rate versus average SNR for the uncoded massive MIMO
systems using 16-QAM.

Fig. 10. Complexity comparison in average time cost for the uncoded
128 × K massive MIMO system using 16-QAM at SNR = 18dB.

schemes based on them do not work at all. In sharp contrast
with them, the proposed RIPA and MRIPA with q = 8 work
as usual, and their BER performance gradually improve with
the increase of the number of iterations. Similarly, under the
same iterations, MRIPA achieves a better BER performance
than GS, SOR and random Kaczmarz.

Fig. 9 is shown to evaluate the different choices of q for
MRIPA in both 128 × 64 and 128 × 32 uncoded massive
MIMO systems with 16-QAM. Specifically, the choices of
q = 4, 8, 16 are applied for a better understanding. Meanwhile,
the numbers of iterations are set as k = 3 for case of
128 × 32 and k = 5 for case of 128 × 64 respectively.
Intuitively, the precoding performance of MRIPA improves
gradually with the increase of size q since more components
of x can be updated together. However, according to (71),
a larger size q also requires more computational cost so that
a reasonable size 1 ≤ q ≤ √

K should be carefully selected,
which will be one of our work in future.
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In Fig. 10, the complexity comparison in average elapsed
running times per iteration is given to show the computational
costs of the proposed RIPA and MRIPA. The number of
antennas at the base station side is set as N = 128 while
16-QAM is applied with SNR = 18dB. Meanwhile, the simu-
lation is conducted by MATLAB R2019a on a single computer
with an Intel Core i7 processor at 2.8GHz, a RAM of 8GB
and Windows 10 Enterprise Service Pack operating system.
Clearly, the average elapsed running times per iteration of all
the precoding schemes grow accordingly with the increment
of antennas at the user side (i.e., K). We point out that the
computational complexity of MRIPA in (71) is significantly
less than that of RIPA in (28) due to the usage of iteration
transformation and optimization. However, a full iteration that
contains K/q single iterations of (71) is applied to MRIPA
for a fair comparison with other traditional iteration schemes.
Nevertheless, MRIPA is still competitive compared to GS
and SOR iteration schemes. On the other hand, it is clear
to see that Newton iteration, Jacobi iteration and Richardson
iteration have smaller average running times than MRIPA.
However, MIRPA not only archives a better convergence
performance than them but also avoids suffering from any
specific convergence requirement.

VII. CONCLUSION

In this paper, the downlink precoding in massive MIMO
systems is studied, and two statistical linear precoding schemes
based on random iterative method are proposed. First of all,
by introducing random sampling into iteration schemes, the
randomized iterative precoding algorithm (RIPA) is proposed
with low computational complexity. Then, we demonstrate
that RIPA achieves an exponential convergence, and its con-
vergence rate is also derived. Meanwhile, we show that
RIPA enjoys a global convergence without suffering from
the convergence requirement like the antenna ratio on both
transmitter and receiver sides. This significantly extends the
applications of low-complexity precoding schemes in down-
link massive MIMO systems. After that, based on iteration
transformation and conditional sampling, further optimiza-
tion and enhancement are given, where the modified ran-
domized iterative precoding algorithm (MRIPA) is proposed
for better convergence and efficiency. Therefore, by simply
tuning the number of iterations, flexible precoding trade-off
between performance and complexity can be achieved by
MRIPA in various scenarios of the downlink massive MIMO
systems.
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